

3

WhereScape RED Teradata User Guide

The software described in this book is furnished under a license agreement and may be used only in
accordance with the terms of the agreement.

Copyright Notice

Copyright © 2002-2017 WhereScape Software Limited. All rights reserved. This document may be
redistributed in its entirety and in this electronic or printed form only without permission; all other uses
of this document and the information it contains require the explicit written permission of WhereScape
Software limited.

Due to continued product development, this information may change without notice. WhereScape
Software Limited does not warrant that this document is error-free.

Trademarks

WhereScape and WhereScape RED are trademarks or registered trademarks of WhereScape Software
Limited. Other brands or product names are trademarks or registered trademarks of their respective
companies.

WhereScape USA, Inc

1915 NW AmberGlen Parkway

Suite 400, Beaverton

Oregon 97006

United States

T: 503-466-3979

F: 503-466-3978

WhereScape Limited

P.O.Box 56569, Auckland 1446

12-16 Tapora Street

Quay Park

Auckland 1010, New Zealand

T: +64-9-358-5678

F: +64-9-358-5679

WhereScape Europe

450 Brook Drive

Green Park

Reading RG2 6UU

United Kingdom

T: +44-118-914-4509

F: +44-118-914-4508

WhereScape Asia Pte. Ltd

300 Tampines Avenue 5

#09-02 Singapore 529653

T: +65-6679-5728

i

Contents

Overview 1

Overview of WhereScape RED 2
How to use this Guide 5

Design 7

Objects and Windows 9

Object Types 10
Working with Objects 15

Object Check-Outs and Check-Ins 39
Re-Create Dialog 44

Organizing Objects 47
Adding Objects to Projects 51
Removing Objects from Projects 52
Using Project/Object Maintenance 54
Adding Projects to Groups 55
Removing Projects from Groups 55
Moving Projects within Groups 56
List Projects Memberships for an Object(s) 57

Windows and Panes 58
Builder Window 58
Scheduler Window 63
Diagram Window 64
Procedure Editor Window 66

Export Middle Pane Output 68
Find Function 70

Tutorials 71

Default Settings 72

Settings - Options 73
Settings - Repository Identification 74
Settings - Repository Privacy Settings 75
Settings - Object Types 78

Object Type Availability 78
Object Type Names 79
Object Type Ordering 80
Object Type End User Setting 81
Object Type Icon 82

ii

Object Type Color 85
Object Sub Types 86

Settings - Global Naming Conventions 88
Case Conversion 88
Global Naming of Tables 89
Global Naming of Indexes 90
Global Naming of Key Columns 91
Global Naming of Procedures 93

Settings - DSS Tables and Columns 94
DSS Tables 96
DSS Columns 97

Settings - Check-Out and Check-In 99
Code Generation 100

General 100
Default Update Procedure Options 102

Settings - Storage 104
Target Location 104
Table Storage 107
Default Optional CREATE Clause 108
Index Type 109

Settings - Versioning 110
Settings - Documentation 111
Settings - Other 112

Settings - User Preferences 113
Settings - Common 114

Look and Feel 114
Local Naming Conventions 120
Local Paths 124
Outputs 125
Other 127

Settings - Current Repository 129
Look and Feel 129

Settings - Language Options 130

Parameters 132

Connections 133

Connection Types 134
Database - Data Warehouse/Metadata Repository 135

General 136
Source System 136
Big Data Adapter Settings 136
Database Credentials 137
Other 138
When Connection is an OLAP Data Source 139
Target Table Location [For target enabled licenses] 139

Database 141

iii

General 141
Source System 142
Database Credentials 142
Other 143
Target Table Location [For target enabled licenses] 143

ODBC 144
General 144
ODBC 145
Big Data Adapter Settings 145
Credentials 146
Other 146

Windows 148
General 148
Windows Host 148
Credentials 149
Other 149

UNIX 151
General 151
UNIX/Linux Host 152
Credentials 153
Other 153

Hadoop 155
General 157
Apache Hadoop 157
Big Data Adapter Settings 159
Credentials 159
Other 160
To test the drag and drop functionality 160
Closing the Connection 160

Microsoft Analysis Server 2005+ 161
Microsoft Analysis Server 2005+ - OLAP Cubes 162
Microsoft Analysis Server 2005+ - Tabular Mode 165

Browsing a Connection 167
Connection Browse Properties 170

Changing a Connection's Properties 172
Reset Meta Database Connections 172
Configuration Settings for BDA 173

Configuring the BDA Server 174
Big Data Adapter Settings 175

Configuring your database for use by BDA 175
Big Data Adapter Settings 177

Table Properties 179

Properties 180
Rebuilding Update Procedures 181

Storage 183
Table Storage Screen - Teradata 184

iv

Location 184
Table Storage Screen - Tabular 186

Location 186
Other 187
Processing 187

Bulk Table Storage Change 187
Override Create DDL 189
Source 190
Documentation Fields 191

Documentation Fields Screen 192
Notes 193

Loading Data 194

Choosing the Best Load Method 196
Load Drag and Drop 197

Data Type Mappings 199
Database Link Load 200

Database Link Load - Properties 200
Database Link Load - Source Screen 202

ODBC Based Load 204
Native ODBC Based Load 205

Native ODBC Based Load - Source Screen 205
File Actions 208
Native Loads using UNIX and LINUX 210

TPT Load 213
TPT Load - Source Screen 215
Cleanup after TPT Load Failure 218

TPT UNIX/Linux Script Load 220
TPT UNIX Script Load - Properties 221

SSIS Loader 224
Loading Data into RED Load Tables using SSIS 225

Flat File Loads 235
Loading Data from Flat Files using SSIS 241
Flat File Load - Source Screen 251

Source File Details 252
Trigger File Details 253
Load Configuration 253
Archived File Details 256
SQL Server Integration Services (SSIS) 257

Script based loads 258
XML File Load 260
External Load 265
Apache Sqoop Load 265
Handling Missing Source Columns 272
Load Table Transformations 275

v

Post-Load Procedures 275
Changing Load Connection and Schema 276

Dimensions 279

Dimensions Overview 280
Building a Dimension 281

Drag and Drop 281
Dimension Properties 284
Create and Load 284
Deleting and Changing columns 285
Adding additional columns 286
Manually adding previous value columns 287
Create the table 288

Generating the Dimension Update Procedure 289
Generating a Procedure 289

Processing tab 290
Source tab 294

Joining multiple source tables 295
Using Change Detection - Change Detection Tab 296
Building and Compiling the Procedure 299

Indexes 300
Dimension Artificial Keys 301

To allow for non identity surrogate keys on Dimensions: 302
Dimension Column Properties 303

Changing a Column Name 308
Dimension Column Transformations 311
Dimension Hierarchies 312

Adding a Dimension Hierarchy 313
Using a Maintained Hierarchy 315

Snowflake 315
Creating a Snowflake 315

Dimension Language Mapping 317

Staging 318

Building the Stage Table 319
Generating the Staging Update Procedure 322

Generating a Procedure 322
Procedure type 322
Locking Request Modifier 323
Source Table Mapping 324
Parameter selection 327
Model/Dimension Joins 328
Model history information 329
Building and Compiling the Procedure 330

vi

Stage Table Custom Procedure 331
Stage Table Column Properties 331
Stage Table Column Transformations 337
Permanent Stage Tables 338
Generating the Permanent Staging Update Procedure 339
Set Merge Procedure 345

Data Store Objects 351

Data Store Objects Overview 352
Building a Data Store Object 354

Drag and Drop 354
Data Store Object Properties 354
Create and Load 355
Deleting and Changing columns 357
Adding additional columns 357
Create the table 358

Generating the Data Store Update Procedure 359
Generating a Procedure 359

Processing tab 359
Source tab 364

Building and Compiling the Procedure 365
Data Store Artificial Keys 367

To manually add an extra artificial key column to a Data Store table: 367
Allowing for non identity surrogate keys on Data Store tables: 370

Data Store Column Properties 371
Data Store Column Transformations 376

EDW 3NF Tables 377

EDW 3NF Tables Overview 378
Building EDW 3NF Table 380
Generating the EDW 3NF Update Procedure 384

Generating a Procedure 384
Processing tab 384
Source tab 388
Indexes 389

Converting an existing EDW 3NF Table to a EDW 3NF History Table 390
EDW 3NF Table Artificial Keys 392

To manually add an extra artificial key column to an EDW 3NF table: 392
Artificial keys set via a non identity column: 393
Allowing for non identity surrogate keys on EDW 3NF tables: 394

EDW 3NF Table Column Properties 395
EDW 3NF Table Column Transformations 400

Data Vaults 402

vii

Data Vault Functions and Features 403
Load Table Meta Data Columns 403
Data Vault Stage Table 404
Hash Key Generation Wizard 406
Hub, Link and Satellite Creation Wizard 407
Data Vault Templates 408
Data Vault Settings 409

Object Types settings: 409
Global Naming Conventions settings: 410
DSS Tables and Columns settings: 411

Table Column Properties 412
Maintain Hash Key Columns 414

Building Data Vault Objects 415
Creating Load Tables 415
Creating Data Vault Stage Tables 417
Generating Update Procedures for the Data Vault Stage Table 427
Creating the Hub, Link and Satellite Tables 432

Creating the Hub table 432
Creating the Link table 437
Creating the Satellite table 440

Generating Update Procedures for Hub, Link and Satellite Tables 444
Hub table 444
Link and Satellite Tables 448

Custom Objects 449

Model Tables 450

Model Table Overview 451
Building a Model Table 453

Drag and Drop 453
Model Table Properties 453
Create and Load 454
Deleting and Changing columns 455
Adding additional columns 455
Create the table 456

Generating the Model Table Update Procedure 458
Generating a Procedure 458
Business Key definition 458
Locking Request Modifier 460
Source Table Mapping 460
Building and Compiling the Procedure 463

Model Table Artificial Keys 465
Model Table Custom Procedure 466
Model History Tables 466
Generating History Table Update Procedures 468

viii

Model Table Column Properties 471
Model Table Column Transformations 476

Fact Tables 477

Detail Fact Tables 478
Creating Detail Fact Tables 478
Generating the Detail Fact Update Procedure 479
Generating a Procedure 480
Define Fact Procedure Type and Options 480
Template 480
Define Fact Business Key Columns 481

Source Tab 484
Fact Table Column Properties 486
Fact Table Column Transformations 492
Fact Table Language Mapping 493

Aggregation 494

Creating an Aggregate Table 495
Creating an Aggregate Summary Table 496
Aggregate Table Column Properties 496
Aggregate Table Column Transformations 502

Join Indexes 503

Creating a Join Index 504

Views 508

One to One Views 509
Model Views for Aliasing 512
Compound Views, Facts and Dimensions 515

Dimension View Hierarchies 519
Adding a Dimension View Hierarchy 519

Creating a Custom View 521
View Aliases 523

Analysis Services OLAP Cubes 525

OLAP Overview 526
OLAP Defining the Data Source for the OLAP Cube 527
OLAP Defining an OLAP Cube 529
Building a New OLAP Cube 529
Setting Cube Properties 532
OLAP Inspecting and Modifying Advanced Cube Properties 534

ix

OLAP Creating an OLAP Cube on the Analysis Services Server 535
OLAP Cube Objects 536

OLAP Cube Properties 536
OLAP Cube Measure Groups 542
OLAP Cube Measure Group Processing/Partitions 544
OLAP Cube Measure Group Partitions 549
OLAP Cube Measures 552
OLAP Cube Calculations 555
OLAP Cube Key Performance Indicators 558
OLAP Cube Actions 561
OLAP Cube Dimensions 565
OLAP Cube Measure Group Dimensions 567

OLAP Dimension Objects 571
OLAP Dimension Overview 571
OLAP Dimension Attributes 576
OLAP Dimension Attribute Relationships 580
OLAP Dimension Hierarchies 582
OLAP Dimension User Defined Hierarchy Levels 584

OLAP Changing OLAP Cubes 586
OLAP Retrofitting an OLAP Object 588

Transformations 593

Column Transformations 594
Column Transformation Properties 595
Load Table Column Transformations 598

Database Link During Load Transformations 599
File During Load Transformations 602
After Load Transformations 602

Teradata User Defined Functions 603
Teradata UDF Example 604

Re-usable Transformations 606
Creating a New Re-usable Transformation 606

Specify the Name of the Transformation 607
Enter Re-usable Transformation Metadata 608
Define the Transformation Model 609
Completed Re-usable Transformation 611

Changing a Re-usable Transformation 612
Applying Changes to Dependant Transformations 614

Using Re-usable Transformations 615

Exporting Data 616

Building an Export Object 617
File Attributes 621

File Attributes - SSIS Exports 624

x

Export File Definition 625
SQL Server Integration Services (SSIS) 625
Export Column Properties 626
Script based Exports 628

Procedures and Scripts 630

Procedure Generation 632
Procedure Editing 638
Procedure Loading and Saving 641
Procedure Comparisons 644
Procedure Compilation 645
Procedure Running 646
Procedure Syntax 646
Procedure Properties 647
Macros 650
BTEQ Scripts 650
Script Generation 651

Script Generation (Windows/Teradata) 651
24.11.1.1 Windows PowerShell Scripts 657

Script Editing 660
Script Testing 662
Script Syntax 662
Script Environment Variables 665
Calling a Batch File from a Script 671
Scheduling Scripts 675
Manually created scripts 677

Templates 678

Template Properties 680
Template Editor 681

Evaluating an API Outline Template 682
Template Usage 686

Windows PowerShell Templates 687

Scheduler 688

Scheduler Options 689
Auto 692
Tools 693

Select Job Report Fields 693
Scheduler States 695
Scheduling a Job 698
Working with Jobs 703

Creating a Job 706

xi

Editing a Job 718
Editing Tasks in a Job 722
Editing Task Dependencies 729
Show Dependencies Diagram 734
Inserting a Copy of a Job 736
Deleting a Job 737
Deleting Job Logs 739
Starting a Job 741
Halting a Job 742
Aborting a Job 743
Restarting a Job 744
Creating an Application from a Job 749

Stand Alone Scheduler Maintenance 752
SQL to return Scheduler Status 755
Reset Columns in Job and Task View 756
Stopping a Linux/UNIX Scheduler from within RED 757

Indexes 759

Index Definition 760

Documentation and Diagrams 765

Creating Documentation 766
Batch Documentation Creation 769
Reading the Documentation 770
Diagrams 771

Types of Diagrams 771
Schema Diagram 773
Source Diagram 775
Joins Diagram 779
Links Diagram 780
Impact Diagram 781
Dependency Diagram 783

Working with Diagrams 786
Creating a Job from a Diagram 789
Creating an Application from a Diagram 791
Creating a Project from a Diagram 794

Reports 796

Dimension-Fact Matrix 797
OLAP Dimension-Cube Matrix 798
Model Views for a Specified Model 800
Column Reports 801

Columns without Comments 801
All Column Transformations 802

xii

Re-Usable Column Transformations 804
Column Track-Back 805
Column Track-Forward 807

Table Reports 809
Tables without Comments 809
Load Tables by Connection 810
Export Objects by Connection 812
Records that failed a Dimension Join 813
External Source Tables/files 814

Procedure Reports 816
Modified Procedures 816
Custom Procedures 817

Index Reports 819
Modified Indexes 819

Object Reports 820
Objects-Projects Matrix 820
Modified Objects (excluding indexes) 822
Objects Checked-out 824
Loaded or Imported Objects 825

Job Reports 827
Object-Job Matrix 827
Jobs with an Object 829
Tasks of a Job 830

Operational Reports 831
Object Performance History 831
Job Performance History 834
Task Performance History 835

Validate 837

Validate Meta-data 838
Validate Workflow Data 838
Validate Table Create Status 838
Validate Load Table Status 839
Validate Procedure Status 839
List Meta-data Tables not in the Database 839
List Database Tables not in the Meta-data 841
List Tables with no related Procedures or Scripts 843
List Procedures not related to a Table 844
Compare Meta-data Repository to another 846
Compare Meta-data Indexes to Database 849
Teradata: View of Model Validate 851
List Duplicate Business Key Columns 853
Query Data Warehouse Objects 854

xiii

Promoting Between Environments 856

Applications 857
Application Creation 858

Creating an Application 858
Define an Application distribution 858
Output Directory 859
Objects to Add/Replace 862
Objects to Delete 863

Application Loading 864
Creating and Loading Applications from the Command Line 864

Importing Object Metadata 865
Importing Language Files 867
Data Warehouse Testing 868

Backing Up and Restoring Metadata 872

Backup using DB Routines 873
Restoring DB Backups 875
Unloading Metadata 876
Loading an Unload 878

Altering Metadata 882

Validating Tables 883
Validating Source (Load) Tables 885
Validating Procedures 886
Altering Tables 887
Validating Indexes 889
Recompiling Procedures 889

Callable Routines 891

Introduction to Callable Routines 892
Callable Routines API 892
Callable Routines per RDBMS 894
Callable Routines Names Qualifier 896
Callable Routines Common Input 896
Callable Routines Invocation 898

Alternative Invocation Methods 898
Ws_Api_Glossary 900
Ws_Connect_Replace 902
Ws_Job_Abort 905
Ws_Job_Clear_Archive 906
Ws_Job_Clear_Logs 908
Ws_Job_Clear_Logs_By_Date 911

xiv

Ws_Job_Create 914
Ws_Job_CreateWait 918
Ws_Job_Dependency 922
Ws_Job_Release 925
Ws_Job_Restart 928
Ws_Job_Schedule 931
Ws_Job_Status 934
Ws_Load_Change 939
Ws_Maintain_Indexes 943
Ws_Version_Clear 946
WsParameterRead 949
WsParameterReadF 950
WsParameterReadG 952
WsParameterWrite 954
WsWrkAudit 955
WsWrkAuditBulk 957
WsWrkError 961
WsWrkErrorBulk 963
WsWrkTask 967

Ws_admin_v Views 970

Ws_admin_v_audit 971
Ws_admin_v_error 971
Ws_admin_v_sched 972
Ws_admin_v_task 973

Retrofitting 975

Migrating the Data Warehouse Database Platform 976
Importing a Data Model 986
Re-Targeting Source Tables 993
Retro Column Properties 995

Retro Column Properties Screen 999
Retro Column Transformations 1000

Integrating WhereScape RED into an Existing Warehouse 1001

Rebuilding 1002
Integrating 1003

Integrating, Host Scripts 1004
Integrating, Selecting a Table Type 1006
Integrating, Questions 1006
Integrating, Procedures 1010
Integrating, Views 1011
Integrating, WhereScape Tables 1011

xv

Relationship Maintenance 1012

Add Relationship 1012
List Relationships 1015
Generate Relationships 1016

Upgrading RED 1017

Login Checks 1018

Data Type Mappings 1021

Using Data Type Mapping Sets 1022
Maintaining Data Type Mapping Sets 1024

Creating a New Data Type Mapping Set 1025
Copying a Data Type Mapping Set 1029
Editing a Data Type Mapping Set 1033
Deleting a Data Type Mapping Set 1043

Loading Data Type Mapping Sets 1044
Exporting Data Type Mapping Sets 1046
Data Type Mapping Examples 1048

Column Context Menu 1057

Properties 1059
Change Column(s) 1062
Add Column 1064
Duplicate Column 1065
Delete Column 1067
Re-space Order Number 1068
Impact 1069
Sync Column order with database 1072
Send Columns to Another Object 1073

Database Functions 1076

Using Database Function Sets 1077
Maintaining Database Function Sets 1080

Creating a New Database Function Set 1083
Copying a Database Function Set 1086
Editing a Database Function Set 1089
Deleting a Database Function Set 1101

Loading Database Function Sets 1103
Exporting Database Function Sets 1106

xvi

Gather Statistics 1108

Define Statistics 1109

1

WhereScape RED User Guide for Teradata

The WhereScape RED User Guide for Teradata is available either as online help, as a PDF, or in a
printed manual. The User Guide provides information on how to use WhereScape RED to build a data
warehouse.

In This Chapter

Overview of WhereScape RED .. 2
How to use this Guide .. 5

C h a p t e r 1

Overview

2

Overview of WhereScape RED
Traditionally data warehouses take too long to build and are too hard to change. WhereScape RED is an
Integrated Development Environment to support the building and managing of data warehouses. It has
the flexibility to enable you to build an entire enterprise data warehouse or just the user facing views,
aggregates and summaries.

In all cases, the core values of WhereScape RED are twofold: its rapid capabilities that enable better data
warehouses to be built, faster, and its integrated environment that simplifies management.

As a data warehouse specific tool, WhereScape RED embodies a simple, pragmatic approach to building
data warehouses. With WhereScape RED you specify what you want to achieve by dragging and dropping
objects to create a meta view, and then let WhereScape RED do the heavy lifting of creating the
necessary tables, procedures, etc. Data warehouse wizards prompt for additional information at critical
points to provide the maximum value from the generated objects.

Different data warehousing approaches including agile, prototyping and waterfall are supported by
WhereScape RED. Agile developers will find specific functionality has been included to support common
agile practices. For developers who are new to data warehousing, or are looking for a fast, pragmatic
approach, WhereScape's Pragmatic Data Warehousing Methodology can be used.

The basic concepts behind WhereScape's Pragmatic Data Warehousing Methodology are:

• minimize the impact on the source systems

• centralize management within the data warehouse

• store transactional data at the lowest practical grain within the data warehouse

• snapshot, combine and rollup transactional tables to provide additional value

• utilize views or cubes for end user access

• allow for incremental loads from day one

• use an iterative approach

• minimize cleansing and transformations to ease source system reconciliation

• design the data warehouse independently from the end user tool layer

WhereScape RED supports these concepts to facilitate very rapid building of data warehouses.

Wherescape RED controls the flow of data from the source systems through transforming and modeling
layers to analysis areas. Different styles of data warehousing (EDW 3NF, dimensional, etc.) are
supported and utilize different objects, but all follow the same basic flow.

3

The diagram below shows the objects and the information flow:

Data Flow

Data is moved from source tables to load tables via scripts, database links and ODBC links. These load
tables are created by dragging and dropping from a connection object. Load tables are generally based
on source system tables. Their main purpose is to be a destination for moving data as simply and quickly
as possible from the source system. Load tables will generally hold a single unit of data (e.g. last night or
last month), and will be truncated at the start of each extract. Transformations can be performed on the
columns during the load process if required.

Load tables feed stage tables, which in turn feed data store,model or dimension tables. Data from
multiple load tables can be combined at this level.

First tier transactional tables (fact or model tables) are created and updated from stage tables. Second
tier tables (model, summary rollup, aggregate, join indexes, etc.) are created and updated from lower
level tables.

Feeds for downstream systems (exports) can be created by dragging and dropping from a model, view or
aggregate object. Fast export or parallel transporter are used to generate file exports.

Cubes can be created from transactional tables or views.

Procedural code

WhereScape RED for Teradata generates procedural code using Teradata database procedures at each
stage in the data warehouse build process. The generated code is, in nearly all cases, sufficient to create
a rapid prototype of the data warehouse.

While the generation of code is often seen as a key benefit of WhereScape RED, the ability to control and
manage custom code is also critical to the long-term management of the data warehouse environment.

In most cases 85-100% of the generated code will be taken through to production with no customization
required.

4

Scheduler

The flow of data from the source systems to data warehouse tables is controlled and managed by the
WhereScape RED scheduler. All generated code includes audit and error logging logic that is used by the
scheduler.

The scheduler provides a single point of control for the warehouse. From the scheduler, the state of all
jobs can be ascertained. Any warning or error messages can be investigated and if a problem occurs, the
scheduler controls the restart of the job from the point of failure.

Documentation

Documenting the warehouse is often a task left until last, and in many cases done once (if at all!) and
not kept up to date. WhereScape RED generates user and technical documentation, including diagrams,
in HTML format.

Technical documentation includes copies of all current procedures.

User documentation includes a glossary of business terms available independently of any end user tool.

Where additional specific information needs to be included in the documentation, WhereScape RED
supports the inclusion of custom HTML pages in the generated output. This means in many cases the
entire documentation requirements can be managed from one location, and regenerated as changes
occur.

WhereScape RED and ETL Tools

WhereScape RED's core strength is in the rapid building of data warehouse structures. Organizations
that have already purchased traditional ETL tools can used WhereScaoe RED as a pureplay data
warehouse toolset. WhereScape RED can be used to iteratively build data marts or presentation layer
objects that need to be constantly updated to keep relevant for end users. In most cases, customers will
find that WhereScape RED has enough ETL capabilities to build the entire data warehouse, using the
database rather than a proprietary engine to perfom ETL processing.

The cross over in functionality between ETL tools and WhereScape RED is not large. WhereScape RED is
tightly integrated into the data warehouse database and has an embedded data warehouse building
approach. For WhereScape data movement is the start of the process—from source system to load tables.
The key benefits of the product: development productivity and an integrated environment to manage
and maintain your warehouse, come after the data movement stage. Where a traditional ETL tool is
already in use, the output of the ETL process is a WhereScape RED Load, Stage or Model table from
which WhereScape RED builds more advanced data warehouse structures.

5

How to use this Guide
The WhereScape RED Installation and Administration Guide, the online help, and the WhereScape
RED User Guide assume that you are proficient in the use of the Windows operating system.

WhereScape RED often provides multiple ways to accomplish a task. In some cases, you can use the
main menu, the right-click menu, or a toolbar, or a key combination (e.g. Alt/M and Ctrl/M to raise
menus). Instructions in this documentation generally include only the most convenient method of
accomplishing a task.

The following sources of information are available with WhereScape RED:

WhereScape RED Installation and Administration Guide

The Installation and Administration Guide is available either as online help, as a PDF, or in printed
format. The Installation and Administration Guide provides the information needed to:

• Install the WhereScape RED software

• Validate the various software components required by WhereScape RED

• Install the WhereScape RED metadata

• Install a scheduler

• Optionally install third party data warehouse applications

• Upgrade the WhereScape RED software

• Create and load language files.

WhereScape RED User Guide for Teradata

The WhereScape RED User Guide for Teradata is available either as online help, as a PDF, or in a
printed manual. The User Guide provides information on how to use WhereScape RED to build a data
warehouse.

WhereScape RED Tutorials for Teradata

The WhereScape RED Tutorials for Teradata are available either as online help or as a PDF. The
Tutorials introduce you to the terms and methodologies embodied in WhereScape RED by guiding you
through:

• Populating a predefined EDW 3NF data warehouse

• Building a simple EDW 3NF data warehouse

• Creating permanent staging tables, history tables, aggregate tables

• Building a simple presentation layer

• Scheduling the data warehouse objects

• Fine tuning the data warehouse by adding Analysis Services cubes

Sql Admin User Guide

The Sql Admin User Guide is available either as online help, or as a PDF. It provides documentation in
the use of the stand-alone SQL query tool shipped as part of the WhereScape RED product.

6

WhereScape Forum

A web forum is available at http://www.wherescape.com. This forum contains information on the latest
version, and bug reports that may be relevant for installation. In addition the WhereScape Blog is
available at http://www.wherescape.com which may provide additional information.

7

Design Introduction

WhereScape RED for Teradata can be used to build data warehouses based on any number of design
philosophies from EDW 3NF enterprise data warehouses with consumer data marts through to federated
or conformed star schema based warehouses. In the absence of another approach, the following
methodology can be used for the design of data warehouses.

Note: This section can be skipped if you already have data warehouse design experience or a
methodology you wish to utilize. It is meant to provide the novice designer with some tips for designing
a data warehouse.

Design Approach

The concepts behind the WhereScape Pragmatic Data Warehouse Methodology are as follows:

1 Building an enterprise-wide data warehouse is a process—an evolution rather than a big bang. Start
small and grow the warehouse in manageable chunks until all the pieces are in place. Once you
reach that stage, changes and new source systems will continue the process.

2 You need to understand the big picture, but not get lost in it. Talk to all the various departments,
business units and companies within the organization. Do so at a relatively high level and try to
understand how the information from each area impacts or affects the others. Identify
commonalities and areas where the same information is handled in different ways. This process
should take days or weeks not months.

3 Identify the high value, high return and possibly easiest areas of the business. Drill down in these
areas and break down the workload into small manageable chunks of work, for example, one to two
analysis areas. Agree on the first component of the data warehouse and do that.

4 Get an understanding of the source system for this first component or analysis area. If possible, get
an entity relationship diagram and talk to the people who built or support the application. Identify
the tables that contain the key information you will need. The goal is a quick and initial view, a
detailed specification is not required.

5 Design the first component. This design should be a first draft, and can be written rather than using
a design tool. Remember at this stage what the end users want is not really known, so don't set the
design in concrete, or spend a large amount of time in this area.

Note: Experienced users of Wherescape RED will often dispense with a design and go straight to
building a prototype.

6 Build a prototype. In most cases this should not take more than one or two weeks - experienced
WhereScape RED developers can expect to build prototypes in hours or days. Concentrate on the
detailed and descriptive data, unless you have a clear picture of the summarized requirements. Do as
much as possible in terms of validating the data back to the source system. If dealing with a large or

C h a p t e r 2

Design

8

complex source system then only deliver a segment in this prototype, e.g. one branch, one store, one
product group, etc. Keep It Simple.

7 Demonstrate the prototype to a group of the key users. Then drill down to a subset of key users (we
recommend no more than three) who will help you go forward with the design. If possible give these
users access to the prototype and get them using the data. Stress that data accuracy is not the issue
at this stage, rather the look and feel.

8 Enhance the prototype with the feedback provided by the users. Again a quick process. If
complicated requirements evolve then create a plan to implement, doing the highest value parts
first. The goal is to get quick buy in and support from the two or three key users.

9 Provide key users access to the reworked prototype and get them using the data. Have them define
the business names for all the measures and attributes, and to define any pre-calculated measures
that they frequently use. Get them to define the hierarchies in the data. Ascertain the commonly
utilized queries and reports, and see if there would be a better way of presenting these.

10 From the user feedback look at the need or possibility of using higher level fact tables, such as
summaries, aggregates, snapshot or composite rollup tables.

The concepts and methodologies for designing and building a data warehouse are beyond the scope of
this manual. It is assumed that the reader understands the basic concepts of a data warehouse, and is
familiar with modeling, EDW 3NF, star and snowflake schemas, dimensions, fact tables, etc.

Refer to the WhereScape web site for a basic overview of data warehouse design if required.

9

WhereScape RED makes use of an object concept when dealing with the different components that make
up a data warehouse solution.

The main object types are: Connections, Load Tables, Dimensions, Stage Tables, Fact Tables, Model
Tables, OLAP Cubes, Aggregates, Procedures, Host Scripts, Indexes, Retros and Exports.

This chapter explains and provides an overview of each of these object types and how they can be
managed and organized. The full functionality of each object is covered in the following chapters.

The various Windows, Panes and Views that form the WhereScape RED tool are also explained.

In This Chapter

Object Types ... 10
Working with Objects ... 14
Organizing Objects ... 47
Windows and Panes .. 58
Export Middle Pane Output .. 67
Find Function ... 70

C h a p t e r 3

Objects and Windows

10

Object Types
WhereScape RED has a concept of objects which are combined to build the data warehouse. Each
WhereScape RED object has properties that allow the data warehouse developer to change how the
object is used.

Note: Some objects may not be available for certain types of WhereScape RED licenses.

WhereScape RED objects include:

Object Type Purpose

Connection

Connections define the path to external objects such as source data.
Examples of connection object types are databases, analysis services cubes,
operating systems or ODBC sources. Connections isolate environments
simplifying, for example, the promotion of code between development and
production.

Load Table

Load tables are the first entry point of data into the data repository, and
typically hold the latest set of change data. These objects contain their
definition. Load tables can be defined as external, file, script or XML. Based
on their definition they will, for example, run a predefined script or create a
load script at run time. Pre-load actions (e.g. truncate) or post load
procedures can be defined as part of a load object. In addition,
transformations (either during or after the load) can be defined against
columns in a load table.

Dimension

Dimension tables are the constraining elements in the star schema design,
and are defined by this object type. WhereScape RED will automatically
generate procedural code for the three standard types of slowly changing
dimensions, as well as date ranged dimensions (where the current version is
defined by an external system). WhereScape RED also ships with a standard
time dimension which can of course be extended. Dimensions can also be
defined as mapping or work tables which do not appear in the generated
user documentation.

Dimension View

A dimension view is a database view of a dimension table. It may be a full or
partial view. A common usage is to create views where multiple date
dimensions exist for one fact table. Other types of views supported by
WhereScape RED include fact views, other table views, work views and user
defined views.

11

Object Type Purpose

Stage Table

Stage tables are used in the transformation of raw data into model or star
schema format. They typically hold only the latest set of change data. As
well as custom procedures, WhereScape RED can generate different types of
procedural code based on the complexity and speed of the data set. A stage
table can also be defined as a work table, which has the same properties as a
stage table but does not appear in the generated user documentation.

EDW 3NF Table

An EDW 3NF table is a data warehouse object used to build third normal
form enterprise data warehouses. In WhereScape RED, EDW 3NF objects
have many of the code generating attributes of stage, dimension and fact
tables. Third normal form enterprise data warehouses can be thought of as a
source system for star schema data marts. Alternatively, they may be
reported off directly by users and reporting tools.

Data Store Table

A Data Store Table is a data warehouse object used to store any type of data
for later processing. In WhereScape RED, Data Store objects have many of
the code generating attributes of stage,dimension and fact tables. Data
objects can be thought of as a source system for the data warehouse.
Alternatively they may be reported off directly by users and reporting tools.
Data Store Objects can be considered either reference or transactional in
nature.

Model Table

Model objects are used to create EDW 3NF models in an enterprise data
warehouse. They may contain surrogate keys to other model tables.

Fact Table

Fact tables are the central table in a star schema design. This object type
allows the definition of fact tables. They support transactional, rollup,
snapshot or partitioned (detail, rollup or exchange) fact tables. Changing a
fact table's properties to partitioned will start a partitioning wizard that
prompts for the required information.

Aggregate

The aggregate object type provides a means to speed up access by
summarizing data to a higher grain.

12

Object Type Purpose

Join index

Join index is a Teradata specific object used for performance across multiple
tables.

View

View objects are usually created as end user objects from any table in the
data warehouse. The data or columns may be restricted or extra descriptions
may be added for use by the end user or reporting tools.

OLAP Cube

The cube object type provides a means to develop and manage Microsoft
Analysis Services cubes. Cubes would normally be built from fact tables and
provide summarized data.

OLAP
Dimension

An OLAP Dimension is built by WhereScape RED for every dimension table
associated with the fact (or aggregate) table the OLAP Cube is derived from.
OLAP Dimensions are shared across one or more OLAP Cubes. In analysis
services, a dimension is a group of attributes that represent an area of
interest related to the measures in the cube and which are used to analyze
the measures in the cube.

Index

This object type defines database indexes used to improve the access times
on any of the table object types (i.e. Load, Stage, Model and Aggregate).

Export

Exports are used to manage exports from the data repository.

13

Object Type Purpose

Retro

Retros are used to load predefined data models from modeling tools and to
retrofit existing tables into the WhereScape RED metadata.

Retro Copy

Retros can be used to copy data from an existing data warehouse into
WhereScape RED metadata. Retros can be set as Retro Copy objects to
enable data transfer from the existing data warehouse to the new data
warehouse.

Procedure

The procedure object type is used to define and hold database stored
procedures. As such it may contain functions, procedures and packages that
are generated, modified or custom developed.

Host script

Host script objects are either Windows or UNIX scripts. These scripts are
maintained within the WhereScape RED environment and can be scheduled
to run in their host environments.

Template

Template objects are used to generate DDL, update procedures and host
scripts. Once a template has been created it can be associated with a table
and an operation on that table. The template is then used to generate the
script used for the associated operation.

Each template is assigned a type and a target database, these properties are
used to assist with filtering when associating table operations to templates.
Note that not all operations support template script generation on all target
databases.

Utility type templates can contain common code for use by other templates.

Hub

A Hub is a table of unique business keys, they usually contain a hash key,
business key(s), load date and record source. Hubs should normally have at
least one Satellite.

14

Object Type Purpose

Link

Links are many-to-many tables representing current and past relationships
between two or more Hub entities and are used to describe associations,
transactions, hierarchies and redefinitions of Hub entities in a Data Vault.
Links have their own hash key and the hash keys for the Hubs that are linked
as well as a Load Date and Record Source. The attributes describing the
context of a link are stored in Satellite Tables (see below).

Satellite

Satellites are Data Vault objects which contain metadata that provides
context for Hub and Link entities at a given time or over a period of time.
Each Satellite entity can contain information on one Hub or Link.

Satellite tables contain a hash key for the parent Hub or Link, a timestamp
for the date of change and relevant descriptive fields. Satellites are usually
created once per source system. However, descriptive attributes can change
at different rates, so Satellites can also be created based on rate of change.

Custom1/
Custom2

Custom1 and Custom2 objects are user defined objects. These Object Types
can be renamed in the Tools/Options/Object Types/Object Names menu.

Connections are normally the first objects created. These connections are then used in the creation of
load tables through the drag and drop functionality. Subsequent objects can also be created, using drag
and drop.

It should be noted that although the object types have names that correspond with their primary usage,
they can be used for other purposes. For example, the fact object type could be used to create persistent
stage tables if required.

Some objects are not supported by all databases, and some advanced properties are specific to the
different databases.

15

Working with Objects
Most object types perform some form of action in the data warehouse. For example stage, model and
aggregate table based objects are 'Updated' in the data warehouse via the defined update procedure.
Procedures can be executed in the database.

When positioned on an Object in the left pane of the RED builder window, the right-click pop-up menu
provides a number of options for manipulating the object. Further options may be available through the
menus provided in the various windows.

The operations of each of the objects is discussed in the following chapters. A brief overview of some of
the more common operations follows:

Connections

Connections, once defined are typically browsed and used as a source for drag and drop operations. For
database connections, a database link is normally required. This link can be created via the right-click
menu associated with a connection. See sample menu below:

Other operations available through the menu are editing the properties of the connection, creating a
version of the connection, creating a telnet window for UNIX connections and creating a remote view
creation procedure where required for database connections and loads.

The Documentation menu option can be used to generate (or read if already generated) the
WhereScape RED HTML documentation for the selected connection. Two options are available: Display
and Create:

The Projects menu option can be used to remove the connection from the current project or to add the
connection to the current project. The List Projects option displays a list of projects which contain the
current object, results are shown in the bottom pane. Multiple objects can be selected by double-clicking
the Connection icon in the left pane and Ctrl + clicking multiple connections in the middle pane.

If there aren't any projects in the repository, these options are unavailable.

The Impact menu enables you to run reports on load and export objects associated with the connection.

16

Load Tables

Load tables once defined would normally be created and loaded, unless these actions were performed as
part of the drag and drop operation. The menu below shows the operations that can be performed on
load tables.

Properties, Source Mapping and Storage all launch the properties window for the load table, albeit
focused on different tabs within this window.

The columns and indexes of the load table can be displayed using Display Columns and Display
Indexes. Any data in the load table can be displayed using Display Data. If the data is displayed, only

17

the first 100 rows are returned from the table. Either the Sql Admin tool (accessible via the WhereScape
start menu option), or the Excel query must be used if more detailed data analysis is required. Query the
columns in Excel using Query via Excel.

 TIP: When a column list has been displayed in the central pane, it is sorted based on the order
field associated with each column. Clicking the column label Col name will sort the columns into
alphabetic order. A subsequent click will re-sort based on the order field.

New columns and indexes can be manually added through this menu using Add Column and Add
Index. Normally columns are added via drag and drop and most common indexes are created during the
procedure generation phase.

The Regenerate Indexes menu option is used to add missing standard indexes. Selecting this menu
item displays a dialog box with options to regenerate missing indexes in the metadata and recreate them
or to just regenerate the missing indexes in the metadata.

The Relationships menu options allow the management of enhanced relationships. The Add
Relationship option opens the Add Relationships dialog, the List Relationships option displays a list
of enhanced relationships in the Drop Target Pane for the selected object and Generate Relationships
generates relationships which have not yet been defined in metadata.

The Impact of Change to Table menu option produces a list of objects that will be potentially
impacted by a change to the load table structure.

The Change Column(s) menu option to apply changes to a selected number of columns.

The Validate for Reserved Words menu option produces a list of table or column names where
reserved words have been used; enabled for supported ODBC Drivers.
The metadata for the load table can be compared with the physical table resident in the database using
Validate Against the Database, and where required the table altered to match the metadata.

The Update Comments menu option refreshes table and column comments on the table from the
metadata using the table's description and columns' business definition.

Use Gather Statistics to gather statistics on a table. This action will enable the underlying database to
optimize each query based on the statistics collected about the data that is being accessed.

18

Users can either chose to Define Statistics or to Refresh Full Statistics.
Gathering statistics can be performed on any table by selecting this option from a table's right click
menu, or to automate this process, by adding a statistics task to a job being processed by the scheduler
(Stats, Quick Stats, Analyze or Quick Analyze). For more information about adding statistics tasks to
jobs see Editing Tasks (see "Editing Tasks in a Job" on page 722).
The statistics process from the object context menu for Teradata tables is described below:

Teradata tables

Define Statistics Using the DlgDefineStats dialog, we save the
DDL and execute it. This is object specific.

Refresh Full Statistics COLLECT STATISTICS ON database.table (this
requires statistics to have been executed on the
object).

 WhereScape RED Tip: To Define Statistics on a Table Object see also Define Statistics (see
"Gather Statistics" on page 1108).

A version of a load table is a copy of the metadata definition of the table at the time of the versioning.
This version information can be used to create a new load table, or can simply be left as a backup and
reference point. Use Version Control, New Version to version a load table. The Build Application
menu option allows you to build an application file for the load table and the Duplicate Object menu
option allows you to create a new load table as a duplicate of this table.

The Create (ReCreate) menu option creates the table in the database based on the definition stored in
the metadata. To alter a table, select the Validate against database option (see the section on table
validation).

The Truncate menu option truncates the table.

The Change Connect/Schema menu option allows for the rapid changing of the connection
information associated with the load table. This information can be changed en-bulk for a number of
load tables. See the Load changing connections section under loading data.

19

The Delete metadata and drop table menu option deletes the metadata definition for the table. It also
gives you the option to drop the table in the database (dropping the table in the database is the default
option). This is a permanent delete and no recovery is provided, so please use with caution. A version of
the objects metadata will normally be auto created (depends on settings in Tools/Options).

The Load menu option performs an interactive load of the data. The method of loading depends on the
type of connection. This menu option is intended for use with small data volumes as in a prototype
environment. Large data volumes would normally be scheduled. The Load locks the WhereScape RED
screen until completed.

Note: The load option does not drop or create any indexes. Use the Process option if indexes need to be
maintained.

The Process Table via Scheduler menu option sends a request to the scheduler to immediately process
the load table. This process will drop any indexes marked as pre_drop, load the data and rebuild any
required indexes. Control is immediately returned to the user and the loading will occur via the
scheduler.

The Documentation menu option can be used to generate (or read if already generated) the
WhereScape RED HTML documentation for the selected load table. Two options are available: Display
and Create:

The Projects menu option can be used to remove the load table from the current project or to add the
load table to the current project. If there aren't any projects in the repository, these two options are
unavailable.

The Impact menu option enables you to produce a number of reports and diagrams:

• Track Back, Track Forward or Dependent Jobs report

• Track Back and Track Forward diagrams

The Code menu option can be used to view a procedure attached to a table. Hover over this option to
display an additional menu containing a list of procedures associated with the table:

20

Choose a procedure from the list to open in the procedure editor in view mode.

Note: Only load tables with one or more defined procedures have the Code view option.

Dimension Tables

The standard pop-up menus for dimensions follow (dimension tables on the left, dimension views on
the right):

The bulk of these menu options are the same as for load tables and are described under the load table
section above. The differences are:

The Hierarchies sub-menu contains the following options:

21

Hierarchies can be added using Hierarchies/Add Hierarchy and listed using Hierarchies/List
Hierarchy. Hierarchy elements can be listed using Hierarchies/List Hierarchy Elements. The
Hierarchies/Copy Hierarchies from Source feature copies all hierarchies from the source table to the
destination table. Source hierarchies are copied to the destination table automatically during table
creation, but this feature is useful if the source table has been updated since destination table was
created.

The Relationships menu options allow the management of enhanced relationships. The Add
Relationship option opens the Add Relationships dialog, the List Relationships option displays a list
of enhanced relationships in the Drop Target Pane for the selected object and Generate Relationships
generates relationships which have not yet been defined in metadata.

The Execute Update Procedure menu option executes the procedure defined as the 'update procedure'
for the table. The procedure is executed interactively and locks the screen until completed. This menu
option is only intended for use when working with small/prototype data volumes, and no index handling
is performed.

The Execute Custom Procedure menu option executes the procedure defined as the 'custom procedure'
for the table. As with Update, the procedure is executed interactively.

The Execute Custom Procedure via Scheduler menu option executes the procedure defined as the
'custom procedure' for the table, via the Scheduler.

The Code menu option can be used to view a procedure attached to a table or to rebuild the table's
update procedure; and to view or rebuild the get key function on the Dimension/Dimension View. Hover
over this option to display an additional menu containing available options:

Choose a procedure from the list to open in the procedure editor in view mode or choose to rebuild the
update procedure.

Note: Only tables with one or more defined procedures have the Code option.

22

Data Store Tables

The standard pop-up menus for data store tables is:

The menu options available for Data Store Tables is a subset of the options for Dimension Tables, except
for an additional option under the code menu.

The Code menu option can be used to view a procedure attached to a table or to rebuild or regenerate
the table's update procedure. Hover over this option to display an additional menu, containing available
options:

23

Choose a procedure from the list to open in the procedure editor in view mode or choose to rebuild or
regenerate the update procedure.

EDW 3NF Tables

The standard pop-up menu for EDW 3NF tables is:

The menu options available for EDW 3NF Tables is a subset of the options for Data Store Tables.

24

Stage, Model and Aggregate Tables

All of these table types have a similar pop-up menu. The standard stage table menu is as follows:

25

The standard model menu is as follows:

The bulk of these menu options are the same as for load tables and are described under the load table
section above. The differences are:

Hierarchies can be added using Hierarchies/Add Hierarchy and listed using Hierarchies/List
Hierarchy. Hierarchy elements can be listed using Hierarchies/List Hierarchy Elements.

The Execute Update Procedure menu option executes the procedure defined as the 'update procedure'
for the table. The procedure is executed interactively and locks the screen until completed. This menu

26

option is only intended for use when working with small/prototype data volumes, and no index handling
is performed.

The Execute Custom Procedure via Scheduler menu option executes the procedure defined as the
'custom procedure' for the table, via the Scheduler.

The Impact menu option enables you to produce a number of reports and diagrams:

• Track Back, Track Forward or Dependent Jobs report

• Track Back and Track Forward diagrams

For model tables, the impact menu has a further option of the View Report; as seen below:

27

OLAP Cubes

The standard pop-up menu for OLAP Cubes is:

The Properties menu option opens the properties dialog that defines cube creation options and access
to documentation tabs.

The Display Measure Groups menu option shows the details of the measure groups associated with the
cube in the middle pane.

28

The Display Measures menu option lists the measures associated with the measure groups in the cube.
This is the default view in the middle pane when a cube is selected in the left pane with a single click.

The Display Calculations menu option lists all the calculated members defined in the cube.

The Display KPIs menu option lists all the Key Performance Indicators defined in the cube.

The Display Actions menu option lists all the actions defined in the cube.

The Display Partitions menu option lists all the partitions defined against the related measure groups
within the cube.

The Display Dimensions menu option lists all of the dimensions defined in the cube.

The Display Measure Group Dimensions menu option displays a cross tab report in the middle pane
showing cube dimensions relating cube measure groups.

The Add Measure group menu option allows a new measure group to be added to the cube.

The Add Measure menu option adds another measure to the cube.

The Add Calculation menu option adds a new calculated member to the cube.

The Add KPI menu option adds a new KPI to the cube.

The Add Action menu option adds a new action to the cube.

The Add Partition menu option adds a new partition to a measure group in the cube.

The Add Dimension menu option adds an existing OLAP Dimension to the cube.

A version of an OLAP cube is a copy of the metadata definition of the cube at the time of the versioning.
This version information can be used to create a new OLAP cube, or can simply be left as a backup and
reference point. Use Version Control, New Version to version an OLAP cube. The Build Application
option allows you to build an application file for the OLAP cube and the Duplicate Object option allows
you to create a new OLAP cube as a duplicate of this OLAP cube.

The Create (Alter) Cube menu option creates the cube and supporting objects in Analysis Services
(including cube database, data source view (DSV) and dimensions) based on the definition in
WhereScape RED.

The Create via Scheduler menu option submits a create of the OLAP cube to the scheduler.

The Delete Cube Metadata menu option deletes the cube definition from WhereScape RED.

The Drop Analysis Services Object menu option drops the selected object in Analysis Services.

The Retrofit Cube menu option retrofits the OLAP cube from Analysis Services.

The Update menu option processes the cube in Analysis Services interactively from the WhereScape
RED interface.

29

The Process Cube via Scheduler menu option generates a WhereScape RED scheduler job to process
the cube in Analysis Services.

The Query via Excel menu option opens up an .oqy file in Microsoft Excel.

Note: Due to a shortcoming in the Microsoft Office installation it may be necessary to associate the .oqy
file extension with Microsoft Excel before this option will succeed.

The Documentation menu option can be used to generate (or read if already generated) the
WhereScape RED HTML documentation for the selected OLAP cube. Two options are available: Display
and Create:

The Projects menu option can be used to remove the OLAP cube from the current project or to add the
OLAP cube to the current project. The List Projects option displays a list of projects which contain the
current object, results are shown in the bottom pane. Multiple objects can be selected by double-clicking
the OLAP Cube icon in the left pane and Ctrl + clicking multiple connections in the middle pane.

If there aren't any projects in the repository, these options are unavailable.

The Impact menu option enables you to produce a Track Back diagram on the OLAP cube.

30

OLAP Dimensions

The standard pop-up menu for an OLAP Dimension is:

The Properties menu option displays the OLAP dimension properties dialog which includes
documentation tabs.

The Display attributes menu option lists the attributes for the selected dimension. This is the default
view when an OLAP Dimension is selected in the left pane.

The Display Attribute relationships menu option shows the relationships between the dimensional
attributes.

The Display hierarchies menu option lists the hierarchies associated with the selected dimension.

The Display hierarchy levels menu option lists all the levels for all hierarchies for that dimension.

The Add Attributes menu option adds a new attribute to the dimension.

The Add Attribute relationships menu option adds an attribute relationship for the selected
dimension.

The Add hierarchy menu option adds a new hierarchy to the dimension.

The Add hierarchy level menu option adds a level to a hierarchy.

31

A version of an OLAP Dimension is a copy of the metadata definition of the OLAP Dimension at the time
of the versioning. This version information can be used to create a new OLAP Dimension, or can simply
be left as a backup and reference point. Use Version Control, New Version to version an OLAP
Dimension. The Build Application option allows you to build an application file for the OLAP
Dimension and the Duplicate Object option allows you to create a new OLAP Dimension as a duplicate
of this OLAP Dimension.

The Delete Dimension Metadata menu option will delete the cube definition from WhereScape RED
metadata.

The Drop Analysis Services object menu option provides the ability to drop the selected object from
Analysis Services.

The Retrofit Dimension menu option retrofits the OLAP Dimension from Analysis Services.

The Create (Alter) Dimension menu option creates the OLAP Dimension and supporting objects in
Analysis Services (including cube database and dsv) based on the definition in WhereScape RED. This
option requires connection and cube database information populated in the OLAP Dimension
properties.

The Create via Scheduler menu option submits a create of the OLAP Dimension to the scheduler.

The Update menu option processes the OLAP Dimension in Analysis Services interactively from the
WhereScape RED interface. This option requires connection and cube database information populated in
the OLAP Dimension properties.

The Process Dimension via Scheduler menu option generates a WhereScape RED scheduler job to
process the OLAP Dimension in Analysis Services. This option requires connection and cube database
information populated in the OLAP Dimension properties.

The Documentation menu option can be used to generate (or read if already generated) the
WhereScape RED HTML documentation for the selected OLAP dimension. Two options are available:
Display and Create:

The Projects menu option can be used to remove the OLAP dimension from the current project or to
add the OLAP dimension to the current project. The List Projects option displays a list of projects
which contain the current object, results are shown in the bottom pane. Multiple objects can be selected
by double-clicking the OLAP Dimension icon in the left pane and Ctrl + clicking multiple connections
in the middle pane.

If there aren't any projects in the repository, these options are unavailable.

32

The Impact menu option enables you to produce a Track Back diagram on the OLAP dimension.

Procedures

Procedures are commonly auto built through the properties screen of one of the table types. They can
also be created manually. Once created they can be edited, compiled, etc. The menu displayed when a
right-click is used on a procedure name is as follows:

If a procedure has been locked as the result of the WhereScape RED utility being killed or failing or a
database failure, then it can be unlocked via the properties screen associated with the procedure.

The Edit the Procedure menu option invokes the procedure editor and loads the procedure. A
procedure can be compiled and executed within the procedure editor.

The View the Procedure menu option displays a read only copy of the procedure. If the procedure is
locked by another user, then viewing the procedure is the only option available.

The Compile Procedure menu option will compile the procedure from the metadata.

The Execute Procedure menu option executes the procedure and displays the results in the results
window.

The Execute Procedure via Scheduler menu option sets up a job to execute the procedure via the
scheduler.

33

A version of a Procedure can be created at any time via the Version Control, New Version menu
option. The various versions of the procedure can be viewed from within procedure editor, or a new
procedure can be created from the version. The Build Application option allows you to build an
application file for the Procedure and the Duplicate Object option allows you to create a Procedure as a
duplicate of this Procedure.

Selecting the Delete Metadata menu option deletes the procedure from the meta data. It then asks if
the procedure should also be dropped from the database.

Selecting the Drop Procedure menu option will drop the procedure from the meta data and from the
database as well.

NOTE: Procedures cannot be dropped or deleted if they are protected by, for example, an Edit Lock.

The Documentation menu option can be used to generate (or read if already generated) the
WhereScape RED HTML documentation for the selected procedure. Two options are available: Display
and Create:

The Projects menu option can be used to remove the procedure from the current project or to add the
procedure to the current project. The List Projects option displays a list of projects which contain the
current object, results are shown in the bottom pane. Multiple objects can be selected by double-clicking
the Procedure icon in the left pane and Ctrl + clicking multiple connections in the middle pane.

If there aren't any projects in the repository, these options are unavailable.

Scripts

Scripts are very similar in their operations to procedures. The same menu options are available as for
procedures and perform the same functionality.

34

If a script is deleted, it is only removed from the metadata. However, as RED never stores the script on
the host system, this will essentially remove the script permanently.

Indexes

Indexes are always associated with a table. To define a new index, the menu option associated with the
table that is to have the index must be used. Once defined, the following operations can be performed.

The Properties screen contains the entire definition of the index, including the columns in use, storage
parameters and index type, etc. The way the scheduler handles the index is also defined in the
Properties. An index can be set so that it will be dropped by the scheduler prior to a table update and
then rebuilt by the scheduler once the update has been completed. It can also be defined for rebuild on
certain days.

The Storage menu option displays the storage properties screen, containing storage options and
parameters.

The Create Index menu option creates the index in the database. This may take some time for large
indexes, and in such cases, it would be better to schedule a create of the index. See the chapter on the
Scheduler, if such an activity is required. This menu option is intended for use when working with
prototype data volumes.

The Drop Index menu option drops the index in the database.

The Delete Metadata and Drop index removes the metadata definition of the index and drops it from
the database. No recovery is possible once this option is actioned.

35

The Create via Scheduler menu option submits a create of the index to the scheduler.

The Projects menu option can be used to remove the index from the current project or to add the index
to the current project. The List Projects option displays a list of projects which contain the current
object, results are shown in the bottom pane. Multiple objects can be selected by double-clicking the
Index icon in the left pane and Ctrl + clicking multiple connections in the middle pane.

If there aren't any projects in the repository, these options are unavailable.

Views

Views are primarily built to alias column names or add locking clauses to table objects (Load, Stage,
Model and Aggregate Tables). The menu below shows the operations that can be performed on views.

36

The menu options available for views are almost a subset of those for stage tables, described under the
stage section above.

The additional menu option is Build From/Where clause. This option provides a way to invoke a
wizard to define a join between two or more tables.

Display Indexes, Query table via Excel, Add Index, Regenerate Indexes are not available for views.

37

Join Indexes

Join indexes are an indexing structure containing columns from one or more base tables. They are used
to summarize data, pre-perform table joins and re-hash Teradata storage, by providing alternate
primary indexing. The standard join index menu is as follows.

The bulk of these menu options are the same as for views and are described under the view section
above. The differences are:

A join index may have an index on it, so the Add Index option is provided.

Join indexes are automatically maintained by Teradata, so do not have the Execute Update Procedure,
Execute Custom Procedure or Process via Scheduler options.

38

Exports

Export objects do not exist as an object in their own right in the Teradata database. They are created
from a single model, view or aggregate object and are used to generate file exports for a downstream
system. Export files are built using Teradata tools, such as FastExport and Teradata Parallel Transporter.

The pop-up menu displayed when a right-click is used on an export is as follows:

File Attributes launches the properties window for the export table, focusing on the File Attributes tab
within this window.

All the other options for export objects are described above under other object types.

39

Object Check-Outs and Check-Ins
Objects in RED can be checked out for editing to prevent any other users from being able to modify,
update or delete any of their associated objects while you are making changes to them.

To use this functionality, it must first be enabled through the Tools->Options.

• Click Check-Out and Check-In and enable the Check-Out option.

Once this is enabled in Tools>Options, users can check-out/check-in objects in RED through that
object's right-click context menus.

40

Checked out objects and their associated procedures and scripts cannot be modified, updated or deleted
by other users. If a different user tries to access the properties screen or procedure windows for those
objects, their fields will be disabled and headed NO UPDATE: Checked Out by (user name).

41

Other users logging in to the same metadata repository will have some of the checked-out object's
context menu options disabled, as shown below.

42

To check-in a checked-out object, simply right-click it and select Check In from the context menu.

43

44

Re-Create Dialog
The Re-create dialog provides available options for dropping and recreating an existing table and
associated procedures. Objects and actions available depend on the table being recreated.

Actions in the table are completed from top to bottom; the action performed on each object can be set
as desired:

Object(s) Action Description

Table Recreate Recreate the table structure only. Do not make
changes to associated procedures. This action is
mandatory.

Artificial key
sequence (Oracle
only)

Do Nothing Do not recreate the key sequence. Skip to the next
action.

Recreate (Default) Recreate the artificial key sequence. Do not make
changes to associated procedures.

Update procedure Do Nothing Do not regenerate the update procedure, skip to
the next action.

45

Object(s) Action Description

Regenerate
(Default)

Recreate the table structure, regenerate the
procedure definition in metadata based on the
current table and column properties, and recreate
the procedure in the database. This is the option to
use if there have been changes to column or table
properties, e.g. column transformations.

Recompile Recreate the table structure and recreate the
update procedure based on the existing procedure
definition in the metadata.

Load tables Do Nothing
(Default)

Do nothing for this object, skip to the next action.

Load Perform an interactive load of the data into the
table. WhereScape recommends performing this
via the Scheduler for large tables.

Load via Scheduler Add a data load task to the scheduler. Useful for
large tables where processing may take some time.

Update procedure Do Nothing
(Default)

Do nothing for this object, skip to the next action.

Execute Execute the update procedure. WhereScape
recommends performing this via the Scheduler for
large tables.

Execute via
Scheduler

Execute the update procedure via the scheduler.
Useful for large tables where processing may take
some time.

Tables Do Nothing Do not display the data.

Display Data Display the table data after recreating the table and
update procedure (if applicable).

This is the default setting for Views and Dimension
Views.

This is the default setting for tables when an
update procedure is present and has been executed
in the previous action.

Unavailable when an update procedure is present
but has not been executed in the recreate dialog.

Save these choices as the Defaults

This option can be used to store the current actions as the default choices for all object types. The
Recreate dialog is then automatically populated with the saved actions each time it appears.

46

Count the Rows in the Table

Displays the total number of rows in the table at the bottom of the Recreate dialog. Knowing the number
of rows in a table can help estimate how long Load and Execute actions may take.

47

Organizing Objects
As mentioned in the previous section there are many types of object in WhereScape RED.

The objects in the metadata repository are displayed in the left pane of the Builder window. They are
displayed in a tree structure which can be expanded and closed as required. The tree can be refreshed by
using the F5 or Ctrl/R key.

Object Groups

The objects created in WhereScape RED are grouped together into object groups based on object type.
For example, we store all the dimension objects in the Dimension object group. Optionally, we can
choose to display dimension tables as the Dimension object group and dimension views as the
Dimension View object group.

Projects

These object groups are in turn stored within projects. When WhereScape RED is first started the
special project called All Objects is the only project. This project will always contain all the objects that
exist in the metadata repository. Additional projects can be created if desired. These additional projects
can hold some or all of the objects as seen in All Objects. An object as such, only exists once in the
metadata. Therefore, if we have a model object called model_product, there is and can only be one copy
of the object model_product within the metadata.

Projects are used to hold a group of objects that relate back to a similar module or analysis area of the
data warehouse. In the example below, we have additional projects called Budgets, Promotions, Sales,
Demand Planning and Inventory. In this way projects allow us to restrict the amount of information
(objects) we need to deal with to just those relevant to the area being worked on.

The example below shows a meta repository, using two project groups (Sales and Stock Control) and five
additional projects (Budgets, Promotions, Sales, Demand Planning and Inventory).

48

Note: If you delete an object using the right-click menu, then the object will be deleted from the
metadata and will be removed from all Projects. Remove the object from the project instead of deleting
it.

It is important to understand that these projects are only a means of visualizing the objects. Even
though an object may appear in many projects, it only exists once in the metadata.

To create a project, right-click in the left pane below the last project and select New Project.

The File/New Project menu option may also be used. Projects can be renamed,removed from the
project group or deleted by using the right-click menu when positioned on the project name. Deleting a
project does not delete the objects from the metadata; it simply removes their reference in the project
being deleted.

To view or make changes to the Project's Properties; right-click the project name and select Project
Properties.

49

The following screen shows four check boxes.

Include in User Documentation - When checked, the project will be included in the User
Documentation. The default state is checked.

50

Include in Tech Documentation - When checked, the project will be included in the Technical
Documentation. The default state is checked.

Local Project - When checked as local, the project will not be included in the Application files. The
default state is unchecked.

Show Unused Object Types in Object Browser - When checked, all object types are displayed in the
Object Browser Pane. When unchecked, only object types currently in use are displayed. The default
state is unchecked. Refreshing the Object Browser Pane is required after changing this setting.

Project Groups

Projects can in turn be grouped together into Project Groups. A project must only appear in one Project
Group. To create a Project Group, use the File/New Group menu option. Project Groups can be removed
by using the right-click menu when positioned on a group name.

51

Adding Objects to Projects
There are several different ways to add objects to a project:

• Click an object in the left pane, type Ctrl/C, click the target project (either the project folder or any
object group or object within it) and type Ctrl/V

• Drag the object to the required project

• Right-click on an object in the left pane and select Projects/Add to Project

• Highlight a number of objects in the middle pane, right-click and select Projects/Add to Project

• Using the Project/Object Maintenance Facility (see "Using Project/Object Maintenance" on page 54)

Both options above that use the right-click Projects/Add to Project menu result in the following dialog
box being displayed:

To add an object to an independent project (a project that is not in a group)

Choose the required project from the project drop-down list and click OK.

52

If Groups have been created, both drop-down lists will be visible. If Groups have not been created, only
the project drop-down will be visible like this:

To add an object to a dependent project
1 Choose the required Group from the group drop-down list.

2 Choose the required Project from the project drop-down list.

3 Click OK.

Note: The Include Associated Objects checkbox on the above dialog boxes, will also add any indexes,
procedures and scripts to the selected project.

Removing Objects from Projects
To remove objects from a project

There are different ways to remove objects from a project:

53

• Drag the object to the blank area at the bottom of the pane

• Drag the object into the middle pane

• Drag the object to the All Objects project

• Right-click on an object in the left pane and select Projects/Remove from Project

• Highlight a number of objects in the middle pane, right-click and select Projects/Remove from
Project

• Using the Project/Object Maintenance Facility (see "Using Project/Object Maintenance" on page 54)

54

Using Project/Object Maintenance
The Project/Object Maintenance Facility is invoked by right-clicking a project and choosing Project
Object Maintenance.

The following dialog is displayed:

To add objects to a project, move objects from the left to the right using the > button. By default,
associated object (procedures, scripts and indexes) are also moved to the left. These can be manually
removed if not required.

To remove objects from a project, move objects from the right to the left using the < button.

When done, click OK.

Clicking Apply will update object/project relationships without having to exit the Project/Object
Maintenance Facility.

Clicking Refresh will refresh the object tree in the left pane.

55

Adding Projects to Groups
The best way to move a project into a group is to create the project in the group in the first place. This is
done by right-clicking on the group and selecting New Project:

The other option is to move an existing project from another group into this group. See Moving Projects
within Groups (on page 56)

Removing Projects from Groups
A project can be removed from a group by:

• Dragging the project to the blank area at the bottom of the pane

• Dragging the project into the middle pane

• Dragging the project to the All Objects project

• Removing the project using right-click Remove Project from Group

• Deleting the project using right-click Delete Project

Note: The first four methods move the project out from the group to become an independent project.
The last option removes the project from the metadata repository.

56

Moving Projects within Groups
Note: An object can be in any number of projects, but a project can only be in one Group.

Performing a drag from one group to another group will simply create an additional project->group
mapping.

To move a project from one group to another group:

1 'Copy' the project by dragging the project from the one group to the other group.

2 Remove the project from the original group by right-clicking and selecting Remove Project from
Group.

57

List Projects Memberships for an Object(s)
To list which projects contain a specific object, right click on the object in the left pane and select
Project>List Projects. Results are shown in the bottom pane.

Multiple objects of one type can be selected by double-clicking the Object Type icon in the left pane
(i.e. Connection, Load Table, etc.) and Ctrl + clicking multiple connections in the middle pane.

58

Windows and Panes
WhereScape RED has a number of different windows that are utilized in the building and maintenance
of a data warehouse. Each window may in some cases be broken into panes. There are four main
windows that are used extensively in the building of a data warehouse:

• The Builder window

• The Scheduler window

• The Diagram window

• The Procedure Editor window

Builder Window
The Builder Window has four panes.

59

The left, bottom and right panes can be dragged out of its docking place and docked elsewhere. Docking
handles appear when a pane is dragged.

The left pane contains all the objects within the metadata repository. These objects are stored in object
groups (e.g. Model). The object groups are in turn optionally stored in Projects, and the Projects are
optionally stored within Project Groups.

The middle pane is used to show the results of various queries on both the metadata and the
underlying source and database tables. The middle pane is also used as the drop target in drag and drop
operations. The status line at the bottom of the screen displays the current contents of the middle pane.
To send the middle pane output to a file or to clipboard, see Export Middle Pane Output (on page 67).

The right pane is the Browser Pane and it shows both source and data warehouse systems. There are
two browser panes available at any one time. This source may be the data warehouse itself. Typically
this pane is used as the source of information in the drag and drop operations. The Browser Pane may be
filtered:

• To filter by type click the down arrow next to the Filter button.

60

• Or to filter by name click the Filter button and enter the filter criteria. Name based filters can be
cleared by clicking the down arrow next to the Filter button and selecting Clear Name Based
Filter, seen in the image above.

The bottom pane is the results pane and it shows the results of any command executed on an object.
Multiple messages can be displayed. Expand the '+' sign next to an object to see a complete list of
messages relating to an object. When a report is run from the main menu, the results are displayed in a
separate tab in the bottom pane.

Pop-up menus are typically available in all three panes.

F5 or Ctrl+R key can be used to refresh the left and right panes, when the cursor is positioned within
these panes.

Toolbar

The builder toolbar is shown below:

The diagrammatic view button (diagram view) switches to the diagrammatic window. This window
allows the representation and printing of star schema and track back diagrams.

The scheduler button switches to the scheduler control window.

61

The two source browse buttons (one orange and one blue) allow a quick method of invoking the source
browser which populates the 'Browser pane'. Each of the two browse buttons, when chosen browses to
the connection last used for that button. To change the connection being browsed click on the down
arrow beside the glasses icon.

The Web Links button brings up the online WhereScape forum in a new tab. To select or enter other
web links, click the down arrow beside the Web Links button.

As an example, let us add a Web Link to the Documentation Download on WhereScape's web page.
Select Configure to open the following dialog box, allowing you to enter three custom URLs. Enter the
name and the URL for the first custom link. Click OK.

To select the newly entered web link, click the down arrow beside the Web Links button. Select the
newly entered Documentation Download option.

62

The relevant web page is displayed in a new tab.

Quick access buttons on the Builder Toolbar also include versioning, building application, reports
and document creation.

63

Scheduler Window
The Scheduler Window is used as the main interface to the scheduler.

Jobs can be scheduled, monitored, edited and deleted through this window. The window consists of two
panes. The toolbar provides a quick way to display various job selections in the top pane. Double-click
on the job in the top pane to see the tasks of the selected job in the bottom pane. Double-click on the
task in the bottom pane to see the audit trail displayed in a separate tab in the bottom pane.

See the Scheduler (on page 688) chapter for more details.

Toolbar

The scheduler toolbar is shown below:

The New Job button invokes the dialog to create a new scheduled job.

The Builder Window button switches back to the main builder window.

The Auto Refresh button, when depressed, will result in a refresh of the current (right pane) display
every 10 seconds. Click the button again to stop the auto refresh.

The refresh interval can be adjusted through the menu option Auto/Refresh interval.

Quick access to different categories of jobs are also available via the toolbar.

64

Diagram Window
The Diagram Window is used to display the tables of the data warehouse in diagrammatic form,
showing the various sources or targets of the selected object.

The Diagram Selection is as follows:

• Schema Diagram

• Source Diagram

• Joins Diagram

• Links Diagram

• Impact Diagram

• Dependency Diagram

See the Diagrams (on page 771) chapter for more details.

65

Toolbar

The diagram toolbar is shown below:

The New Diagram button provides a dialog to allow the selection of the diagram type and table.

The Overview button provides a diagram showing the various objects in the WhereScape metadata and
the standard flow of data through these objects. Repeated clicking of the Overview button will step
though each stage of the data flow.

The Toggle button switches between display only diagrams and a printable variant. When the printable
variation of a diagram is displayed, the Grid button will toggle the display of grid lines.

The Builder button switches back to the main builder window.

66

Procedure Editor Window
The Procedure Editor Window provides a means of viewing, editing, compiling, comparing and
running procedures.

Multiple such windows can be open at any one time, each processing a different procedure.

Comments (identified by a leading double dash --) are displayed in green in this window and the
procedural code in black. The font is a fixed pitch font (by default) to make the indentation and
alignment of code easier to view. The font, colors and indent size can all be changed if desired.

See the Procedures and Scripts (on page 630) chapter for more details.

Toolbar

The procedure editor toolbar is shown below:

The Save button will write the procedure to the WhereScape metadata repository in the database.

67

The View Other Procedures button allows the concurrent viewing of older versions of the current
procedure, other procedures in the metadata, compiled procedures in the database and templates.

The Compile button will attempt to compile the procedure. Once compiled the procedure is stored
within the database as well as in the metadata.

The Execute button will run a procedure that conforms to the WhereScape parameter syntax. See the
chapter on procedures for more details.

68

Export Middle Pane Output
• To send the middle pane output to a file, go to the Edit menu and select Send 'Middle Pane'

Output to File.

The columns will then be displayed in Excel.

69

To save to a File, click on the File tab and then select either Save or Save As to save to a file.

To view the settings for Middle Pane File Output, see Export Middle Pane Output Settings (see
"Outputs" on page 125).

• To send the middle pane output to clipboard, go to the Edit menu and select Send 'Middle Pane'
Output to Clipboard.

To view the settings for Middle Pane Clipboard Output, see Export Middle Pane Output Settings
(see "Outputs" on page 125).

70

Find Function
The Find function can help users quickly find a table when the list of tables has grown to a large size.
The Find function can be accessed two ways within WhereScape RED:

• Click anywhere in the Object Pane or Browser Pane and press Ctrl + F, or

• select Edit > Find Object (this option searches the Object Pane only).

Both methods open the following dialog:

71

The WhereScape RED tutorials are in the WhereScape RED Tutorial Help.

C h a p t e r 4

Tutorials

72

This chapter describes the settings and default values that can be set for a metadata repository. To
access these settings, select the Tools menu; and then either Options or User Preferences.

In This Chapter

Settings - Options .. 73
Settings - User Preferences .. 113
Settings - Language Options .. 130

C h a p t e r 5

Default Settings

73

Settings - Options
Select Options from the Tools menu.

74

Settings - Repository Identification
This option allows users to set the Repository Identification settings.

Repository Name

Set the name for the repository. This name appears in the top left corner of the title bar in WhereScape
RED. Restart WhereScape RED for repository name changes to take effect.

Repository Type

Set the type for the repository. The repository type must reflect the environment. For example, a
'Production' type must be chosen for the production environment.

Data Warehouse Database

The database of the data warehouse that is used by the WhereScape RED scheduler. You should not
normally need to change this value.

75

Settings - Repository Privacy Settings
This option allows users to set the Repository Privacy Settings.

WARNING: For UNIX/Linux scheduler processing, the Encrypt User and Password options cannot be
used. Encrypt options are only supported when using a Windows scheduler.

Changing Repository Settings

Since the repository privacy settings can be configured from the Tools (Options) menu, for an
environment to be secured,a database administrator will need to change the permissions on table
ws_meta_admin table to read-only after the appropriate repository privacy change settings in
WhereScape RED have been made.

Note: Changing this set of permissions to read-only is something which occurs outside of WhereScape
RED and will be dependent on the specific meta data database.

76

Username and Password Settings
• Meta Login Method - This option can be set to restrict users to using a particular login method for

the meta repository

• Include User Details in Application Deployments - Includes or excludes User Details in
Application Deployment packages

Extract User ID Settings
• Mask Extract User ID - Masks the input of the "Extract/Unix/Windows User ID" on the connection

properties

• Enable Extract User ID Editing - Allows editing the "Extract/Unix/Windows User ID" via the
connection properties

• Encrypt Extract User ID - Encrypts "Extract/Unix/Windows User ID" in the meta repository using
WhereScape encryption

Extract User ID Settings
• Mask Extract User Password - Masks the input of the "Extract/Unix/Windows User Password" on

the connection properties

• Enable Extract User Password Editing - Allows editing "Extract/Unix/Windows User Password" via
the connection properties

• Encrypt Extract User Password - Encrypts "Extract/Unix/Windows User Password" in the meta
repository using WhereScape encryption

Admin User ID Settings
• Mask Admin User ID - Masks the input of the "Admin/DSS User ID" on the connection properties

• Enable Admin User ID Editing - Allows editing the "Admin/DSS User ID" via the connection
properties

• Encrypt Admin User ID - Encrypts "Admin/DSS User ID" in the meta repository using
WhereScape encryption

Admin User Password Settings
• Mask Admin User ID - Masks the input of the "Admin/DSS User ID" on the connection properties

• Enable Admin User ID Editing - Allows editing the "Admin/DSS User ID" via the connection
properties

• Encrypt Admin User ID - Encrypts "Admin/DSS User ID" in the meta repository using WhereScape
encryption

Teradata Wallet User ID Settings
• Mask Teradata Wallet User ID - Masks the input of the "Teradata Wallet User ID" on the

connection properties

• Enable Teradata Wallet User ID Editing - Allows editing the "Teradata Wallet User ID" via the
connection properties

• Encrypt Teradata Wallet User ID - Encrypts the "Teradata Wallet User ID" in the meta repository
using WhereScape encryption

77

Teradata Wallet String Settings
• Mask Teradata Wallet String - Masks the input of the "Teradata Wallet String" on the connection

properties

• Enable Teradata Wallet String Editing - Allows editing the "Teradata Wallet String" via the
connection properties

• Encrypt Teradata Wallet String - Encrypts the "Teradata Wallet String" in the meta repository
using WhereScape encryption

78

Settings - Object Types

Object Type Availability
This option enbales users to enable or disable the various object types within the repository.

Object Type Availability

Enable/Disable object types in the data warehouse by selecting/clearing the availability check-boxes for
each object type.

79

Object Type Names
This option enables users to set the names for the various object types.

Object Type Name

Set the desired name for each object type.

NOTE - Data Vault Repository Types: Users with Data Vault model type licenses that chose a Data
Vault repository type while creating the RED metadata repository will have appropriate Data Vault
repository default settings such as Object Type Names, Global Naming of Tables, Indexes, Key Columns
and Procedures/Scripts, as well as other repository settings/user preferences.
These repository types will have their default Object Type Names of Normalized and Data Store objects
set to Hub/Link and Satellite.

80

Object Type Ordering
This option enables users to set the ordering in which the object types appear in the object tree.

Object Type Order

Set the ordering of the object types as displayed in the object tree.

81

Object Type End User Setting
This option allows users to set the Object types as end user objects.

Object Type End User Visible

Set each object to make each object type an end user object.

82

Object Type Icon
This option enables users to configure the Icons for all Object Types. To configure custom Object Type
icons:

1 Create an 'Icons' folder in the WhereScape RED install directory, if it doesn't already exist. For
example:

C:\Program Files (x86)\WhereScape\Icons

2 Place custom '.ico' files in the Icons folder.

3 In RED, select Options>Object Types>Object Type Icon.

83

4 Click the ellipses button '...' next to each Object Type and select the desired icon.

5 All configured icons are displayed as file names in the Options dialog. To save changes click OK.

84

To Reset An Icon

To reset an icon to default, click the reset button () next to the icon.

Reset All Icons

To reset all icons to default, click the Reset All Icons button at the top of the dialog.

Note: All installations must have a copy of the icon directory.

85

Object Type Color
This option enables users to set the diagram colors for each object type.

Object Type Diagram Color

Set the Diagram color for each object type.

86

Object Sub Types
This option enables users to set the default sub type for enabled objects in RED.

Object Default Sub Type

This option enables specifying the Default Sub Type for enabled object types. Select the desired default
sub-types from the Object's drop-down lists.

As an example, to have Dimension objects created in RED as Changing Dimensions at the time of drag
and drop, select the Changing Dimension option in the Default Sub Type for Dimension Objects.

After the table is dragged and dropped, users can simply hit enter to proceed on the Dimension Type
where the Slowly Changing type is already defaulting to the sub type option previously selected in
Tools>Options.

87

The Dimension Properties' screen will reflect the selected table sub type on the Table Type drop-down
list.

88

Settings - Global Naming Conventions

Case Conversion
This option allows users to set the case conversion methods for Tables and Columns.

Case Conversion

Set the Table Case Conversion method and the Column Case Conversion method from the
drop-down lists.

89

Global Naming of Tables
This option allows users to set the Global Naming of Tables options.

A prefix and/or a suffix string can be applied to an object name. Within Oracle and IBM DB2, a table
name may be a maximum of 30 characters long, so these pre and post fix strings should not be more
than eight characters long (WhereScape RED short names are a maximum of 22 long in Oracle and SQL
Server and 12 long in DB2).

From the example screen above, if a source table called customer (with a short name of 'customer') was
dragged into a load table drop target then the default name would be load_customer.

The object name defaults shown above are the values that are installed with the base metadata. They
can be changed at any stage, however, the change does not affect any existing objects. Therefore, if a
new naming regime is chosen any existing objects will need to be renamed through the Properties
screen of the object.

90

Global Naming of Indexes
This option allows users to set the Global Naming of Indexes options.

Whenever a new procedure is defined, WhereScape RED builds or rebuilds a standard set of indexes for
the table. These indexes will be created using the standard defined. As with the key naming, we can set
either a pre-fix or suffix value, or in fact both, as well as choosing the use of either the table name or the
short name associated with the table.

In addition to the naming specified above, WhereScape RED will add up to a further 3 characters to the
end of the index name. These additional values will be "_0" through "_99", or "_A" through "_Z", or "_PR".
When a new index is manually added, it will have the additional value of "_x" by default. This should be
changed. The WhereScape RED naming standard for indexes is described below, but any valid name may
be used.

From the example screen above, a model table would have indexes generated using the short name and
with a suffix of "_idx". Therefore a model_sales model table would have indexes such as
model_sales_idx_x.

Ultimate suffix meaning

 _0 artificial key

_A primary business key

 _B through _Z secondary business keys

 _PR primary index

91

Global Naming of Key Columns
This option allows users to set the Global Naming of Key Columns.

During the drag and drop generation of new tables, WhereScape RED will build an artificial (surrogate)
key for the table if surrogate keys are enabled.

• The naming convention for the surrogate key can be set through the same menu option as above.

• Prefix and suffix values can also be added.

• There is a choice between the inclusion of the full table name, short name or base name assigned
to each table.

• In the example screen above, which is the default, a dimension table key would use the table short
name and have a suffix of "_key": for example your load_customer table would generate a key called
dim_customer_key if it was dragged into a dimension drop target.

To have a table with non identity columns as surrogate keys, you can set the table's Data Type to
integer. During the procedure generation this will create a logic that associates a sequential number to
the artificial key of the dimension when a new row is inserted into the table.

92

• The example above displays the defaults for Dimension options but to set these fields on Fact,
Data Store and EDW 3NF tables, expand the fields below Dimension to view and set your required
options.

• For more on Artificial Keys see Dimension Artificial Keys, Data Store Artificial Keys and EDW 3NF
Artificial Keys.

Dimension have a Surrogate Key auto added

Set this field if a Surrogate key column is to be added automatically to a table. Default for Dimension is
set. Default for Fact, Data Store and EDW 3NF is not set.

Dimension Key Prefix

Key prefix that can be added to a new Dimension Key.

Dimension Key Name Type

Key name type for new Dimension keys. Select between Short name, Full table name and Base name.

Dimension Key Suffix

Key suffix that can be added to a new Dimension key.

Dimension Data Type

Default data type for the Dimension surrogate column definition. Set to Integer if you want a non
identity column to be used as the surrogate key.

Dimension Transformation

Transformation where a database compliant SQL statement can be used for the surrogate key on new
Dimension entries.

93

Global Naming of Procedures
The default naming conventions for generated procedures can be set through the menu option
Tools/Options. To generate a procedure select the (Build Procedure...) option from the Update
Procedure drop list found in the table properties screen.

Procedure name defaults

The dialog shown in the screen shot below will appear in response to the tools/procedure name defaults
menu option. It provides a means of setting the naming defaults for all types of generated procedure.
The values as shown below are the default settings, but may be changed to meet the site requirements.
The only restriction is on the size of the resultant name, which is database dependent.

The contents of the prefix and suffix fields must contain characters that are valid in a database stored
procedure name and should preferably not contain spaces.

The Name Type may be either the full table name or the unique short name assigned to each table. In
the case of smaller table names, the short name is usually the same as the table name.

For example, if we have a stage table called stage_product, then from the example screen above the two
possible generated procedures would be called update_stage_product and custom_stage_product.

94

Settings - DSS Tables and Columns
When building the data warehouse WhereScape RED makes use of a number of special tables and
columns. Two tables are used.
These are called by default dss_source_system and dss_fact_table and are discussed in detail in the
sections below.

The special columns used are defined in the table below.

Column name Description

dss_batch Not used at this stage.

dss_source_system_key

Added to support model tables that cannot be fully conformed, and the
inclusion of subsequent source systems. See the section below for more
details.

dss_fact_table_key Used in composite rollup fact tables to identify the source fact table
that contributed the particular row.

dss_create_time Indicates when a record was created.

dss_update_time Indicates when the record was last updated in the data warehouse.
Used in the updating of rollup fact tables and aggregate tables.

dss_start_date Used for model history tables as the start date for a particular version
of a row.

dss_end_date Used for model history tables as the end date for a particular version of
a row.

dss_count Applied to fact tables. Provides a simple row count variable that can be
used by end user tools.

dss_current_flag Used for model history tables. This flag identifies the current record
where multiple versions exist.

dss_version Used for model history tables. This column contains the version
number of a history record. Numbered from 1 upwards with the highest
number being the latest or current version. It forms part of the unique
constraint for the business key of a model history table.

dss_file_name Identifies a table holding files loaded into load tables.

dss_change_hash Used to identify for a Satellite table. This column identifies the
differences in the descriptive columns of a Satellite table which is used
for generating the change hash key for creating a Satellite object

All of these special columns may be renamed through the Tools>Options>DSS Tables and Columns
menu option. All columns in the screen shot example below (except for dss_source_system) can simply
be renamed. The two tables however, require valid table names that meet certain criteria. See the
appropriate sections below.

95

Note: When using table names other than the defaults for dss_source_system, it is worth considering the
fact that by default the metadata backups will include any table that begins with "dss_". Therefore, if a
table is used it is recommended that it have a name starting with "dss_". The advantages are that a
working meta repository will be established through a backup and restore, if these tables are included in
the backup set.

Dss_source_system

This pseudo model table is designed to identify a data source for a model row. Its purpose is to handle
changes in source systems. If its use is not desired (default) then leave this field blank.

For example:

An organization has a number of factories. These factories are referenced by all of the operational
systems. The production system has its own code for each factory and this is the unique means of
identifying the factory. The distribution system has a factory short name which it uses for the unique
identifier. The raw materials system simply uses the factory name. It is probably not practical or even
desirable to force these source systems to utilize a standard factory identification method, so instead we
allow the model table to be non conformed. We do however, insist on a standard factory naming
convention, so that our reports and queries will join information when the factory name is used.

In such an example, the dss_source_system_key is used to identify the source of the data for the model
table row. It also adds to the unique business key, so that two source systems can utilize the same code
to refer to different entities. This key also provides a degree of future proofing in the data warehouse, to
assist in the possible changing of an underlying source system.

The generated procedure code will always set the key value of this table to 1. Therefore, manual code
changes will be required to make use of the functionality that this table offers.

If this table is to be given a different name then it and all its columns can be renamed or the following
steps can be taken:

1 Create a new table by dragging the column dss_source_system_name from dss_source_system into a
model target.

2 Rename the dss_source_system_name column to match the new table name.

3 Delete the last two columns.

4 Under the tables properties, change the table type to Mapping table. This will prevent the table
from being seen as a model table in the documentation.

5 Change the dss_source_system table name in the screen above, via the tools/options then the
ancillary tab.

96

DSS Tables
This option allows users to set the DSS Tables.

Tables

Set the DSS Tables.

97

DSS Columns
This option enables users to set the DSS Columns.

Columns

Set the DSS Columns.

dss_create_time

Column added to all stage, ODS, EDW 3NF, model, fact and aggregate tables for information only. Leave
the field blank to disable or add a name for the dss_create_time column, i.e. dss_create_time.

dss_update_time

Column added to all model and stage tables. It is required if the generated code for fact and aggregate
tables is to be used.

dss_start_date

Column used for model history tables. It is used to identify when a model table row was replaced. This is
a required field.

dss_end_date

Column used for model history tables. It is used to identify when a model table row was replaced. This is
a required field.

98

dss_version

Column used for model history tables. Is it used to store the version of a model table row. This is
required for unique constraints.

dss_current_flag

Column used for model history tables. It is used to identify the current model table row. This is a
required field.

dss_change_hash

Column used to identify the differences in the descriptive columns of a Satellite table which is used for
generating the change hash key for a Satellite object.

99

Settings - Check-Out and Check-In
This option enables users to set up for the Check-out or Check-In of Procedures.

Check out

Enabled: Set to True to enable procedures to be checked-in or checked-out.

Mandatory Reason: Set to True if a reason is mandatory.

Retention Period

Set the length of time; Years and Months, for which procedures may be checked-out.

100

Code Generation

General
This option allows users to set some general Code Generation settings.

General

Include WsWrkTask Procedure

When set to True, this will result in a call to the WsWrkTask function being placed at the end of most of
the generated update procedures. These calls to WsWrkTask result in counters being set in the meta
table ws_wrk_task_log. These counters can be viewed via a query on the view ws_admin_v_task.

Generate Procedures By Default

Set this option to generate Procedures by default.

Default File Loader

Options for the default file loader are:

101

• Multiload

• FastLoad

• Load TPT

• Update TPT

• Stream TPT

• No Load

NOTE: When importing a Model from 3D to RED, please select Load TPT instead of Fastload as the
Default File Loader method. FastLoad is not a valid option for loading Linux files to Teradata.

"End of Statement" Indicator

Set the indicator to separate multiple SQL statements in a SQL block. If left blank the default value of
<EOS> is used.

SQL Server Integration Services

SSIS Version

Available version of SQL Server Integration Services. SSIS is not enabled by default for Teradata. To use
SSIS to load data, the relevant version of SSIS needs to be selected on this drop-down list.

102

Default Update Procedure Options
This option allows users to set some default update procedure settings.

The Process in Batch option, when selected, allows users to select a column to drive data processing in
a loop based on the distinct ordered values of the selected column.

The Include Initial Load Insert option, when selected, adds an additional insert statement to the
update procedure. If the target table is empty, the new insert statement is run in place of the standard
generated code.

The Insert Zero Key Record option, when selected, adds an insert statement for an unknown record
with an artificial key of zero. Only applicable to tables with an artificial key.

The Parallel DML option, when selected, adds all code required to the update procedure for enabling
Oracle parallel inserts. Note: Oracle only.

The Distinct Data Select option, when selected, ensures duplicate rows are not added to the table.

The Delete before Insert option, when selected, enables a delete statement to be added to the update
procedure before any update or insert statement.

The Include Update Statement option, when selected, includes an update statement in the procedure
to update changing rows in the table.

103

The Update Changed Rows Only option, when selected, uses change detection to work out what rows
require updating.

The Update Hint option, when selected, enters a database hint to be used in the UPDATE statement.

The Include Insert Statement option, when selected, includes an insert statement in the procedure to
insert new rows in the table.

The Insert New Rows Only option, when selected, uses change detection to work out what rows require
inserting.

The Insert Hint option, when selected, enters a database hint to be used in the INSERT statement.

The Include Merge Statement option, when selected, includes a merge statement in the procedure to
merge new/changed rows in the table.

104

Settings - Storage

Target Location
Target Location options enable users that are placing objects across multiple databases to set default
target locations for new tables.
Default table target locations can be set for the following objects:

• Load

• Stage

• Dimension

• Kpi Fact

• Fact

• Aggregate

• Join Index

• Data Store

• EDW 3NF

• View

• Hub Table

• Satellite

• Link

• Custom

105

Target Action

Set Target

This option enables users to set a default target location for new tables to be created. It enables the
Default Target drop-down list where a specific target location for new tables can be defined.

Same as Source

This option should be selected if the table's default storage should be same as the original source where
the table is coming from.

Default Target

A default target location can only be entered if the Set Target action has been selected in the Target
Action drop-down list.
With this option users can choose between setting a table's default location to (local) or to any other
target locations that have been defined in the relevant connections.

To set a default target location on a table by table basis:

106

1 Select the Set Target/Same as Source option from the Target Action drop-down menu.

2 To have tables located in a specific target location, select a default target where the new object
should be placed as the object is dragged and dropped to the middle work pane.

To see more on creating target locations see Connection to the Data Warehouse (see "Database - Data
Warehouse/Metadata Repository" on page 135).

Even though the default target location can be set in the Target Location Options, this setting can also
be changed after the table has been created in the Storage tab of each table's Properties screen.
To see more information about changing the target location after a table has been created, see Storage
(on page 182).

107

Table Storage
This option enables users to set the Storage locations.

Set the Storage locations for each table type.

These def'aults are applied when a table is created. They can be changed by selecting the Storage tab on
the Properties screen of a table.-

108

Default Optional CREATE Clause
This option enables you to define a default value for the "Optional CREATE Clause" property of each
object type, which is populated when the object is first created.

The Optional CREATE Clause text is appended to the DDL CREATE statement when the table is
generated.

TIP: This option is only to set the default optional create clause for new objects. To edit the
Optional CREATE Clause of an existing object or edit the clause on a table by table basis, go to the
object's Properties screen, click on the Storage tab and edit the Optional CLAUSE Clause field.

109

Index Type
This option enables you to set the default type of primary index type for each table type.

Set the default primary index type for each table type.

The options are:

• Non-Unique Primary Index (NUPI)

• Unique Primary Index (UPI)

• No Primary Index (NOPI)

These defaults are applied when an index definition is created. They can be changed by selecting the
Storage tab on the Properties screen of an index.

110

Settings - Versioning
This option enables users to alter the Metadata versioning settings.

Metadata Versioning

Set each option if you want to auto-version the metadata.

111

Settings - Documentation
This options enables you to alter the documentation settings.

The Documentation Name sets the name of the appropriate tab in the properties dialog.

The Documentation Label sets the the label or description of the appropriate documentation tab.

The Documentation User defines if the documentation information is visible to end users and included
in end user documentation.

The Documentation Before Columns defines if the documentation tab information is shown in the
documentation before or after the column information.

The Documentation Order defines the order that this field appears in the properties dialog tabs.

112

Settings - Other
This option enables you to add or remove shadows in the diagrams.

Repository Identification

Set to True to prevent a shadow appearing on all printable diagrams produced in the diagrammatic
window.

113

Settings - User Preferences
Select User Preferences from the Tools menu.

114

Settings - Common

Look and Feel

General

This option allows you to set the look and feel in general.

General

The Reset Look And Feel option allows you to reset all window tab positions for Builder and Scheduler
panes. Reset scheduler and report headings.

The Maximize WhereScape RED on Startup option, when selected, will start WhereScape RED in full
screen mode.

The Show Window Tabs At Top option, when selected, window tabs will be located at the top of the
screen.

The Scheduler Results in Color, when selected, will turn on job status color coding in the scheduler.

The Maximum rows returned for Display Data option allows you to set the maximum number of rows
that will be returned when displaying data.

The Update Column then Previous/Next Wraps to End/Start option, when selected, controls the
behavior of the directional Update buttons on the Column Properties dialogs. When enabled the
'<-Update' button will wrap to the last column when it moves beyond the first column; and the 'Update

115

->' button will wrap to the first column when it moves beyond the last column. When disabled (default),
the dialog closes after an attempt to navigate before the first column or after the last column.

Panes

The Show Grid Lines in the Middle Pane option, when selected, will show grid lines in the main work
area.

The Show Grid Lines in the Results Pane option, when selected, will show grid lines in the results
area.

The Show Grid Lines in the Reports Pane option, when selected, will show grid lines in the reports
area.

Object Lists

The List Projects for Object list option, when selected, shows the projects for each object in the middle
pane object list.

The List Storage for Object list option, when selected, shows the storage for each object in the middle
pane object list.

The Tree Item Padding option allows you to select the number of pixels used to pad tree items when
the tree items represent an Object; for example, in the Object Pane and the Browser Pane. Padding is
added to the top and bottom of each tree item. Padding can be set from 0-10 pixels, default value is 2.

Note: When selected, both these options impact on the speed lists are generated. Since they are
enabled by default, both options should be disabled to speed up the process or if considered irrelevant
according to user's preferences.

Code Editor

This option allows you to set the look and feel in code editor.

116

Code Editor

The Show Code as Word Wrapped option, when true, will default to have word wrapping applied to
code.

The Code Editor Font option allows you to select the font used in code editors.

The Code Editor Background Color option allows you to select the background color when editing
code.

The Code View Background Color option allows you to select the background color when viewing
code.

The Procedure Indent Size option allows you to specify the number of spaces that are generated when
a TAB character is used within the Procedure editor. Permitted range is 2 through 10.

The Script Indent Size option specifies the number of spaces that are generated when a TAB character
is used within the Script editor. Permitted range is 2 through 10.

The Template Indent Size option specifies the number of spaces that are generated when a TAB
character is used within the Template editor. Permitted range is 2 through 10.

117

Confirmation Prompts

This option allows you to set the look and feel in confirmation prompts.

Confirmation Prompts
• Prompt to Regenerate Indexes when Rebuild Procedures - If set, always prompts for index

regeneration whenever an update procedure is rebuilt

• Prompt when Truncate Table via Context Menu - If set, always pops up a confirmation message
before the truncate command is executed

• Prompt "New Script" Message - If set, always pops up an assistance message with expected return
codes for scripts

118

Diagrams

This option allows you to set the look and feel in the diagrams.

Diagram

The Diagram Column Details option will show the columns as the initial diagram.

When set, the Tracking Report Indentation output will include tabs to show dependency level.

Property Grids

This option allows you to set the look and feel in the property grids.

119

Property Grid

The Show Property Grid Item Description option, when selected, will show the property grid item
description. The default is selected.

The Show Property Grid Toolbar option, when selected, will show the property grid toolbar. The
default is selected.

The Show Property Grid Inplace Buttons option, when selected, will show property grid buttons for all
items. The default is selected.

The Default Property Grid Sort Order option, allows you to select the default property grid sort order
for items. The options are Categorized, Alphabetical and No Sort and the default is Categorized.

The Display Property Grid Boolean as option, allows you to select how boolean items are to be
displayed. The options are Text and Checkbox and the default is Text.

The Text for Boolean True option, allows you to enter the text for the boolean value True.

The Text for Boolean False option, allows you to enter the text for the boolean value False.

The Highlight Property Grid Changes option, allows you to highlight changed items in the property
grid. The default is True.

The Minimum displayed lines for MultiLine items option, gives the minimum display lines for
multi-line inputs.

The Maximum displayed lines for MultiLine items option, gives the maximum display lines for
multi-line inputs.

120

Local Naming Conventions

General

This option allows users to set the local naming conventions.

Local Naming General

Set this option if you want to Use Local Naming Conventions. If this option is set the Local Naming
of Tables, Key Columns and Indexes options is enabled in the tree.

Note: If this option is set, it can overwrite short names and object prefixes.

121

Local Naming of Tables

This option allows you to set the Local Naming of Tables.

Define the prefix and suffix that will be used in the default naming convention for each table type.

122

Local Naming of Key Columns

This option allows you to set the Local Naming of Key Columns.

The Key Prefix option sets the prefix that will be used in the default key naming convention.

The Key Name Type option sets the basis for the key naming.

The Key Suffix option sets the suffix that will be used in the default naming convention.

123

Local Naming of Indexes

This option allows you to set the Local Naming of Indexes.

The Index Prefix option allows you to set the prefix that will be used in the default index naming
convention.

The Index Name Type allows you to set the basis for the index naming.

The Index Suffix allows you to set the suffix that will be used in the default index naming convention.

124

Local Paths
This option allows you to set the local paths for documentation, backup and restore and for versioning
to disk.

Documentation Path

Sets the local documentation directory.

Backup And Restore

The Backup Executable option sets the override for backup executable. By default, WhereScape RED
tries to find the path of the backup executable. This is bcp.exe for SQL Server, exp.exe for Oracle and
db2cmd.exe for IBM DB2. This edit box provides the ability to specify the exact location and name of the
executable. This is useful when WhereScape RED cannot find the program or if there are multiple
versions of the program on the PC.

The Restore Executable option sets the override for restore executable. By default, WhereScape RED
tries to find the path of the restore executable. This is bcp.exe for SQL Server, imp.exe for Oracle and
db2cmd.exe for IBM DB2. This edit box provides the ability to specify the exact location and name of the
executable. This is useful when WhereScape RED cannot find the program or if there are multiple
versions of the program on the PC.

125

Version to Disk

Set the locations and names for Versions to disk. If any of the three version to disk paths are set,
WhereScape RED will automatically create ascii files containing the applicable ddl or code each time an
automated version occurs in the entered directory.

Outputs
This option allows you to set the Output user preferences.

File Output

The Output File Directory option allows you to set the path for output files created from the middle
pane.

The Output File Extension option allows you to set the file extension for output files created from the
middle pane. This value determines the program that will auto open files.

The Output File Auto Open option, when set to True, results in files created from the middle pane
being opened automatically.

The Output File Delimiter option allows you to set the characters that separate each field within each
record of output files created from the middle pane. Common values are , and |.

126

The Output File Delimiter String Replace option allows you to set the characters that will replace the
delimiter character if it occurs inside a field.

The Output File String Encapsulation option allows you to set the characters that are used to enclose
string values of files created from the middle pane. Common values are " and '.

The Output File String Encapsulation Replace option allows you to set the characters that will
replace the encapsulation string if it occurs inside a field.

The Output File End Of Line option allows you to set the characters saved at the end of each record of
files created from the middle pane. Common values are \n, \r and \t.

The Output File End Of Line Replace option allows you to set the characters that will replace the end
of line string if it occurs inside a field.

Middle Pane Clipboard Output

The Clipboard Delimiter option allows you to set the characters that separate each field within each
record of clipboard output created from the middle pane. Common values are , and |.

The Clipboard Delimiter String Replace option allows you to set the characters that will replace the
delimiter character if it occurs inside a field.

The Clipboard String Encapsulation option allows you to set the characters that are used to enclose
string values of clipboard output created from the middle pane. Common values are " and '.

The Clipboard String Encapsulation Replace option allows you to set the characters that will replace
the encapsulation string if it occurs inside a field.

The Clipboard End of Line option allows you to set the characters saved at the end of each record of
clipboard output created from the middle pane. Common values are \n, \r and \t.

The Clipboard End of Line Replace option allows you to set the characters that will replace the end of
line string if it occurs inside a field.

127

Other
This option allows you to set the Other user preferences.

Other

When the Trace Unix Sessions option is set, this will trace all Unix activity undertaken by WhereScape
RED until it is terminated. The file WslMedTelnet.txt will be created in the program directory for
WhereScape RED. This option is intended for debugging of specific Unix problems and the setting of this
switch would normally be done at the request of WhereScape when attempting to solve a Telnet issue.
This setting is only relevant for the PC on which the setting is made. (i.e. it is not a global setting for the
repository).

Warning: When set to true, the following warning will appear: "Telnet trace provides a character level
trace of the what is sent to and received from the internet packet layer. It makes no effort to interpret
the data and hence USERNAMES and PASSWORDS may be seen in CLEAR TEXT. This does not mean
that the data is in clear text on the internet. If a protocol such as SSH is being used, then the internet
packets will be encrypted. This trace functionality should only be used for diagnostic purposes and
the user must be aware of the security implications of writing potentially unencrypted passwords to
the trace log file."

128

129

Settings - Current Repository

Look and Feel
This allows you to set the look and feel for the current repository.

Repository Color Schemes

Set the primary and background color schemes for the current repository.

130

Settings - Language Options
Select Language Options from the Tools menu.

Languages can be defined via the Tools/Language Options menu. This option is only available for SQL
Server databases and applies only to dimension, fact and OLAP objects. A blank entry means that no
languages have been defined and thus no translations can be saved.

To add a language

Click the Add Language button; enter the new language ID and click OK.

To delete a language

First select the language from the drop-down list and then click the Delete Language button.

Note: All translations for the selected language will also be deleted.

131

Language

The language Reference/ID.

Language Description

The language Description.

Analysis Services Language

Used to identify the language ID as used in Analysis Services.

132

Parameters are a means of passing information between two or more procedures and between the RED
environment and procedures. They can be edited within the RED environment by selecting the
Tools/Parameters menu option. A list of parameters is displayed as per the example below:

A parameter can be added, edited, copied or deleted by using the right-click menu in the Parameter
column:

Typical parameter usage may be the global definition of how many days should be looked back for
change data, a month or processing period etc.

Parameters can be used in load tables to place limits in a 'Where' clause, etc. See Database Link Load -
Source Mapping (see "Database Link Load - Source Screen" on page 202) for more information.

They are also used by stage table procedures as variables. See Generating the Staging Update
Procedure (on page 322) for more information.

Two procedures are provided to allow procedures to read and write parameters. These procedures are
WsParameterRead (on page 949) and WsParameterWrite (on page 954). Using these procedures a
procedure can load and use the contents of a parameter, modify an existing parameter, or add a new
parameter.

C h a p t e r 6

Parameters

133

Connection objects serve several purposes in WhereScape RED:

1 They are used to browse potential source data in source systems and to acquire metadata. Potential
source data includes database tables and flat files. For database tables, WhereScape RED:

• Uses the ODBC Source set on each connection to browse the source system.

• Acquires the metadata for new load tables built from the source system using drag and drop.

For files, WhereScape RED:

• Connects directly to Windows, UNIX/Linux or Hadoop to analyze the source file for the new load
table and acquire its metadata.

• Prompts for user input for any metadata not available in the source file.

NOTE1: ODBC connections must be either User DSN or System DSN. File DSN connections are not
supported.

NOTE2: Windows and UNIX connections do not have an ODBC Source property. UNIX
connections are use for UNIX and Linux systems.

2 Load tables with a connection of Connection type ODBC extract data from source systems using
ODBC. The ODBC Source of the connection is the ODBC DSN used for the extract.

NOTE: If a Teradata TPT compliant ODBC DSN is defined in the Connection Properties menu,
the TPT DSN is used for TPT ODBC Loads.

3 Each data warehouse metadata repository must have a Data Warehouse connection to use drag and
drop to create new objects (other than load tables) in the data warehouse. WhereScape RED:

• Uses the ODBC Source set on the Data Warehouse connection to browse the Data Warehouse
database.

• Acquires the metadata for any tables built from existing data warehouse tables.

NOTE: This connection always has a Connection type of Database.

4 Cube objects require a connection to define the Analysis Services server used to create and load
cubes. This is a connection with a Connection type Microsoft Analysis Server 2005+.

5 Export objects require a connection to define the target environment where exported data is written.
This is a connection with a Connection type of UNIX or Windows.

C h a p t e r 7

Connections

134

In This Chapter

Connection Types ... 134
Browsing a Connection... 167
Changing a Connection's Properties .. 172
Reset Meta Database Connections ... 172
Configuration Settings for BDA.. 173

Connection Types
Connections can be set up via the following methods:

• Connections to the Data Warehouse/Metadata Repository (see "Database - Data
Warehouse/Metadata Repository" on page 135)

• Connections to Another Database (see "Database" on page 140)

• ODBC Based Connections (see "ODBC" on page 144)

• Connections to Windows (see "Windows" on page 148)

• Connections to UNIX/Linux

• Connections to Hadoop

• Connections to Microsoft Analysis Servers (see "Microsoft Analysis Server 2005+" on page 161)

135

Database - Data Warehouse/Metadata Repository
This section describes the connection to the Data Warehouse. Tutorial 1 gives basic instructions for
creating a connection.
This topic describes in greater detail the connection properties as they apply to the Data Warehouse
connection.
This connection is used in the drag and drop functionality to create the stage, model and aggregate
tables. It is also used to create cubes.

TIP: The Data Warehouse connection must exist if you wish to use drag and drop to create stage
tables, model tables, aggregates and cubes.

Data Warehouse connection example

• A User ID and Password must be specified or

• As below a Teradata Wallet User ID and TD Wallet String.

136

General

Connection Name

Name used to label the connection within WhereScape RED. Typically this is DataWarehouse

Connection Type

Indicates the connection source type or the connection method such as Databse, ODBC, Windows, Unix.
Here the connection type is Database.

Database Type

Type of database such as DB2, Greenplum, Hive, Netezza, Oracle, SQL Server, Teradata. Default is
(local).

ODBC Data Source Name (DSN)

ODBC Data Source Name (DSN) as defined in the Windows 32-bit ODBC Data Source Administrator.

Note: The ODBC Source Name defined in RED must be the same on all machines that use the
corresponding connection.

Data Warehouse Connection Indicator

Distinguishes the special connection that identifies the WhereScape RED metadata repository. Set to
True.

Note: There should only be one metadata connection in a WhereScape RED repository.

Source System

Database ID

Database Identifier (e.g. Oracle SID or TNS Name, Teradata TDPID) or Database Name (e.g. as in DB2 or
SQL Server).

Database Link Name

Optional name of a Database Link that is used to access the database.

Big Data Adapter Settings

JDBC Connection String (JDBC URL)

Connection string used by the WhereScape Big Data Adapter to access this database. This is required for
Apache Sqoop loads involving this connection.
The token $OBJECT_DATABASE$ will be replaced by the name of the database containing the object
(e.g. load table) being operated on.
Users loading into Teradata from a Hive or Hadoop connection using the Teradata connection manager
for Sqoop, who need to load into more than one database, will need to add
DATABASE=$OBJECT_DATABASE$ into their JDBC URL on the DataWarehouse connection (e.g.

137

jdbc:teradata://192.168.60.226/DATABASE=$OBJECT_DATABASE$).
BDA will replace $OBJECT_DATABASE$ with the database containing the load table when loading into
this connection, and with the source schema defined on the load table when loading from this
connection.

JDBC Driver Class Name

JDBC driver class to be used by the WhereScape Big Data Adapter. This field must be set if the JDBC URL
is set.
Select the appropriate JDBC Driver class name from the drop-down list. If this is left empty this will not
be specified in generated commands.

Omit Sqoop Driver Option

If set, the --driver option to Sqoop will be omitted. This is required for certain connection types such as
Oracle connections.
If you select the Omit Sqoop Driver Option check-box, the driver parameter will not be used in sqoop
command line. This is a requirement for Oracle at the moment, as suggested by Sqoop documentation
for 1.4.5.

Sqoop Connection Manager Class

Custom Sqoop connection manager class. Corresponds to the --connection-manager command line
argument. Leave blank of this is not required.

Include Database/Schema Name in Sqoop Table Option

If set, the --table option to Sqoop will include the database/schema name of the destination table when
performing Apache Sqoop loads into this connection. This is incompatible with some connection
managers, for example the Cloudera Connector Powered by Teradata. If this is not set, users must
ensure that the database/schema is otherwise communicated to Sqoop, for example by using the
$OBJECT_DATABASE$ token in the in the JDBC Connection String.

Include Sqoop Columns Option

If set, the --columns option to Sqoop will be included when performing Apache Sqoop loads into this
connection. This is incompatible with some connection managers, for example the Cloudera Connector
Powered by Teradata. If this is not set, users must ensure that the order of columns in the loads match
the order in the metadata.

Database Credentials

Extract User ID

Database User that has access to SELECT from the source system tables to extract data.

Extract User Password

The password of the data warehouse user. For SQL Server, this field can be left blank if using a trusted
login, or the server login password.

138

Administrator User ID

Left blank.

Administrator User Password

Left blank.

Teradata Wallet User ID

Database User ID that has access to SELECT from the source system tables to extract data.

Teradata Wallet String

The Teradata Wallet String is the string replacing the username and password for your connection.
Teradata TD Wallet is a Teradata product part of the TTU (Tools and Utilities). Refer to Teradata
documentation if you don't have a TD Wallet created already.

ODBC User Default

Select either Extract User ID or Teradata Wallet from the drop-down menu as the default log on method.

Other

Default Schema for Browsing

Optional comma-delimited list of schemas for the browser pane filter. Enter the schema(s) you want the
connection to browse by default on the right browser pane.

New Table Default Load Type

The default Load Type for new Load tables created using this connection.

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this connection.

SSIS Connection String

Connection string to be used by Microsoft SQL Server Integration Services (SSIS) to connect to the data
source or destination. The SSIS Connection String is a required field for SSIS based loads.
For more details on how to create a SSIS Connection String and load data via an Integration Services
Load package, see section SSIS Loader or Loading Data from Flat Files using SSIS.

Note: A connection string is typically composed of multiple property name/value pairs that are
semi-colon delimited.

SSIS Use Column Names

Determines whether to use column names or column titles for SSIS loads. Terada OLE DB driver by
default returns titles. Leave this option disabled.

139

Data Type Mapping Set

Mapping Set to use when converting from a source database data type to a destination database data
type.

Default Transform Function Set

Function Set that is selected by default in the Transformation dialogs.

When Connection is an OLAP Data Source
This section of fields is only relevant and will only be visible if the Datawarehouse field is enabled.
These fields are required so that the data warehouse can be used as a source for the Analysis Services
cubes.

MSAS Connection String

Connection string to be used by Microsoft Analysis Services (MSAS) to connect to the data warehouse.

Note: A connection string is typically composed of multiple property name/value pairs that are
semi-colon delimited.

Connection Provider/Driver

Name of the Connection Provider/Driver to use to connect to the data warehouse database when it is
used as the data source for OLAP cubes. Set to TDOLEDB.

Data Warehouse Server

Data Warehouse Server Name, which is used when the data warehouse is used as the data source for
OLAP cubes. Set this to the Teradata TDPID.

Data Warehouse Database ID

Data Warehouse Database Identifier (e.g. Oracle SID or TNS Name, Teradata TDPID) or Database Name
(e.g. as in DB2 or SQL Server), which is used when the data warehouse is used as the data source for
OLAP cubes.

Target Table Location [For target enabled licenses]

Add new Target Location

This option allows adding new target database locations for objects in this connection. For this option to
be enabled, the Enable Targets for setting object location field needs to be enabled in Settings -
Repository identification (on page 74).
Click the Add button to add the required target location for this connection.

140

6 Give the new target location a name and then enter the Target Database and/or Temp Database.

7 Default target database location(s) for New Tables can also be set from the Tools/Options menu –
See Settings - Storage - Target Location.

8 For more details on setting specific target database locations on a table by table basis see Storage
(on page 182).

Temp Databases specify the location for temporarily created tables used in Load and Export processes.

 WhereScape RED TIP:

Once the connection has been set up, you can right-click on the connection in the middle pane or
double click on the connection name from the left pane to view or edit the connection's Properties.

141

Database
This section describes connections to another database source inside the same Teradata server, but not
in the WhereScape RED meta repository.

Example

Sample database connection object properties screen:

The connection object properties window has the following fields:

General

Connection Name

Name used to label the connection within WhereScape RED.

Connection Type

Indicates the connection source type or the connection method such as Database, ODBC, Windows,
Unix. Set to Database.

142

Database Type

Type of database such as DB2, Greenplum, Hive, Netezza, Oracle, SQL Server, Teradata. Default is
(local).

ODBC Data Source Name (DSN)

ODBC Data Source Name (DSN) as defined in the Windows 32-bit ODBC Data Source Administrator.

Note: The ODBC Source Name defined in RED must be the same on all machines that use the
corresponding connection.

Data Warehouse Connection Indicator

Set to False.

Source System

Database ID

Database Identifier (Teradata TDPID).

Database Link Name

This field is always blank for Teradata.

Database Credentials

Extract User ID

Database User that has access to SELECT from the source system tables to extract data.

Extract User Password

The password of the data warehouse user.

Administrator User ID

Leave blank.

Administrator User Password

Leave blank.

Teradata Wallet User ID and Teradata Wallet String

Enter the relevant credentials when using the Teradata Wallet log on method instead of Extract User ID
and Password for connecting to another database.

ODBC User Default

Select either Extract User ID or Teradata Wallet from the drop-down menu as the default log on method.

143

Other

Default Schema for Browsing

Optional comma-delimited list of schema(s) for the browser pane filter. Enter the schema(s) you want
the connection to browse by default on the right browser pane.

New Table Default Load Type

The default Load Type for new Load tables created using this connection.

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this connection.

SSIS Connection String

Connection string to be used by Microsoft SQL Server Integration Services (SSIS) to connect to the data
source or destination. The SSIS Connection String is a required field for SSIS based loads.
For more details on how to create a SSIS Connection String and load data via an Integration Services
Load package, see section SSIS Loader.

Note: A connection string is typically composed of multiple property name/value pairs that are
semi-colon delimited.

Data Type Mapping Set

Mapping Set to use when converting from a source database data type to a destination database data
type. Setting this field to (Default) will cause RED to automatically select the relevant mapping set.

Target Table Location [For target enabled licenses]

Add new Target Location

This option allows adding new target database locations for objects in this connection. For this option to
be enabled, the Enable Targets for setting object location field needs to be enabled in Settings -
Repository identification (on page 74).

1 Click the Add button to add the required target location for this connection.

2 Give the new target location a name and then enter the Target Database and/or Temp Database.

3 Default target database location(s) for New Tables can also be set from the Tools/Options menu –
See Settings - Storage - Target Location.

4 For more details on setting specific target database locations on a table by table basis see Storage
(on page 182).

NOTE: The database and schema names for Custom database connections are used as follows:
<database>.<schema>.objectname

Leave database name blank if not required. Leave schema name blank to use the default schema.

144

Once the connection has been set up, you can right-click on the connection in the middle pane or
double click on the connection name from the left pane to view or edit the connection's Properties.

ODBC
This connection is via an ODBC link. All data movement is performed using the ODBC connection.

Native ODBC Load Example

• A User ID and Password must be specified or

• As below a Teradata Wallet User ID and TD Wallet String.

General

Connection Name

Name used to label the connection within WhereScape RED.

Connection Type

Indicates the connection source type or the connection method. Set to ODBC.

145

Database Type

Type of database such as DB2, Greenplum, Hive, Netezza, Oracle, Sql Server, Teradata, etc.

ODBC Data Source Name (DSN)

ODBC Data Source Name (DSN) as defined in the Windows 32-bit ODBC Data Source Administrator.

Note: The ODBC Source Name defined in RED must be the same on all machines that use the
corresponding connection.

Data Warehouse Connection Indicator

Set to False.

ODBC

Work Directory

Windows directory used by WhereScape RED to create temporary files for minimal logged extracts. The
directory must exist and allow write access. There must be a different work directory for each
WhereScape RED Scheduler running on the same machine to avoid file conflicts. Typically C:\Temp or a
sub-directory of C:\Temp is used. See Native ODBC Based Load (on page 205).

Big Data Adapter Settings

JDBC Connection String (JDBC URL)

Connection string used by the WhereScape Big Data Adapter to access this database.

JDBC Driver Class Name

JDBC driver class to be used by the WhereScape Big Data Adapter. This field must be set if the JDBC URL
is set.
Select the appropriate JDBC Driver class name from the drop-down list. If this is left empty this will not
be specified in generated commands.

Omit Sqoop Driver Option

If set, the --driver option to Sqoop will be omitted. This is required for certain connection types such as
Oracle connections.
If you select the Omit Sqoop Driver Option check-box, the driver parameter will not be used in sqoop
command line. This is a requirement for Oracle at the moment, as suggested by Sqoop documentation
for 1.4.5.

Sqoop Connection Manager Class

Custom Sqoop connection manager class. Corresponds to the --connection-manager command line
argument. Leave blank of this is not required.

146

Credentials

Extract User ID

Database User that has access to SELECT from the source system tables to extract data.

Extract Password

Database Password to use with the Extract User ID to login to the source system to extract data.

Administrator User ID

Leave blank.

Administrator Password

Leave blank.

Teradata Wallet User ID and Teradata Wallet String

Enter the relevant Teradata Wallet credentials instead of the Extract user and password for the ODBC
connection.

JDBC User ID

User ID to login as using JDBC via WhereScape Big Data Adapter (optional).

JDBC Password

Password to login with when using JDBC via WhereScape Big Data Adapter (optional).

ODBC User Default

Select either Extract User ID or Teradata Wallet from the drop-down menu as the default log on method.

Other

Default Schema for Browsing

Optional comma-delimited list of schema(s) for the browser pane filter. Enter the schema(s) you want
the connection to browse by default on the right browser pane.

New Table Default Load Type

The default Load Type for new Load tables created using this connection. Set to the desired type of
ODBC load – Native, ODBC, TPT, TPT Script load, Integration Services load or Externally Loaded.

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this connection.

SSIS Connection String

Connection string to be used by Microsoft SQL Server Integration Services (SSIS) to connect to the data
source or destination. The SSIS Connection String is a required field for SSIS based loads.

147

For more details on how to create a SSIS Connection String and load data via an Integration Services
Load package, see section SSIS Loader.

Note: A connection string is typically composed of multiple property name/value pairs that are
semi-colon delimited.

TPT ODBC Data Source Name (DSN)

The Teradata TPT compliant ODBC Data Source Name (DSN) that is to be used in the TPT Read Operator
for TPT ODBC Loads. If not populated, this defaults to the DSN defined above for this Connection.

Data Type Mapping Set

Mapping Set to use when converting from a source database data type to a destination database data
type. Setting this field to (Default) will cause RED to automatically select the relevant mapping set.

Once the connection has been set up, you can right-click on the connection in the middle pane or
double click on the connection name from the left pane to view or edit the connection's Properties.

148

Windows
This connection is back to the PC that you are working on, or to a host Windows PC.

General

Connection Name

Name used to label the connection within WhereScape RED.

Connection Type

Indicates the connection source type or the connection method such as Database, ODBC, Windows,
Unix. Set to Windows.

Windows Host

Windows Host Name

IP address or host name that identifies the Windows machine. Leave blank to connect to the local
machine.

149

Work Directory

Windows directory used by WhereScape RED to create temporary files for minimal logged extracts. The
directory must exist and allow write access. There must be a different work directory for each
WhereScape RED Scheduler running on the same machine to avoid file conflicts. Typically C:\Temp or a
sub-directory of C:\Temp is used.

Database ID

Database Identifier (Teradata TDPID).

Database Server/Home Directory

Optional to specify the Database Home Directory if it is different from the standard home directory.

Credentials

Windows User ID and Password

Leave this blank if you are connecting to your own PC. Enter details if you are connecting remotely to
another Windows system.

Dss User ID and Password/ Teradata Wallet User ID and Teradata Wallet String

Enter the relevant details for connecting to the Data Warehouse. Enter either DSS User ID and
Password or Teradata Wallet credentials depending on the log on method selected.

Other

Default Path for Browsing

Optional default Path for browser pane filter. When a path has been selected in this field, it becomes the
initial point for browsing and it is also expanded on open in the right hand browser pane.

New Table Default Load Type

The default Load tye for new tables created using this connection. Select from the File Load, Script
based load, XML file load, Integration Services load or Externally loaded options.

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this connection.

Data Type Mapping Set

Mapping Set to use when converting from a source database data type to a destination database data
type. Setting this field to (Default) will cause RED to automatically select the relevant mapping set.

150

Once the connection has been set up, you can right-click on the connection in the middle pane and view
the Properties for that connection.

To test the connection
• Select Browse | Source Tables from the menu strip

• In the right pane you should be able to drill down to the area required.

151

UNIX
This section describes the connection properties as they apply to UNIX connections.
From a UNIX connection you can only process flat file loads.

Note: If the UNIX/Linux connection returns a blank screen or an error message in the Results pane
after the connection is browsed, take necessary action through the Server (SSH) tab next to the main
Builder and Scheduler tabs.

. This tab is displayed after browsing the
UNIX connection.

Sample UNIX connection screen:

General

Connection Name

Name used to label the connection within WhereScape RED.

152

Connection Type

Indicates the connection source type or the connection method such as Database, ODBC, Windows,
Unix. Set to UNIX.

UNIX/Linux Host

UNIX/Linux Host Name

IP address or host name that identifies the UNIX machine.

Script Shell

Path to the POSIX-compliant UNIX/Linux shell to use for generated scripts. For UNIX hosts, set to
/bin/ksh. For Linux hosts set to /bin/sh.
If this field is left blank, a default will be chosen based on the name of the connection and the type of
database used for the WhereScape RED metadata repository.

Loader Host Identification

IP Address or host name(s) that identifies the Loader/ Multiple hosts can be entered with using a comma
(,) to delimit.

Work Directory

Windows directory used by WhereScape RED to create temporary files for minimal logged extracts. The
directory must exist and allow write access. There must be a different work directory for each
WhereScape RED Scheduler running on the same machine to avoid file conflicts. Typically C:\Temp or a
sub-directory of C:\Temp is used.

Database ID

Source Database Identifier (Teradata TDPID).

Database Server/Home Directory

Optional to specify the Database Home Directory if it is different from the standard home directory.

Connection Protocol

Telnet or Secure Shell (SSH) protocol to use to connect to the UNIX/Linux machine. For SSH, the 'Secure
Shell (SSH) Command' property is enabled to specify how to connect.

Secure Shell (SSH) Command

Command to execute to connect to a UNIX/Linux machine using the Secure Shell (SSH) protocol such as
C:\Program Files(x86)\PuTTY\plink.exe -ssh $HOST$ -l $USER$ -pw $PASSWORD$

Pre-Login Action, Login Prompt, Password Prompt, Post-Login Action, and Command Prompt.

These fields are only used to create a Telnet connection to the host machine. WhereScape RED uses the
Telnet connection in the drag and drop functionality. It is not used in the actual production running
of the Data Warehouse, and is only necessary if you wish to use the drag and drop functionality.

153

Pre-Login Action

Response or command to send BEFORE logging in to the UNIX/Linux machine. Typically this is NOT
necessary but it can be used to indicate that the UNIX/Linux Login Prompt is preceded by a line-feed
(\n). However it is preferable that the UNIX/Linux login displays the Login Prompt without anything
preceding it. [Optional]

Login Prompt

The UNIX login prompt, or the tail end of the login prompt, e.g, ogin as:

Password Prompt

The UNIX password prompt, or the tail end of the password prompt, e.g, ssword:

Post-Login Action

Not often used but may be necessary to respond to a login question. It is preferable that the UNIX login
goes straight to the command prompt.

Command Prompt

Enter the UNIX/Linux command prompt, or the tail end of that prompt, typically $

Note: In order to ascertain some of the above fields you will have to log in to the UNIX system.

Credentials

UNIX/Linux User ID

User Account to login to the UNIX/Linux Host.

UNIX/Linux User Password

Password to login to the UNIX/Linux Host.

DSS User ID

Database User to connect to the WhereScape RED metadata repository.

DSS User Password

Database Password to connect to the WhereScape RED metadata repository.

Teradata Wallet User ID and Teradata Wallet String

Enter the relevant Teradata Wallet credentials instead of the DSS User and Password for the Unix
connection if using the Teradata log on method.

Other

Default Path for Browsing

Optional default Path for browser pane filter. When a path has been selected in this field, it becomes the
initial point for browsing and it is also expanded on open in the right hand browser pane.

154

New Table Default Load Type

The default Load tye for new tables created using this connection. Select from the File Load, Script
based load or Externally loaded options.

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this connection.

Data Type Mapping Set

XML files have been created to store mappings from one set of data types to another. Setting this field to
(Default) will cause RED to automatically select the relevant mapping set; otherwise you can choose
one of the standard mapping sets from the drop-down list or create a new one.

To validate the fields
• Right-click on the connection name

• Select Telnet window

This will provide a telnet window that can be used to log on to the UNIX server.

To test the drag and drop functionality
• From the menu strip select Browse | Source Tables

• Drill down to the area required

• Drag an item to the middle pane, (having first selected the object in the left pane).

Connection Failures

In the event that a telnet connection cannot be established to the UNIX host the following result box
will normally appear after approximately 30 seconds.

Attempt the connection again, and using the Window menu option select the Telnet window. This will
display the login session, and should provide an insight as to why the connection is not being
completed.

If the situation cannot be resolved a telnet trace can be acquired. Select the menu option Tools/Options
and click on the checkbox Trace all Unix sessions. Then try to do the connection or browse again. A log
file called WslMedTelnet.log will be created in the WhereScape program directory. Edit the log file and
ensure there are no passwords visible and then send to <SUPPORT>.

Closing the Connection

To close the collection, right-click in the browser pane and select Close UNIX/LINUX session:

155

Hadoop
This topic describes in greater detail the Connection Properties as they apply to Hadoop connections.
Hadoop as a source enables RED users to connect to the Hadoop System and process two load types from
a Hadoop source into a Teradata repository. These connections must always be set via a Secure Shell
(SSH) protocol.
Please note that WhereScape RED only fully supports HDFS as the underlying file system.

The two load types that can be processed from RED are:

• Native SSH Load - connections to Hadoop on UNIX/Linux from which users do flat file loads. To
process a Native SSH load, select UNIX/Linux as the connection type set the remaining connection
properties.

• TPT Load - connections to Hadoop from which users can do TPT script-based loads. To process
Hadoop TPT loads, select Hadoop as the connection type and set the remaining connection
properties.

For Hadoop TPT Loads, users will need to have the following system prerequisites before setting up a
connection within RED:

156

• Install Hadoop

• Include Hadoop Client Jar files in Classpath

Example for an Apache Hadoop environment setup
#Hadoop
export PATH=$PATH:/opt/hadoop-2.4.1/bin:/opt/hadoop-2.4.1/sbin

#For Teradata TPT Load (Hadoop)
export CLASSPATH=$(find /opt/hadoop-2.4.1/share/hadoop/hdfs -name *.jar -printf '%p:' | sed 's/:$//')
export CLASSPATH=$CLASSPATH:$(find /opt/hadoop-2.4.1/share/hadoop/common -name *.jar -printf
'%p:' | sed 's/:$//')

 WhereScape RED Tip: When the Big Data Adapter Settings are populated in Hadoop
connections, RED can load data from Hadoop into Hive and/or Datawarehouse tables and also perform
loads from Hadoop directly into the Datawarehouse using Sqoop through WhereScape RED's Big Data
Adapter (BDA).
For more information about these settings, see the Big Data Adapter Settings fields description below
and see also Connection to the Data Warehouse (see "Database - Data Warehouse/Metadata
Repository" on page 135), Configuring your database for use by BDA and Apache Sqoop Load.

Note: If the Hadoop connection returns a blank screen or an error message in the Results pane after
the connection is browsed, take necessary action through the Server (SSH) tab next to the main Builder
and Scheduler tabs.

 This tab is displayed after browsing the UNIX
connection.

157

Sample Hadoop TPT connection screen:

General

Connection Name

Name used to label the connection within WhereScape RED.

Connection Type

Indicates the connection source type or the connection method such as Database, ODBC, Windows,
Unix. Set to UNIX.

Apache Hadoop

UNIX/Linux Host Name

Enter the IP address or host name that identifies the Hadoop server.

158

Script Shell

Path to the POSIX-compliant UNIX/Linux shell to use for generated scripts. For UNIX hosts, set to
/bin/ksh. For Linux hosts set to /bin/sh.
If this field is left blank, a default will be chosen based on the name of the connection and the type of
database used for the WhereScape RED metadata repository.

Work Directory

Windows directory used by WhereScape RED to create temporary files for minimal logged extracts. The
directory must exist and allow write access. There must be a different work directory for each
WhereScape RED Scheduler running on the same machine to avoid file conflicts. Typically C:\Temp or a
sub-directory of C:\Temp is used.

Database ID

Enter the Source Database Identifier (Teradata TDPID).

Database Server/Home Directory

Optional to specify the Database Home Directory if it is different from the standard home directory.

Connection Protocol

Telnet or Secure Shell (SSH) protocol to use to connect to the UNIX/Linux machine. For SSH, the 'Secure
Shell (SSH) Command' property is enabled to specify how to connect.

Secure Shell (SSH) Command

Command to execute to connect to a UNIX/Linux machine using the Secure Shell (SSH) protocol such as
C:\Program Files\PuTTY\plink.exe -ssh $HOST$ -l $USER$ -pw $PASSWORD$.
In-built variables $HOST$, $USER$ and $PASSWORD$ can be used here for the required host, user
and password fields.

Pre-Login Action, Login Prompt, Password Prompt, Post-Login Action, and Command Prompt.

These fields are only used to create a Telnet connection to the host machine. WhereScape RED uses the
Telnet connection in the drag and drop functionality. It is not used in the actual production running
of the Data Warehouse, and is only necessary if you wish to use the drag and drop functionality.

Pre-Login Action

Response or command to send BEFORE logging in to the UNIX/Linux machine. Typically this is NOT
necessary but it can be used to indicate that the UNIX/Linux Login Prompt is preceded by a line-feed
(\n). However it is preferable that the UNIX/Linux login displays the Login Prompt without anything
preceding it. [Optional]

Login Prompt

The UNIX login prompt, or the tail end of the login prompt, e.g, ogin as:

Password Prompt

The UNIX password prompt, or the tail end of the password prompt, e.g, ssword:

159

Post-Login Action

Not often used but may be necessary to respond to a login question. It is preferable that the UNIX login
goes straight to the command prompt.

Command Prompt

Enter the UNIX/Linux command prompt, or the tail end of that prompt, typically >

Note: In order to ascertain some of the above fields you will have to log in to the UNIX/Linux system.

TPT HadoopHost

IP address or host name (and optional port number) that identifies the Hadoop Host to a TPT load
routine, in order to connect to the Hadoop file system from the machine you run TPT. e.g,
HadoopHost:9000 or 127.0.0.1:9000.
If this is not specified, then the UNIX/Linux Host Name will be used as the Hadoop Host to the TPT load
routine.

Big Data Adapter Settings
Set the two fields below to enable RED to communicate with BDA and enable loading data from Hadoop
into Hive and/or into Datawarehouse tables using Sqoop.
For further information about setting these fields, see Connection to the Data Warehouse (see
"Database - Data Warehouse/Metadata Repository" on page 135) and Configuring the BDA
Server/Configuring your database for use by BDA.

Big Data Adapter Host

Host machine on which the Big Data Adapter is running its web-server.

Big Data Adapter Port

Port that Tomcat is running. Default is 8080.

Credentials

UNIX/Linux User ID

User Account to login to the UNIX/Linux Host.

UNIX/Linux User Password

Password to login to the UNIX/Linux Host.

DSS User ID

Database User to connect to the WhereScape RED metadata repository.

160

DSS User Password

Database Password to connect to the WhereScape RED metadata repository.

Teradata Wallet User ID and Teradata Wallet String

Enter the relevant Teradata Wallet credentials instead of the DSS User and Password for the Unix
connection if using the Teradata log on method.

Other

Default Path for Browsing

Optional default Path for browser pane filter. When a path has been selected in this field, it becomes the
initial point for browsing and it is also expanded on open in the right hand browser pane.

New Table Default Load Type

The default Load tye for new tables created using this connection. Select from the File Load, Native
SSH or Externally loaded options.

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this connection.

Data Type Mapping Set

XML files have been created to store mappings from one set of data types to another. Setting this field to
(Default) will cause RED to automatically select the relevant mapping set; otherwise you can choose
one of the standard mapping sets from the drop-down list or create a new one.

To test the drag and drop functionality
• From the menu strip select Browse | Source Tables

• Drill down to the area required

• Drag an item to the middle pane, (having first selected the object in the left pane).

Closing the Connection
To close the collection, right-click in the browser pane and select Close UNIX/LINUX session:

161

Microsoft Analysis Server 2005+
A Connection to an Analysis Services Server provides the location for cubes defined in the metadata
repository.
This connection is used in the creation and processing of cubes. An example screen shot follows:

162

Connection Name

Enter a name to identify the connection to the Analysis Services server.

Connection Type

The connection type is chosen from the drop-down list. Select "Microsoft Analysis Server 2005”.

Analysis Server

Enter the name of the Analysis Services server you wish to connect to. This must be a valid server name.
Contact your system administrator if you do not have a valid server name.

User ID and Password

Not used, leave blank.

Microsoft Analysis Server 2005+ - OLAP Cubes
A Connection to an Analysis Services server provides the location for cubes defined in the metadata
repository. This connection is used in the creation and processing of cubes.

A sample screen shot follows:

163

General

Connection Name

Enter a name to identify the connection to the Analysis Services server

Connection Type

Indicates the connection source type or method. Select Microsoft Analysis Server 2005+.

Server Mode

The operational mode that Microsoft Analysis Services will use. Select Multidimensional from the
drop-down list.

SSAS Client Version

Microsoft Analysis Services Client version available for connecting to the SSAS database. It is
recommended that the client version matches your database version.

164

If a 'Fail - missing AMO data provider' message is displayed in the Results pane when attempting to
execute the OLAP action, check that the correct SSAS client version is specified and that the respective
version of the data provider is installed on the client workstation.

Note: If you have SSAS client version 2008 installed on your computer, WhereScape recommends
selecting 2012 for the SSAS client version.

If the required SQL Server Analysis Management Objects (AMO) are missing, see the following article for
more information: https://msdn.microsoft.com/en-us/library/dn141152.aspx.

Online Analytical Processing (OLAP)

Analysis Services Server Name

Enter the name of the Analysis Services server you wish to connect to.

Credentials

Analysis Services (SSAS) User ID and Password

User Name used to connect to Analysis Services when using SQL Server Authentication. Can be left
blank for a trusted connection using Windows Authentication.

Analysis Services (SSAS) User ID and Password

Password used to connect to Analysis Services when using SQL Server Authentication. Can be left blank
for a trusted connection using Windows Authentication.

165

Microsoft Analysis Server 2005+ - Tabular Mode
A Connection to an Analysis Services server in Tabular Mode provides the location for Tabular cubes
defined in the metadata repository. This connection is used in the creation and processing of Tabular
cubes.

NOTE: Relationships must be created manually for tables stored on a Tabular target, for more
information see Relationship Maintenance (on page 1012).

A sample screen shot follows:

General

Connection Name

Enter a name to identify the connection to the Analysis Services server

Connection Type

Indicates the connection source type or method. Select Microsoft Analysis Server 2005+.

166

Server Mode

The operational mode that Microsoft Analysis Services will use. Select Tabular from the drop-down list.

SSAS Client Version

Microsoft Analysis Services Client version available for connecting to the SSAS database. It is
recommended that the client version matches your database version. If the required SQL Server Analysis
Management Objects (AMO) are missing, see the following article for more information:
https://msdn.microsoft.com/en-us/library/dn141152.aspx.

Online Analytical Processing (OLAP)

Analysis Services Server Name

Enter the name of the Analysis Services server you wish to connect to. You may need to specify the port
number of the Analysis Services instance. To find your port number, follow the procedure documented
in this Microsoft article: https://support.microsoft.com/en-us/kb/2466860.

An example of your Analysis Server (SSAS) Server Name using the port number in RED would be:
VH1D-REDSQL:49449\TABULAR

Credentials

Analysis Services (SSAS) User ID and Password

User Name to connect to Analysis Services with when using SQL Server Authentication. Can be left
blank for a trusted connection using Windows Authentication.

Analysis Services (SSAS) User ID and Password

Password to connect to Analysis Services with when using SQL Server Authentication. Can be left blank
for a trusted connection using Windows Authentication.

Target Table Location

Add new Target Location

Click the Add new Target Location button to specify the name of the database associated with the
targets to be used with this connection. To use the Tabular Mode functionality, it is required to create
targets in the Tabular connection.

167

• The Target Name will be the relevant Tabular Database's name displayed in RED.

• The Target Database will be the relevant Tabular Database's name displayed in Analysis Services.

Browsing a Connection
The tables or files associated with a connection can be displayed in the Browser Pane by:

1 selecting the Browse/Data Warehouse menu option to browse for the data warehouse connection.

2 selecting the Browse/Source Tables menu option to browse a source system connection.

3 right-clicking on a Connection in the Object Pane and selecting Browse Connection, or

4 clicking on one of the two browser buttons on the toolbar:

The orange button is used to browse the data warehouse connection and the blue button is used to
browse a source system connection.

Each button remembers the last connection it browsed, so in this way one button can be used for the
Data Warehouse and one for a source system.

168

Clicking on one of the buttons will display the source tables without first displaying the source browser
dialog box. To change the connection, click the small black down arrow next to one of the browser
buttons on the toolbar and select Change Connection.

The current connection being browsed is shown in the status bar at the bottom right of the screen.

169

Browser Icons

When browsing a connection the following legend applies for the source tables and objects.

This legend is displayed via the Help/Source Legend menu.

170

Connection Browse Properties

TIP: When browsing to a connection leave the schema field blank in order to see all schemas.
To have RED browsing a specific schema or schemas by default, go to a Connection's Properties screen
and enter the schema(s) to browse on the Default Schema for Browsing field.

To change the properties of the connection in the Browser Pane:

• Right-click on a connection in the Object Pane and select Browse Connection, or

• Click the small black down arrow next to one of the Browser buttons on the toolbar and select

Change Connection.

171

The List Source Tables Connection is displayed:

The dialog allows you to change the properties of the connection you are browsing.

The User ID and Password fields can be changed in order to browse the connection as a different user.
A TDWallet string can be supplied as the password by using the Password is TDWallet string
check-box.

Selecting the Include Rowcount check-box displays a row count in brackets next to each source table in
the Browser Pane. This is only available for databases which update table statistics.

A filter can also be applied when browsing a connection. Filters can be applied to any combination of:

172

• One or more Schema names (separated by commas),

• a standard SQL table name,

• specific Object Types (Tables, Views or System Objects),

• a Group, or

• a Project

The Data Type Mapping Set drop-down can be used to change the data type conversion used during
drag and drop operations. If set to (Default) the Data Type Mapping to use for each drag and drop
operation is set based on the source and the Target Location selected, but can be changed in the Add
New Metadata Object dialog if needed.

Changing a Connection's Properties
Whenever a connection's properties are changed, the impact on the objects that use that connection
must be considered. Load tables have information from the connection stored within their properties.
This information is stored in the load objects to minimize the complexity of the scheduled tasks. The
database link and database name are stored locally in each load table.
When either the database link or database name are changed on a connection, WhereScape RED displays
the Update Associated Load Tables dialog box.
Click Yes to automatically update the database link and/or database name on all associated load tables.

This can also be done manually:

1 Double-click on the Load Tables object group in the left pane. This will display all load tables in
the middle pane.

2 Select those load tables that use the connection that has changed. Use standard Windows selection.

3 Right-click to bring up a menu and select Change Connect/Schema.

4 Select a different connection (e.g. Data warehouse) to change all the selected load tables.

5 Repeat step (3) and now change the tables back to the altered connection. This will update all the
load tables with the new connection information.

Note: Whenever a load connections properties are changed. All load tables that use the connection
must be changed. See above. You will be asked if you wish to perform this action when changing the
connection.

Reset Meta Database Connections
From the Help menu, on RED's main top bar, users can select the the Reset Meta Database
Connections option.

173

This option disconnects and frees most connections that RED has to any existing ODBC connections.
This option can be useful for users that are already connected to existing ODBC sources but want to alter
the credentials used.
When this option is used, RED attempts to release most existing ODBC connections so the next time an
ODBC Connection is used, RED will attempt to reestablish a link.

NOTE: At this stage, not all RED connections are handled via this mechanism and therefore not all
connections will be reset when this option is used.

1 To reset meta database connections, click the Help menu in the main top bar and then click Reset
Meta Database Connections.

2 Click OK on the following reset connection dialogs.

Configuration Settings for BDA
This topic describes the required settings for connections using the WhereScape Big Data Adpater
(BDA).

The WhereScape Big Data Adpater (BDA) is designed as an adapter to RED, focused on executing ELT
related processing within the Hadoop/Hive eco-system.
For more information about the initial BDA setup, overview of BDA, the prerequisites and step-by-step
instructions to set up BDA, please refer to section 18. BDA of the RED Setup Administrator Guide.

174

The BDA connection settings are always visible on both Hive and Hadoop connection types, which
include the BDA server settings.

BDA settings are also displayed for any other database connection types if there is a Hive or Hadoop
connection in the Datawarehouse, but these will only have the JDBC settings displayed.

Important: A Hive connection must exist before BDA settings (Connection>Properties>Big Data
Adapter Settings) appear in other database connections.

BDA enables RED to use Sqoop as a load method to load data from Hive and HDFS into the
Datawarehouse and also to load data into Hive as a target.

Only one BDA server connection is supported per Metadata repository.

Configuring the BDA Server
This topic explores the configuration of the BDA server in Hadoop connections to enable loading data
from Hadoop into Hive and/or Datawarehouse tables as a source database into RED Datawarehouse
tables using Sqoop.

For RED to be able to load data from Hadoop into Hive and/or Datawarehouse tables and also perform
loads from Hadoop directly into the Datawarehouse using Sqoop, the Big Data Adapter settings need to
be populated in Hadoop and Hive connections.

For more information about what is required for loading data into RED using Sqoop, see the Big Data
Adapter Settings fields description below and see also Connection to the Data Warehouse (see
"Database - Data Warehouse/Metadata Repository" on page 135), Connections to Hadoop and Apache
Sqoop Load.

175

Hadoop connection example

Big Data Adapter Settings

Big Data Adapter Host

Host machine on which the Big Data Adapter is running its web-server.

Big Data Adapter Port

Port that Tomcat is running. Default is 8080.

Configuring your database for use by BDA
Connections using BDA enable loading data into Hive as a target database and they also enable loading
data from Hive into Datawarehouse tables as a source, using the Apache Sqoop load method.

This connection type needs to include the JDBC connection string (JDBC URL) and related attributes
(username, password) for the Hive database. The JDBC User and Password is usually the same as the
Extract User ID but users can specify different credentials if necessary.

176

The Big Data Adapter settings will also need to be populated in the Datawarehouse connection. For
more details, see Connection to the Data Warehouse (see "Database - Data Warehouse/Metadata
Repository" on page 135).

RED can also load data directly into Hive from any database source. This load can also be processed via
an Apache Sqoop load and the JDBC settings on the Hive connection will need to be populated. Please
see the connection example and field description below for more details about this.
When loading data into Hive as a target, users can also add specific target locations in their Hive ODBC
connections, if they have a Hive target license enabled.

Hive connection properties will be the same for any database sources.

Note: When creating objects in a Hive target database from a Teradata repository, artificial keys must
be of type ‘int’, not ‘integer’. To correct this, go to Tools -> Options -> Global Naming Conventions
-> Global Naming of Key Columns and change the relevant Data Types to ‘int’.

Example of a Hive ODBC connection

177

Big Data Adapter Settings

Big Data Adapter Host

Host machine on which the Big Data Adapter is running its web-server.

Big Data Adapter Port

Port that Tomcat is running. Default is 8080.

Base Target Directory for Sqoop Loads

HDFS directory in which to create target directories for Sqoop loads using the Big Data Adapter.

JDBC Connection String (JDBC URL)

Connection string used by the WhereScape Big Data Adapter to access this database.

JDBC Driver Class Name

JDBC driver class to be used by the WhereScape Big Data Adapter. This field must be set if the JDBC URL
is set.
Select the appropriate JDBC Driver class name from the drop-down list. If this is left empty this will not
be specified in generated commands.

Omit Sqoop Driver Option

If set, the --driver option to Sqoop will be omitted. This is required for certain connection types such as
Oracle connections.
If you select the Omit Sqoop Driver Option check-box, the driver parameter will not be used in sqoop
command line. This is a requirement for Oracle at the moment, as suggested by Sqoop documentation
for 1.4.5.

Sqoop Connection Manager Class

Custom Sqoop connection manager class. Corresponds to the --connection-manager command line
argument. Leave blank of this is not required.

178

Example connection from a source database to Hive

The full JDBC connection string is:
jdbc:sqlserver://192.168.60.100/DATABASE=SQL_Hive,DBS_PORT=1025

179

Various properties can be set on all table objects in WhereScape RED. The screens available in the Table
Properties Dialog depend on the object type selected and can be a subset of:

• Properties (on page 179)

• Storage (on page 182)

• Override Create DDL (on page 189)

• Source (on page 190)

• Documentation Fields (on page 191)

• Notes (on page 192)

In This Chapter

Properties.. 179
Storage .. 182
Override Create DDL ... 189
Source ... 190
Documentation Fields... 191
Notes ... 192

C h a p t e r 8

Table Properties

180

Properties
The fields available on the Properties screen depend on the Object Type selected. More specific
information is available in the respective chapters describing each Object Type. Rebuilding Tables using
Update Procedures and templates is applicable to the objects listed and described in the table below.

Fields Description

Table Name The user-name of the selected table.

Unique Short Name The short name is derived from the Table Name and is used internally by RED.

Table Type The drop down list provides a list of the available sub types for the selected
table type.

Description Optional, free text.

Update Procedure The name of the procedure which will be used when updating the table.

Custom Procedure The name of the procedure which will be used for custom updates of the
table.

Edit Edit the content of the displayed update procedure.

181

Rebuild Rebuild the Update Procedure. See Rebuilding Update Procedures (on page
181) for more details.

Regenerate Regenerate the selected Update Procedure using the responses to previously
provided information.

Rebuilding Update Procedures
The update procedure for a data warehouse object can be generated by RED using parameters provided
by the user, or it can be generated using a prepared template. Templates appropriate to the table type
must first be created before they can be selected and used to generate update procedures. The option to
select a template is only available if RED detects the presence of an appropriate template.

Note: Update procedures for Data Vault objects can only be generated using a template.

Generating an Update Procedure without a template

If RED does not detect a template, the drop-down option is not be displayed. RED manually regenerates
the update procedure when Rebuild is clicked, by prompting the user to respond to a series of input
requests. Refer to the Generating Update Procedure topic in the each of the data warehouse object
chapters for further information and the steps to manually generate update procedures.

Generating an Update Procedure Using a Template

If RED detects the presence of a template, the Rebuild button provides additional options, in a drop
down list, for rebuilding the selected update procedure. Two possible rebuild options are provided:

• Rebuild - RED rebuilds the procedure using the last selected option as a default when the Rebuild
button is clicked. If a template has not been previously used then RED prompts you for inputs as
required for the rebuild.

• Rebuild without template - RED rebuilds the update procedure, but ignores any previously used
template. RED prompts you for inputs as required for the rebuild.

• Rebuild with template - Prompts you to select from a list, a template that is appropriate to the
current object type. Depending on the selected template, the user is prompted to provide responses
that will be used by the parameters within the template.

Note: If a template has been previously used, RED uses this template by default when Rebuild is
clicked. The name of this template is displayed below the Update Procedure field.

The following table summarizes the conditions that will display the drop-down options in the Rebuild
button or that require a template. All other conditions will require a manual rebuild.

Table
Object

SQL
Server

Oracle Teradata DB2 Greenplum Netezza Hive/PDW/
Custom

Stage Both Both Both Both Both Both Template
Only

Data Vault Template Template Template Template Template Template Template

182

Table
Object

SQL
Server

Oracle Teradata DB2 Greenplum Netezza Hive/PDW/
Custom

Stage Only Only Only Only Only Only Only

Fact Both Both Both Both Both Both Template
Only

Fact Rollup Both Both Red
Automatio
n Only

Both Red
Automation
Only

Red
Automatio
n Only

Template
Only

Fact Kp1 Both Both Red
Automatio
n Only

Both Red
Automation
Only

Red
Automatio
n Only

Template
Only

Aggregate Both Both Both Both Red
Automation
Only

Red
Automatio
n Only

Template
Only

Dimension Both Both Both Both Both Both Template
Only

Data Store Both Both Both Both Both Both Template
Only

Normal,
Hub, Link,
Satellite,
Custom1 or
2

Both Both Both Both Both Both Template
Only

Both This object type / database combination supports both RED automation for
code generation and template based code generation.

RED Automation only This object type / database combination uses RED automation for code
generation and template based code generation is not currently available.

Template only This object type / database combination only supports template based code
generation.

183

Storage
The Storage screen of the Table Properties Dialog displays the options applicable for storing data in the
associated RDBMS.

The fields available on the Storage screen depend on the RDBMS on which you are storing the data:

For a Teradata example, see Table Storage Screen - Teradata.

For a Tabular example see, Table Storage Screen - Tabular (on page 186).

For information on changing storage locations for multiple tables at once see, Bulk Table Storage
Change (on page 187).

184

Table Storage Screen - Teradata
Typical Storage screen for a Teradata Table:

Location
Target Location

The target location that defines the path to the location for the table. Select (local) for a local table or
select the target schema if you are locating tables in different schemas.

To add another database/schema to the list see more details on Connections to the Data
Warehouse/Metadata Repository (see "Database - Data Warehouse/Metadata Repository" on page
135). To set default target locations for tables see Settings - Storage: Target Location (see "Target
Location" on page 104).

Database Type

The database type for a connection that is used for target Data Warehouse tables.

185

Database

The database where the table is located. Leave blank to use the default for the connection or local
environment.

Temp Database

The database where temporarily created tables are located. Leave blank to use the default for the
connection or local environment. This field is only used in Load and Export processes.

Create DDL Template

Optional. Specify the template to use when creating a new DDL procedure script. This option is only
visible if a DDL template is available for this database type. Default value is None.

NOTE: Since Teradata does not support the moving of tables, all affected tables will also need to be
manually recreated after any storage changes.

WARNING: Please note that changing the Storage for Dimension and Fact tables will need to be
handled very carefully as artificial key relationships between Dimension and Fact could become out of
sync.
Recreating Fact Tables and large Dimension tables might take a considerable amount of time.

Primary Index

Select the Primary Index Type.

Primary Index Name

Name of the Primary Index.

Primary Index Columns

Columns of the Primary Index.

MultiSet

This options makes this table multiset. A Multi Set table allows for duplicate rows.

Fallback

This option enables Fallback. A fallback table is a duplicate copy of a primary table. Each fallback row in
a fallback table is stored on a different AMP to the one used for the corresponding row in the primary
table. The default is no fallback.

Data Block Size

The block seize for the table. Default is blank.

Enable Free Space

Use Database default Free Space setting. Disabling this will enable setting of the Free Space. Default is
blank.

186

Free Space

The amount of free space to leave in the table for future update. Enter a value between 0 and 75 for a
percentage or to use the Database default set the above option.

Optional CREATE Clause

Database-specific-and-compliant DDL to append to the generated CREATE TABLE statement.

Table Storage Screen - Tabular
Typical Storage screen for a Tabular Table:

Location

Target Location

The path for the MSAS target. To add another MSAS target see Microsoft Analysis Server 2005+ -
Tabular Mode (see "Microsoft Analysis Server 2005+ - OLAP Cubes" on page 162) . To set default target
locations for tables see Settings - Storage: Target Location.

187

Database Type

For information purposes only, this displays Tabular, for MSAS Tabular targets.

Database

For information purposes only, this displays the database name.

Other

Hidden

Specifies whether the table is hidden from reporting client field lists.

Processing

Processing Type

Set the database reporting tools processing to Regular or LazyAggregations in the target Analysis
Services database.

Bulk Table Storage Change
Table Storage locations can be changed through the Storage tab on a table's Properties dialog but they
can also be changed in bulk by using the following process:

1 Double-click on the desired object group in the left pane. This will display all the tables in that
group in the middle pane.

2 Select the tables that you wish to change the storage for using standard Windows selection.

3 Right-click to bring up a menu and select Storage.

188

4 On the Target Location Selection dialog, select the new Target location to change all the selected
tables in bulk on the Target Location drop-down list.

5 Follow the next dialogs to complete the bulk storage change.
Please note that all procedures from the affected tables will need to be manually changed or
regenerated after a bulk storage change.

6 Since Teradata does not support the moving of tables, all affected tables will also need to be
manually recreated after any storage changes.

WARNING: Please note that changing the Storage for Dimension and Fact tables will need to be
handled very carefully as artificial key relationships between Dimension and Fact could become out
of sync.
Recreating Fact Tables and large Dimension tables might take a considerable amount of time.

189

Override Create DDL
WhereScape RED allows to create tables using a specific DDL statement instead of the RED generated
DDL.
You can override and edit the created DDL on load, stage, data store, EDW 3NF, dimension, fact,
aggregate, user defined view and retro table's Override Create DDL tab.

Creating a table using a specific DDL statement:
1 If you are creating a new table, drag and drop the table from the right pane to the middle pane.

• On the Properties dialog, click on the Override Create DDL tab.

• Click on the Derive DDL button at the bottom of the dialog to get the generated DDL as your
starting point.

• Edit or clear the generated DDL and enter the desired DDL..

2 If you are editing an existing table, double click on the table object on the left pane to open the
Properties dialog.

• Click on the Override Create DDL tab.

• Click on the Derive DDL button at the bottom of the dialog to get the generated DDL as your
starting point.

• Edit or clear the generated DDL and enter the desired DDL.

190

3 The "end of statement" indicator is <EOS> by default but can be configured in Tools/Options/Code
Generation/General.

TIP: To revert to RED deriving the original generated DDL at runtime, leave the Override DDL box
blank or clear out the contents.

Clicking the Derive DDL button at the bottom of the screen pops-up a warning message asking if you
want to replace the current DDL definition with new DDL.

Source
The Source tab is only available for Load Tables. More information is available in the Loading Data (on
page 194) chapter, or more specifically:

191

• Database Link Load - Source Screen (on page 202)

• Native ODBC Based Load - Source Screen (on page 205)

• TPT Load - Source Screen (on page 215)

• Loading Data into RED Load Tables using SSIS (on page 225)

• Flat File Load - Source Screen

Documentation Fields
Each table has a set of associated documentation fields. These are used to store descriptive metadata
about the tables and how they are used.
The contents of each field appears in the generated documentation. Their order and placement can be
customized in the generated documentation using the Tools/Options menu.

The following fields are available to store additional informational metadata that will appear in the
generated WhereScape RED documentation:

• Purpose

• Concept

• Grain

• Examples

• Usage

NOTE: The names of these fields are completely arbitrary and can be changed in the generated
documentation in the Tools/Options/Documentation menu.
By default, these fields are not enabled for load and stage tables, but can be enabled using the
Tools/Options/Documentation menu.

Up to 4000 characters of information can be stored in each field.
Some or all of these fields can be removed from the documentation via the
Tools/Options/Documentation menu.

192

Documentation Fields Screen

193

Notes
The Notes screen is used to enter notes against WhereScape RED objects.
The notes on an object are included in the generated documentation. Up to 4000 characters of
information can be stored in the Notes field.
By default, the Notes field is enabled for all object types.
The Notes field can be removed from the documentation via the Tools/Options/Documentation menu.

194

Load tables are the first entry point for all information coming into the data warehouse. There are
multiple ways of getting data into load tables.

• Database link load - loaded from another database.

• Externally loaded - the load table is populated by some external process, e.g. an ETL (Extract,
Transform and Load) tool or EAI (Enterprise Application Integration) tool, putting the data directly
into the load tables.

• ODBC based load - the data is loaded via an ODBC connection, either directly by reading and
inserting each row (a Load Type of ODBC load), or via a file by reading from the source system using
ODBC and writing to a file and then loading the file (a Load Type of Native ODBC). ODBC
connections require a Windows scheduler.

• File load - a flat file load where most of the processing is managed and controlled by the scheduler.

• Script-based load - a flat file load where a host system, i.e. UNIX or Windows script file is executed
to perform the load. Script-based loads on Windows supports both DOS Batch and PowerShell
scripts (see "24.11.1.1 Windows PowerShell Scripts" on page 657).

• XML file load - loading an XML file from a Windows directory.

In This Chapter

Choosing the Best Load Method ... 196
Load Drag and Drop .. 197
Database Link Load .. 200
ODBC Based Load ... 204
Native ODBC Based Load.. 205
TPT Load .. 213
TPT UNIX/Linux Script Load .. 220
SSIS Loader ... 223
Flat File Loads .. 235
XML File Load ... 260
External Load ... 265
Apache Sqoop Load .. 265
Handling Missing Source Columns .. 272
Load Table Transformations .. 275
Changing Load Connection and Schema .. 275

C h a p t e r 9

Loading Data

196

Choosing the Best Load Method
Several different factors need to be considered when choosing the best type of load table to use:

• Source and target database types

• Locations of source and target databases

• Available connectivity options and performance

• Amount of data being loaded

• Is the data delivered or fetched?

• For delivered data, what format is it in and does it require processing to make it loadable?

Load Table Decision Tree

The following decision tree can be used when selecting the best type of load table:

197

Load Drag and Drop
The simplest way to create a load table is to use the drag and drop functionality of WhereScape RED.

Drag and drop can be used for all connection types and the process is the same in all cases.

1 Browse to the source system connection (Browse/Source Tables).

2 Create a drop target by double-clicking on the Load Table object group in the left pane. The middle
pane should have a column heading of Load Table Name for the leftmost column.

3 Select a table or file in the right pane and drag it into the middle pane. Drop the table or file
anywhere in the middle pane.

4 Answer the resulting prompts to create the load table. See the tutorials for examples on how to
create load tables using drag and drop.

5 When using targets, you can also change the predefined Target Location settings in
Tools->Options. At the time of the table's drag and drop, the Add a New Metadata Object dialog
enables editing the Target Location and Data Type Mapping, so the table's location can be
changed on a table by table basis.
The Data Type Mapping field is automatically set based on the source and the Target Location
selected, but can be changed if needed.

NOTE: The option Add meta data columns to table is used for creating load tables that are used in
creating Data Vault objects. If this option is selected, two DSS columns (dss_record_source and
dss_load_date) are included in the meta data for the table and are populated by transformations.
These two DSS columns could equally be applied to other load tables not used in a Data Vault system
but are particularly important to comply with the Data Vault standards. Please refer to the Data
Vaults chapter (see "Data Vaults" on page 402) for more details.

WhereScape RED supports loading tables of up to 2048 columns, however this maximum number of
column loading restriction can in fact be lower than the target database or tools permit.
The target database will provide users the appropriate warning if the maximum number of columns

198

loaded is breached at runtime.

Note: When creating a load table in WhereScape RED by dragging over a source table, RED will read the
structure of the table on the source system and attempt to construct an equivalent load table in the data
warehouse. There are occasions when the load table creation will fail due to incompatible data types in
the target data warehouse. The remedy is to change the data types of the particular attributes which are
causing the load failure. Once corrected the load table should create. It is important that the table load
is tested to ensure that data can be INSERTED into the load table from the source table. If the load fails
then the data may need to be explicitly converted to the destination data type using a column
transformation that is executed during the load (see Load Table Column Transformations (on page 598)
). Incompatible data types that cause load table creation errors are typically caused by:

1. User defined data types in the source database.

2. Incorrect data type mapping during load table definition in WhereScape RED.

3. Data types that cannot be inserted into (e.g. identity columns on SQL Server)

199

Data Type Mappings
In Tools/Data Type Mappings, the first menu option will allow you to maintain the data type
mappings.

The user interface for maintaining data type mappings is as follows:

See Data Type Mappings (on page 1021) for a detailed explanation of Data Type Mappings.

200

Database Link Load
Database Link Load would have the data loaded from another database located on the same Teradata
server into the data warehouse. This load type is used infrequently on Teradata.

Database Link Load - Properties
The fields of the Load Table Properties screen for database link loads are described below:

Load Table Name

The table name is limited by Teradata to a maximum of 30 characters and must be unique. Table name
defaults can be set up (Tools | Options then Naming local or global) to define a prefix or a post fix that
can be added in order to identify clearly that this is a load table. Example: load_customer. By default
RED uses the prefix load_ for load tables.

201

Unique Short Name

The table short name is limited in size to 22 characters and must be unique. The short name is used in
the naming of indexes, keys and procedures.

Description

Enter here a description of the table. This description appears in the documentation that can be
generated once the data warehouse is built.

Connection

Enter the connection being used to get the data. The connections for load tables can be changed on bulk
see Changing load Connection and Schema (on page 275).

Load Type

The load type is typically defined by the connection, and should not normally be changed. This
drop-down shows all valid load types for the connection.

Database Link

This field is not active in WhereScape RED for Teradata.

Script Template

The script template used for a script based load.

Script Name

This field is only active for script based loads.

Pre-load Action

Select an action to be performed on the table before the load occurs. Options are:

• Truncate

• Execute pre-load Sql

• Both Truncate and Execute pre-load Sql

• No action

Pre-load Sql

If a Pre-load Action of Execute pre-load Sql was selected, then the Sql statement to execute before the
load takes place should be entered in this box.

The contents of pre-load sql can be a sql statement or a procedural block. If using a procedural block,
then the final semi-colon is required. The following examples illustrate the possible values in this field.
Note the trailing semi-colon on the procedural block example.

Example of pre-load statements:

delete from load_customer where code < 23

202

delete table load_customer all

Table Properties clauses (e.g. Partition)

These are clauses that are added to the end of the table create statement. Typically used for putting
partition information on the table in Teradata.

Post Load Procedure

A procedure that is executed immediately following the load. If you execute an externally loaded table,
no load occurs, but a post load procedure can still be executed.

Note: At the bottom of the Load Table Properties screen are three fields that display information on
that load table:
1. Date table structure last updated
2. Date created in database
3. Date last updated in database

Database Link Load - Source Screen
The fields on the Load Table Source screen for database link loads are described below:

203

Load Type

Method of loading data into the table. The available options are dependent on the Source Connection.
Defaults to the 'Default Load Type' of the Source Connection. Can be specified via the Properties
screen.

Source Connection

The connection that identifies the source database. Can be specified via the Properties page.

Select Distinct Values

Include the DISTINCT keyword in the SQL SELECT statement.

Source Schema

Schema within the source database where the source table resides.

Derive Source Tables(s) and Source Columns

Derive the Source Table(s) and Source Column(s) properties (of this dialog) from the source details of
this table's columns.

204

Note: The existing property values will be overwritten.

Source Table(s)

Name of the table or tables that the data is sourced from.

Override Source Column/Transformations

Ignore the source and transformation details of this table's columns and instead use the override details
specified below. See the section on Load Table Transformations (on page 275) below for a fuller
explanation.

Where and Group By Clauses

Optional SQL SELECT WHERE-clause and/or GROUP BY-clause. Parameter names can be specified using
$Pparameter_name$ (with leading $P and trailing $), which are replaced at run-time by the parameter's
value.

TIP: This is where you can build a statement to handle change data.

Parameter values can be in-line replaced and included in the 'Where' clause. Prefix the parameter name
with a '$P' and add a trailing '$'. For example, if we have a parameter called SALES_LOCATION_CODE
we could construct a statement such as WHERE location_code = '$PSALES_LOCATION_CODE$' AND
region_code = 'NY'. When this statement is executed, the value of the parameter will replace the
parameter name. For example if the parameter was set to 'New York' then the statement would execute
as: WHERE location_code = 'New York' AND region_code = 'NY'.

Override Load SQL

Optional SQL statement to load data into the table, which overrides all other properties. The specified
SQL will be executed instead of generated SQL. For a linked database specify a complete INSERT
statement. For an ODBC source specify only the SELECT statement.

ODBC Based Load
An ODBC based load provides an extensive option for acquiring data from many sources. It is slower
than most other forms of load, but may still be a viable option, depending on the volume of data being
loaded.

An ODBC based 'interactive load' when using the WhereScape RED tool will use the established ODBC
connection to pull the data back to the local PC, and then push the data to the data warehouse database
via a sql ODBC statement.

A scheduler load will perform in the same way, however the data is loaded into the server that is running
the scheduler and then pushed to the data warehouse database.

205

The obvious disadvantage in an ODBC based load is the two network transactions required, and the
overhead placed on the Scheduler Server.

The properties screens for an ODBC based load are the same as those of a database link load. Refer to
Database Link Load - Properties and Database Link Load - Source Screen (on page 202) for more
details.

Native ODBC Based Load
A Native ODBC based load is similar to an ODBC load, except it provides a faster method to move data
from another database into Teradata.

A Native ODBC based 'interactive load' when using the WhereScape RED tool will use the established
ODBC connection to pull the data back to a delimited file on the local PC, and then push the data to the
data warehouse Teradata database via a fastload session.

A scheduler load will perform in the same way, however the data is loaded into the server that is running
the scheduler and then pushed to the data warehouse database.

For fastload loading to work all dates and times must be a character string of the form 'YYYY-MM-DD
HH24:MI:SS'. This is normally achieved via a 'During' load transformation, using the correct casting
function for the source database.

The properties and storage screens for a Native ODBC based load are the same as those of a database
link load. Refer to Database Link Load - Properties for more details.
Details of the Native ODBC Source screen follow.

NOTE: If you are doing Native Loads using UNIX and LINUX, see section Native Loads using UNIX
and LINUX for more details about this type of load.

Native ODBC Based Load - Source Screen
The fields on the Source tab of the properties screen for Native ODBC loads are described below:

206

Load Type

Method of loading data into the table. The available options are dependent on the Source Connection.
Defaults to the 'Default Load Type' of the Source Connection. Can be specified via the Properties
screen.

Source Connection

The connection that identifies the source database. Can be specified via the Properties screen.

Select Distinct Values

Include the DISTINCT keyword in the SQL SELECT statement.

Source Schema

Schema within the source database where the source table resides.

Derive Source Tables(s) and Source Columns

Derive the Source Table(s) and Source Column(s) properties (of this dialog) from the source details of
this table's columns.

207

Note: The existing property values will be overwritten.

Source Table(s)

Name of the table or tables that the data is sourced from.

Override Source Column/Transformations

Ignore the source and transformation details of this table's columns and instead use the override details
specified below.

Where and Group By Clauses

Optional SQL SELECT WHERE-clause and/or GROUP BY-clause. Parameter names can be specified using
$Pparameter_name$ (with leading $P and trailing $), which are replaced at run-time by the parameter's
value.

TIP: This is where you can build a statement to handle change data.

Override Load SQL

Optional SQL statement to load data into the table, which overrides all other properties. The specified
SQL will be executed instead of generated SQL. For a linked database, specify a complete INSERT
statement. For an ODBC source, specify only the SELECT statement.

Native ODBC Load Routine

File Loader utility/mechanism to use to load the generated extract file.

Field Delimiter

Character that separates the fields within each record of the generated extract file. The default value is a
| character (pipe). This should be changed if pipes are possible in the source data.

UTF-8 Extract File

Data will be loaded via a UTF-8 format file. The default is unselected.

Populate Load Parameters

Populate any load-related WhereScape RED parameters, which may be used for validation purposes.

Insert into dss_load_file Table

Populate the metadata table dss_load_file in any generated post_load procedure.

208

File Actions
A file action defines a ftp or copy step that happens to files before or after they are loaded.

Creating a File Action

Before creating a ftp file action, ensure a connection exists for the remote server where the files will be
transferred to.

To create a file action:

1 Click on the File Actions tab of the load table properties dialog.

2 Click the Add New Action button.

3 Choose the Action Type from the drop-down list.

4 Enter the Action Description.

5 Choose the Action Program from the drop-down list.

6 For a ftp action:

• Choose the Action Connection for the remote server where the file will be transferred to.

• Enter the ftp commands in ftp command 1 thru ftp command 9.

7 For a copy action:

• To move the data file, enter the copy to location into File Directory. If the file is to be renamed
at the same time, enter a new name into File Name, otherwise enter %FILE_NAME%.

• To move the trigger file, enter the copy to location into Trigger Directory. If the trigger file is to
be renamed at the same time, enter a new name into Trigger Name, otherwise enter
%TRIG_NAME%.

8 Click on Save (Update) Action.

9 Repeat if necessary for additional file actions.

10 Click OK.

209

Sample ftp file action:

Sample copy file action:

210

Native Loads using UNIX and LINUX
Sometimes the Teradata database server has a LINUX non-tpa node or a MP-RAS UNIX non-tpa node
used for loading data from files. This can provide significantly better platform for loading files into
Teradata than a network connected Windows Scheduler server.

Native ODBC loads need to extract data from the source system using ODBC on a Windows machine. An
additional feature in WhereScape RED can be enabled to transfer the extract file to LINUX or MP-RAS
and then load the file on the remote non-tpa node.

The following steps will enable this functionality when Native ODBC loads are scheduled:

1 Create a unix connection for the non-tpa node (see Connections (on page 133) for more information
on creating connections).

The "Unix user id" and "Unix password" are used to sign in to the remote machine specified by "Host
name".

The work directory is the default location extract files will be transferred to.

The following shows the minimum fields that need to be completed:

211

2 Create a new file action on each load table (see File Actions (on page 208) for more information on
file actions).

212

The file action should be look something like this:

Note: The variables $WORKDIR$ and $UNIXDIR$ refer to the work directories of the Native ODBC
connection and Unix connection respectively. The variable $FILE$ represents the extract file being
transferred to LINUX or MP-RAS.

3 Ensure ws_sched_tera_550.sh script has been set up on the MP-RAS or LINUX non-tpa node and is
scheduled to run on the machine every 5 or 10 minutes using cron or any other scheduling software
on the non-tpa node (see the appropriate section in the WhereScape RED Installation and
Administration Guide for more information on ws_sched_tera_550.sh).

213

TPT Load
A TPT ODBC based load is similar to an ODBC load, except it provides a faster method to move data
from another physical database server into your Teradata database. This includes moving data from one
Teradata server to another and moving data from any other relational database into Teradata.

NOTE: The TPT Load type can only be used with a Windows scheduler. If using a UNIX/Linux
scheduler, refer to section 9.7 and details for using the TPT Script Load type for UNIX/Linux.

WhereScape RED runs a TPT ODBC load, by generating a TPT script based on your metadata. The TPT
script includes the following steps:

1 Extract from the source database using the TPT ODBC operator.

2 Import into the Teradata database using either the TPT LOAD or TPT UPDATE operator.

Cross database platform TPT ODBC loads present some challenges due to incorrect assumptions made
by TPT from time to time. You may need to add 'During' load transformations to your load tables and/or
modify numeric data types from their apparent equivalent data type for a load to complete successfully.
This is because TPT assumes a data type with the same name in another database is the same size in
Teradata; of course this is not always the case.

The properties and storage screens for a TPT ODBC based load are the same as those of a database link
load.

NOTE: TPT Loads from ODBC connections in a Teradata repository must have ODBC connections set up
using the appropriate DataDirect ODBC driver.
TPT Loads from ODBC Connections will not work if an non-DataDirect driver is used.

214

Refer to the previous section for details. Details of the source mapping screen follow in the next section.

215

TPT Load - Source Screen
The fields on the Source tab of the Properties screen for TPT loads are described below:

Load Type

Method of loading data into the table. The available options are dependent on the Source Connection.
Defaults to the 'Default Load Type' of the Source Connection. Can be specified via the Properties page.

Source Connection

The connection that identifies the source database. Can be specified via the Properties page.

Select Distinct Values

Include the DISTINCT keyword in the SQL SELECT statement.

Source Schema

Schema within the source database where the source table resides.

216

Derive Source Tables(s) and Source Columns

Derive the Source Table(s) and Source Column(s) properties (of this dialog) from the source details of
this table's columns.

Note: The existing property values will be overwritten.

Source Table(s)

Name of the table or tables that the data is sourced from.

Override Source Column/Transformations

This ignores the source and transformation details of this table's columns and uses the override details
specified below instead.

Allow Missing Source Columns

Allow the load to occur when one or more of the source columns do not exist. (see the section on
Handling missing source columns (on page 272)).

Fail when incomplete Load

Controls whether the load reports failure when all the rows extracted are not loaded. The specified exit
status impacts any remaining tasks in the currently running job. When fail is specified, the WhereScape
RED Scheduler will stop/fail the job and hold any remaining tasks when the load fails. In contrast, when
fail is disabled the scheduler will continue to run any dependent tasks in the job that is running.

Where and Group By Clauses

Optional SQL SELECT WHERE-clause and/or GROUP BY-clause. Parameter names can be specified using
$Pparameter_name$ (with leading $P and trailing $), which are replaced at run-time by the parameter's
value.

 WhereScape RED TIP: This is where you can build a statement to handle change data.

Override Load SQL

Optional SQL statement to load data into the table, which overrides all other properties. The specified
SQL will be executed instead of generated SQL. For a linked database, specify a complete INSERT
statement. For an ODBC source, specify only the SELECT statement.

TPT Load Type

Load TPT, Update TPT or Stream TPT.

NOTE: When importing a Model from 3D to RED, select Load TPT instead of Fastload as the Default
File Loader method. FastLoad is not a valid option for loading Linux files to Teradata.
To change the Default File Loader, go to Tools->Options->Code Generation->General.

TPT Character Set

Teradata-compliant Character Set Name to use when loading, such as ASCII, UTF8, UTF16.

217

TPT ODBC Operator Attributes

Optional comma-delimited list of TPT ODBC operator Attributes, e.g. INTEGER DataBlockSize = 2048.

TPT Load/Update Operator Attributes

Optional comma-delimited list of TPT Load Operator or TPT Update Operator Attributes.

TPT Job Name

Job Name for TPT. If not set, will default to Load Name.

TPT Build Command Options

Additional options included as part of the TBuild call.

TPT Shared Memory Size

Shared memory size can be specified in bytes, kilobytes or megabytes. Examples include
2091752,2048K,2M.

TPT Minimum Sessions

Optional minimum number of sessions[1-99]. The default is one session.

Set TPT Maximum Sessions

Enables the 'TPT Maximum Sessions' property. Optional maximum number of sessions[1-99]. The
default is one session per available Access Module Processor (AMP). The maximum value cannot exceed
the number of available AMP's.

Load Read Instances

Optional number of TPT read instances[1-99]. The default is one instance.

Load Write Instances

Optional number of TPT write instances[1-99]. The default is one instance.

TPT LogView Command Options

Additional options included as part of the TLOGVIEW call. -f'*' can be added to this field to get
enhanced logging to diagnose issues in the event of a failure.

218

Cleanup after TPT Load Failure
TPT runs all jobs in checkpoint mode by default; and if any one of these jobs fail, it can restart based on
the last checkpoint taken for the job.

Automatic Restart

An automatic restart means that a job can restart on its own, without you manually having to resubmit
the job. With the Start-of-Data and End-of-Data checkpoints, a job can automatically restart itself when
a "retry-able" error occurs (such as a database restart or deadlock) before, during, or after the loading of
data. You need to consider the following when dealing with automatic restarts:

Jobs can automatically restart as many times as specified by the value of the RETRY option of the TPT
job-launching command. By default, a job can restart up to five times.

If no checkpoint interval is specified for a job, and the job fails during processing, the job restarts either
at the Start-of-Data checkpoint or at the End-of-Data checkpoint, depending on which one is the last
recorded checkpoint in the checkpoint file.

To avoid reloading data from the beginning, you should specify a checkpoint interval when launching a
job so that the restart can be done based on the most recent checkpoint taken.

Manual Restart

If a job fails and terminates, a manual restart can be accomplished by resubmitting the same job with
the original job-launching command. By default, all TPT jobs are checkpoint restartable, using one of
the two checkpoints at Start-of-Data and End-of-Data.

TPT also provides recovery across job steps within a job, thus if a job has multiple steps, a checkpoint
will be created for each successful step. This will allow a job to restart from the failed step by skipping
the successful steps. If, for example, you have a step to create or drop tables before a data loading step
begins, and the job fails in the data loading step; a restart of the job would resume from the data loading
step without recreating or dropping the tables. This can be contrasted with some of the utilities, such as
Fastload, where the script might contain the statements DROP TABLE and CREATE TABLE. Such a script
could not be used across restarts because those DDL statements would be re-issued.

Removing Checkpoint Files

Job checkpoint files are automatically created by TPT and they are deleted if the job completes without
an error. You will however need to remove these checkpoint files before they are automatically deleted if
you wish to:

• Rerun an interrupted job from the beginning, rather than restarting it from the last checkpoint
taken before the interruption occurred.

• Abandon an interrupted job and run another job, but the new checkpoint files will have the same
names as the existing checkpoint files, due to the use of the same job name (or the default
checkpoint files created based on the logon user ID).

219

TPT provides a special command for users to remove checkpoint files, based on either the user ID or the
job name.

If the "tbuild" command specifies a job name, the "twbrmcp <job name>" command can be used. If the
"tbuild" command does not specify a job name, the "twbrmcp <user ID>" can be used. For z/OS, the
deletion of checkpoint files can be done through the MVS/ISPF facility.

If you want to delete checkpoint files manually, you can use one of the following commands:

• del %TWB_ROOT%\checkpoint\<job-name>.*

• del %TWB_ROOT%\checkpoint\<user-id>.*

If you want to delete checkpoint files from a user-defined directory, you can use one of the following
commands:

• del <user-defined directory>\<job-name>.*

• del <user-defined directory>\<user-id>.*

Note: If a manual restart is necessary and the checkpoint files have been removed, the simplest method
to clear the load lock on a table is to recreate the table.

220

TPT UNIX/Linux Script Load
Create a Unix connection as in the example below:

221

TPT UNIX Script Load - Properties
The fields on the TPT UNIX Script Load Properties screen are the following:

 WhereScape RED TIP:

When doing TPT Script based loads, it is easy to use the rebuild button to the right of the Script-name
field to rebuild the scripts.

Load Table Name

The table name is limited by Teradata to a maximum of 30 characters and must be unique. Table name
defaults can be set up (Tools>Options then Naming local or global) to define a prefix or a post fix that
can be added in order to identify clearly that this is a load table. Example: load_customer. By default
RED uses the prefix load_ for load tables.

Unique Short Name

The table short name is limited in size to 22 characters and must be unique. The short name is used in
the naming of indexes, keys and procedures.

222

Description

Enter here a description of the table. This description appears in the documentation that can be
generated once the data warehouse is built.

Connection

Enter the connection being used to get the data. The connections for load tables can be changed in bulk.
See section on Changing load Connection and Schema (on page 275).

Load Type

The load type is typically defined by the connection, and should not normally be changed. This
drop-down lists all valid load types for the connection.

ODBC Script Connection

Choose the Unix Connection.

Script Template

The script template used for a script based load.

Script Name

This field is only active if this is a script based load.

TIP: Use the Rebuild button after selecting the relevant script to be rebuilt on the the Script Name
drop-down menu.

Pre-load Action

Select an action to be performed on the table before the load occurs. Options are:

• Truncate

• Execute pre-load Sql

• Both Truncate and Execute pre-load Sql

• No action

223

Pre-load Sql

If a Pre-load Action of "Execute pre-load Sql" was selected, then the Sql statement to execute before
the load takes place should be entered in this box.

The contents of pre-load sql can be a sql statement or a procedural block. If using a procedural block,
then the final semi-colon is required. The following examples illustrate the possible values in this field.
Note the trailing semi-colon on the procedural block example.

Example of pre-load statements:

delete from load_customer where code < 23

delete table load_customer all

Post Load Procedure

A procedure that is executed immediately following the load. If you execute an externally loaded table,
no load occurs, but a post load procedure can still be executed.

At the bottom of the Load Table Properties screen are three fields that display information on that load
table:
1. Date table structure was last updated
2. Date created in database
3. Date last updated in database

224

SSIS Loader
Microsoft SQL Server Integration Services (SSIS) is an Extract Transform and Load (ETL) utility that is
supplied and licensed as part of Microsoft SQL Server 2005+. SSIS is built to extract data from data
sources, using extraction technologies such as OLEDB, transform the data using its own .NET based
language and then load it into data destination. SSIS is primarily used for loading data from various
sources into SQL Server, but it can be used to extract from most databases and load into any other
database.

WhereScape RED manages the extraction and load of data into the data warehouse as part of data
warehouse processing. WhereScape RED attempts to utilize the optimum loading technology for each
supported database platform. Optimal loading performance from a database source into Teradata can be
achieved, using SSIS. WhereScape RED provides the ability to leverage the extract and load performance
available from SSIS as part of the WhereScape RED processing. WhereScape RED does this by generating
and executing an SSIS package dynamically at run time. Any errors or messages resulting from
execution are passed back into the WhereScape RED workflow metadata to drive subsequent workflow
actions. In the event of an error during execution of the SSIS package, the package will be persisted to
disk to assist the developer with problem resolution.

To use SSIS to load data, select the relevant version of SSIS in Tools/Options/Code
Generation/General.

225

Loading Data into RED Load Tables using SSIS
To use SSIS loading, ensure that SSIS loads are enabled and that the SSIS version is set correctly in
Tools>Options>Code Generation>General.

If you are loading from a Flat File source, see Loading Data from Flat Files using SSIS.

RED can extract and load data using SSIS from database tables or flat files from a Windows connection.
As with any load into RED a connection to the source data needs to be created to provide extraction
details.
The SSIS Connection String is a valid SSIS connection string that can be used to connect to the data
source or destination.

Loading Data via SSIS from a database

If the connection is a database load then there is additional connection information that should be
supplied to use SSIS as a loading option.
This additional information needs to be supplied on both the source connection and the data warehouse
connection.

NOTE: SSIS Loads in Teradata can only be processed with a Windows Scheduler.

226

Creating the SSIS Connection String
1 Click on the ellipsis button to the right of the SSIS connection string field of the relevant

connection:

227

2 On the Provider tab, select the relevant OLE DB Provider and click Next.

3 On the Connection tab, select the server name, enter the information to log on to the server and
select the database on the server. Click Test Connection.

NOTE: When using a specific user name and password to connect to the server instead of using
Windows integrated security, the Allow saving password check-box must be selected.

It is also recommended that the password on the SSIS connection string field that is displayed in the
connection properties is replaced with the $PASSWORD$ token that is substituted at runtime.

228

4 Click OK.

229

5 Click OK on the Data Link Properties dialog to save the connection string settings.

230

6 The SSIS connection string is displayed.

7 Click OK to save the connection.

• Right-click on Sales SSIS and select Browse Connection.

• Accept the defaults and click OK.

231

8 In SSIS terms, you have now defined your Source in SSIS Connection Manager.
Using the same process, you need to add the SSIS Connection String to the data warehouse
connection so you can specify your Destination connection:

• Double-click on the DataWarehouse connection in the object explorer to open up the
Properties dialog.

• Follow the process above to create the SSIS Connection String, this time selecting the OLE DB
Provider for Teradata.

• Click OK to save your connection.

Note1: If the connection string is already set, then the ellipsis button will open up an editor dialog.
Edit the connection string and click OK.

Note2: For connections that require a username and password, the connection string can also be
edited to replace the password with the $PASSWORD$ token that is substituted at runtime. If the
$PASSWORD$ token is used, RED uses the contents of the masked "Extract User Password" property
when making the connection.

E.g. "Provider=SQLOLEDB.1;Password=$PASSWORD$;.."

232

233

9 Once the connection is defined then a load table needs to be created to hold data loaded into the
data warehouse by dragging a source table or a flat file to create a load table – (see Loading Data (on
page 194) or Loading Data from Flat Files using SSIS).
On the load table properties the Load type can be set to Integration Services load. This will create
and execute a SSIS package at run time to load data into the data warehouse load table.

234

10 The configuration options available on an SSIS load are available on the Source tab of the load
table’s Properties. These options are:

• SSIS Source-Identifier Encapsulation - Characters that are used to enclose source column
names. Options are (None), "", [], '', ``

• SSIS Source-Identifier Case Conversion - Case-sensitivity conversion applied to Source Object
Identifiers (such as table, view, and column names) in RED-generated SSIS packages. If no
conversion is applied then the exact case of the identifier defined in the RED metadata is used in
SSIS.

• SSIS Destination-Identifier Case Conversion - Case-sensitivity conversion applied to
Destination Object Identifiers (such as table, view, and column names) in RED-generated SSIS
packages. If no conversion is applied then the exact case of the identifier defined in the RED
metadata is used in SSIS.

• SSIS Destination-AlwaysUseDefaultCodePage - Forces the use of the DefaultCodePage
property value when describing character data.

• SSIS Set Destination-Code Page - Enables the SSIS destination code page property.

• SSIS Row Count Log - During an SSIS Load include Row Count logging.

235

Flat File Loads
Flat file loads can be processed from either a UNIX/Linux, Windows or Hadoop connection. As with all
other load types it is easier to use the drag and drop functionality to create load tables.
Flat files can also be loaded using SQL Server Integration Services (SSIS). For Flat File load instructions
using SSIS, see the next section – Loading Data from Flat Files using SSIS.

The drag and drop process for flat files is as follows:

1 Browse to the directory and file via the appropriate UNIX/Linux Connection, Windows Connection
(see "Windows" on page 148) or Hadoop Connection.

2 Double click the Load Table object in the left pane to create a drop target.

3 Drag the file from the right pane and drop it into the middle pane.

4 The following dialog appears. Rename the file if necessary and click the ADD button.

NOTE: The option Add meta data columns to table is used for creating load tables that are used
in creating Data Vault objects. If this option is selected, two DSS columns (dss_record_source and
dss_load_date) are included in the meta data for the table and are populated by transformations.
These two DSS columns could equally be applied to other load tables not used in a Data Vault system
but are particularly important to comply with the Data Vault standards. Please refer to the Data
Vaults chapter (see "Data Vaults" on page 402) for more details.

236

5 The following dialog displays for file loads from Windows, UNIX/Linux and Hadoop connections.

NOTE: First Row is a Header - To make changes in database tables after a table has been defined,
users can edit the First Row is a Header option in the Source tab of the relevant table.

Hive: For File loads into Hive tables, the First Row is a Header option is a table option. Please
ensure this option is checked in the file load wizard if you want to load files with header rows.
To make any changes after Hive tables have been defined, the First Row is a Header option can be
found in the Storage tab of the relevant Hive table.

237

6 The load type selected in the New Table Default Load Type field in the connection dialog will be
the pre-selected option in the Load type drop-down list.

• To change the desired load type and file parsing, use the Load type and File parsing drop-down
list options.

238

Load type options
• The File based load options results in a load where the bulk of the load management is handled

by the scheduler.

• The Script based load option will make WhereScape RED generate a host script and the load
table will be a Script based load. This host script is executed by the scheduler to perform the
load. For further details about Scrip based loads see section Script based loads.

• The XML file load option will only be an available load option from a Windows connection. To
see more details about specific XML loads, see section XML File load .

• The Integration Services load option will load the file via an Integration Services Package that
is generated and executed dynamically at run time. This option is only available from a Windows
connection. For specific details about this load option, see section Loading Data from Flat Files
using SSIS.

• The Externally loaded option will not execute an actual load into the table but will process the
actions specified in the Post Load procedure property. Any After transformations recorded
against any of the columns in an Externally loaded table will also be processed.

File parsing options
• Single data column - with this option, the majority of the work in terms of parsing the file must

occur in a subsequent procedure within the data warehouse. The data is dumped into a single
column. The task of coding a procedure to parse the data must then be undertaken. Three
columns are created under Oracle. These include the data column, a sequence column
(row_sequence) and the file name column (row_file_name). The file name and sequence columns
can be deleted if they are not required for a File based load.

• Columns parsed - with this option, RED will attempt to parse the columns. You will be asked for
details and for the column delimiter. You then step through the columns providing names and
data types. RED attempts to guess the data type, but it needs to be checked and the field length
will probably need to be adjusted.
The following screen shot shows the initial file parsed screen.

NOTE: The Decimal Code button will show the decimal value of each character in the lines
retrieved from the source file. These decimal codes will be shown below each line and are green.

7 Once the screen above is completed, another screen will display to allow the breakdown of the
source data into columns.
If no delimiter is entered then width based parsing is assumed and an addition width size field is
prompted for.
If this is a Fixed Width file loaded via TPT, the source file format can be specified later in the File
Load Source Screen of the Load table's Properties dialog.

• Use the Back button to revert to the previous column if an incorrect width or delimiter is
entered.

This following screen is an example of the file parsing technique.

239

Conversion

During the parsing of the columns a date format conversion string can be used for date data types
only.

Any other Teradata function can be used with Multi Load or TPT Update for After Load
Transformations only. Refer to the Multi load and TPT manuals for syntax.
For example, if we are loading a column called 'product_name' we could use the following syntax to
bring over only the first 30 characters.
substr(product_name,1,30)

A special variable %FILE_NAME% can be used in a File based script load. This will be substituted
with the actual source file name.
For example, a transformation such as: '%FILE_NAME%' can be used to store the full file name and
path in a database column.

For After Load transformations, the conversion string can also entered in the relevant column
conversion field during the parsing of the columns.
However, to process the column conversion, users will need to do the following after the table is
created and loaded:

240

• Go into the Properties of the loaded table's relevant column(s) by double-clicking on the
column(s) in the middle pane.

• Click the Transformation tab.

• Select the After load option in the Transformation Stage drop-down list.

• Recreate the load table.

241

Loading Data from Flat Files using SSIS
Flat files can be loaded into RED from a Windows connection using SQL Server Integration Services
(SSIS).

The instructions below detail how to add the SSIS connection string to the data warehouse connection
and load flat files, using the drag and drop functionality to create load tables.
To load files via SSIS, the SSIS connection string must be defined in the DataWarehouse connection.

NOTE: SSIS Loads for Teradata only work with a Windows Scheduler.

To use SSIS loading, ensure that SSIS loads are enabled and that the SSIS version is set correctly in
Tools>Options>Code Generation>General.

242

1 To load files via SSIS, the SSIS connection string must be defined in the DataWarehouse connection
for the Destination connection to be specified:

• Double-click on the DataWarehouse connection in the object explorer to open up the
Properties dialog.

• Click on the ellipsis button to open the wizard and define the SSIS connection string.

243

2 On the Provider tab, select the OLE DB Provider for Teradata and click Next.

3 On the Connection tab, enter the destination data source name, enter the information to log on
to the server and select the Allow saving password option. Click Test Connection.

NOTE: When using a specific user name and password to connect to the server instead of using
Windows integrated security, the Allow saving password check-box must be selected.
It is also recommended that the password on the SSIS connection string field that is displayed in the
connection properties is replaced with the $PASSWORD$ token that is substituted at runtime.

244

4 Click OK.

245

5 Click OK on the Data Link Properties dialog to save the settings.

246

6 Click OK to save your connection.

NOTE: It is recommended that the password on the SSIS connection string field that is displayed in
the connection properties is replaced with the $PASSWORD$ token that is substituted at runtime.

247

7 Browse to the directory and file from the Windows connection.

8 Double-click on the Load Table object in the left pane to create a drop target.

9 Click the ADD button. The following dialog appears.

248

10 There are two options on this screen (buttons at right).

• The first option results in a File based load table where the bulk of the load management is
handled by the scheduler.

• If you select the second option, RED will generate a windows host script and the load table will
be a Script based load. This host script is executed by the scheduler to effect the load.

Columns parsed

RED attempts to parse the columns. You will be asked for details and for the column delimiter. You
then step through the columns providing names and data types.
RED attempts to guess the data type, but it needs to be checked and the field length will probably
need to be adjusted. The following screen shows the initial file parsed screen.

The Decimal Code button will show the decimal value of each character in the lines retrieved from
the source file. These decimal codes will be shown below each line and are green.

11 Once the screen above is completed a screen will appear to allow the breakdown of the source data
into columns.

249

If no delimiter is entered then width based parsing is assumed and an addition width size is
prompted for.
Use the Back button to revert to the previous column if an incorrect width or delimiter is entered.
The following screen is an example of the file parsing technique.

250

12 On the Properties screen for the new load table, select Integration Services Load as the Load
Type. Click OK.
This will create and execute a SSIS package at run time to load data into the data warehouse load
table.

NOTE: If the table is changed to an Integration Services load and has been set up using the wizard
for the "File load (columns parsed)" flow, some columns might have transformations set up that will
not work.

In RED 6.8.4.0 date/time fields have transformations that are invalid for SSIS and will make the load
fail.
Since SSIS does not provide any configuration for the parsing of date/time fields, if users have any
date/time field special requirements, file or script-based loads provide a better load option instead.

13 Click Yes to Create and Load the table.

251

Flat File Load - Source Screen
The fields for the Flat File Source Screen are described below:

TIP: If the file has been dragged and dropped (see "Flat File Loads" on page 235) into the load table
(middle pane) then some of the fields on this tab are automatically populated.

Load Type

Method of loading data into the table. The available options are dependent on the Source Connection.
Defaults to the 'Default Load Type' of the Source Connection. Can be specified via the Properties page.

Source Connection

Connection to the data source (database or file system). Can be specified via the Properties page.

252

Load Script Template

Available for script loads only and only if there is a valid template available. Select the template to use
when generating a load script, or select (None) to use RED's built-in load script generator. Only
templates with the correct Type and Target DB will appear in this drop-down list. For more information,
see Templates (on page 678).

Source File Details
Source File identification and definition information.

Source Directory

The full path (absolute path) of the folder/directory containing the Source File on the Windows or
UNIX/Linux system.

Source File Name

The name of the source file containing the data to be loaded.

Source File Field Delimiter

Optional character that separates the fields within each record of the Source File. The delimiter
identifies the end of each field. Common field delimiters are tab, comma, colon, semi-colon, pipe, tilde.
If no field delimiter is specified the record is regarded as fixed-width.

Note: If an ASCII character value is used this field may show as an unprintable character. To enter a
special character enter the uppercase string CHAR with the ASCII value in brackets (e.g. CHAR(9)).

Source Fixed Width File Format

Source File format to be set for TPT loads of Fixed width files. This option is only available for TPT Flat
File or Script based loads from Windows and UNIX/Linux connections.
The default option for all Fixed width files is Text. To change the file format, select from Text, Binary,
Formatted or Unformatted.

Source File Record Terminator

Optional string to identify how each line/record in the Source File is ended/terminated/delineated. The
system default is used when not specified. On UNIX/Linux systems, end-of-line is typically line-feed
(ASCII 10). On Windows systems, end-of-line is typically carriage-return (ASCII 13) and line-feed (ASCII
10).

Source File has Field Headings/Labels

Indicates whether the first line of the Source File contains a heading/label for each field, which is not
regarded as data so it should not be loaded.

253

Trigger File Details
Optional Trigger File identification and definition information. If a Trigger File is specified the Source
File will not be loaded until the Trigger File is available.

Trigger File Path

The purpose of the trigger file is to indicate that the copying/loading of the main file has completed and
that it is now safe to load the file. Secondly the trigger file may contain control sums to validate the
contents of the main load file. This field should contain the full path name to the directory in which a
trigger file is located on the Windows or UNIX systems. If this field and/or the Trigger Name field is
populated then the scheduler will look for this file rather than the actual load file.

Trigger File Name

Refers to the name of the file that is used as a trigger to indicate that the main load file is available. A
trigger file typically contains check sums. If the trigger file exists then this is the file that is used in the
Wait Seconds, and Action on wait expire processing. (see notes under Trigger Path above).

Trigger File Field Delimiter

If the trigger file provides control information then the delimiter identifies the field separation, e.g, or
\n for a return. The data found will be loaded into parameter values whose names will be prefixed by the
prefix specified and numbered 0 to n.

Trigger Parameter Name Prefix

If a trigger file and delimiter have been specified then the contents of the trigger file are loaded into
parameters. The parameters will be prefixed by the contents of this field and suffixed by an underscore
and the parameter number. These parameters can be viewed under Tools/Parameters from the
WhereScape RED menu bar. The checking of these parameters can be achieved by generating a Post
Load procedure. An example set of parameters may be budget_0, budget_1 and budget_2 where there
are 3 values in the trigger file and the prefix is set to 'budget'.

Load Configuration
Configuration details to control the load processing.

Check existence of Source File

This field controls whether the load process checks if the file exists before performing the load. This
check can only be disabled when doing script-based TPT Loads from Windows and UNIX/Linux
connections, which can improve the use of built-in TPT functionality to wait for the arrival of the file.

Wait for Source File or Trigger File

Controls whether the load process waits for the file to arrive when it is NOT available to load. This is
disabled by default but enabling this allows the wait-related properties to be specified. When a Trigger
File is specified the load waits for it rather than the Source File. Expand to set the Wait Limit and the
Action when Wait Limit Reached.

254

Wait Limit (in seconds)

Maximum duration to wait when no file is available, which is specified in seconds e.g. 1800 seconds to
wait up to 30 minutes. A value of 0 equates to no wait. If the wait time expires and the specified file
cannot be found, then the load will exit with the status defined in Action, e.g. Default Action = Error

Action when Wait Limit Reached

Action to take when the Wait Limit has been reached and no file is available. The specified action
impacts any remaining tasks in the currently running job. When 'Success' or 'Warning' is specified, the
WhereScape RED Scheduler will continue to run any dependent tasks in the running job. In contrast,
specifying the 'Error' or 'Fatal Error' actions will cause the scheduler to stop/fail the job and hold any
remaining tasks when the "Wait Limit" is reached.

File Load Routine

File Loader utility/mechanism used to load the Source File. Select between MultiLoad, FastLoad, Load
TPT, Update TPT or Stream TPT. If the 'No Load' option is specified the file does not load. This can be
useful for a Script Load that has "File Actions".

MultiLoad/FastLoad Options

If MultiLoad or FastLoad is selected, optional comma-delimited list of TPT Operator Attributes. e.g.
INTEGER DataBlockSize =2048.

Character Set

Teradata-compliant Character Set Name to use when loading such as ASCII, UTF8, UTF16.

TPT HadoopHost

Field that identifies the Hadoop host to the TPT load routine. This is set to the TPT HadoopHost
property of the Hadoop connection if specified there. If this not specified in the connection, the field
will display the UNIX/Linux Host name property of the Hadoop Connection.

TPT Job Name

Job nname for TPT. If this is not set it will default to Load Name.

TPT Build Command Options

Additional options included as part of the TBuild call.

TPT LogView Command Options

Additional options included as part of the TLogView call. For example, adding "-f '*'" can be added to
prove greater diagnostics.

TPT Shared Memory Size

Shared memory size can be specified in bytes, kilobytes or megabytes. Examples include 2091752,
2048K, 2M.

255

TPT Load Routine Minimum Sessions

Optional minimum number of TPT sessions [1-99]. The default is one instance.

Set Load Routine Maximum Sessions

Enables the "Load Routine Maximum sessions" property.

Load Read Instances

Optional number of TPT read instances [1-99]. The default is one instance.

Load Write Instances

Optional number of TPT write instances [1-99]. The default is one instance.

Only Load Latest File

Controls whether only the latest file (or all matching files) is loaded when the "Source File Name"
includes a wildcard and multiple matching files are available.

Script Load supports File Name Wildcards

This option is only available for Update TPT or Stream TPT load routines.
It controls whether the RED generated script supports loading multiple files based on a file name
wildcard. When enabled and the "Source File name" contains a wildcard, the RED generated script will
loop to load each matching file while preserving the contents of the load table as each file is loaded. In
addition the "Archived Source Path" and/or "Archived Source File Name" properties must be specified to
allow each successfully loaded file to be archived before loading a subsequent file.
When doing Hadoop Native TPT loads where the file load routine is Update TPT, users can load
multiple files from a Hadoop connection by adding * to the Source File Name. e. g.
hadoop_customer.csv*

Fail when incomplete load

Controls whether the load reports failure when ALL the rows in the file are not loaded. The specified exit
status impacts any remaining tasks in the currently running job. When fail is specified, The WhereScape
RED Scheduler will stop/fail the job and hold any remaining tasks when the load fails. In contrast when
fail is disabled, the scheduler will continue to run any dependent tasks in the running job.

Validate using Header/Trailer Data

Controls whether a RED-generated Post-Load procedure validates the integrity of the Source File and
the load processing using control totals &/or counts ("check sums") from the FIRST and/of LAST line(s)
of the Source File. When enabled, any subsequently RED-generated Post-Load procedure for this table
will used the HEADER and/or TRAILER rows as a source of validation information. Alternatively, A
Trigger File can be used for the same validation purpose.

Populate Audit Log with File Actions

Controls whether details of any "File Actions" processing are recorded in the WhereScape RED Audit
Log.

256

Populate Detail Log when Successful

Controls whether additional details from the Teradata "File Load Routine" are recorded in the
WhereScape RED Error/Detail Log when the load processing is successful.

Insert into dss_load_file Table

Populate the metadata table dss_load_file.

Archived File Details
Optional Archived file identification and definition information. Once a file has been successfully
loaded or processed it can be optionally archived by moving it and/or renaming it.

Compress Source File when Archive

Optionally compresses the successfully loaded Source File if it is archived.

Archived Source File Path

Optional full path (absolute path) of the folder/directory to MOVE the successfully loaded Source File on
the Windows or UNIX/Linux system.

Archived Source File Name

Optional new name to RENAME the successfully loaded Source File to. By default, the original file name
is used it is optional to rename it. However, the in-built variable $SEQUENCE$ can be used to include a
unique sequence number in the new name. Likewise, the in-built variables $YYYY$, MM, DD,
HH, MI and/or SS can be used to include the number of the current year, month, day, hour,
minute and/or second respectively. The date/time components can be used separately or can be
combined together using one set of enclosing $ such as $YYYYMMDD$.

Archived Trigger File Path

Optional full path (absolute path) of the folder/directory to MOVE the successfully processed Trigger
File on the Windows or UNIX/Linux system.

Archived Trigger File Name

Optional new name to RENAME the successfully processed Trigger File to. By default, the original file
name is used it is optional to rename it. However, the in-built variable $SEQUENCE$ can be used to
include a unique sequence number in the new name. Likewise, the in-built variables $YYYY$, MM,
DD, HH, MI and/or SS can be used to include the number of the current year, month, day, hour,
minute and/or second respectively. The date/time components can be used separately or can be
combined together using one set of enclosing $ such as $YYYYMMDD$.

257

SQL Server Integration Services (SSIS)
SQL Server Integration Services (SSIS) Attributes.

SSIS Destination-Identifier Case Conversion

Case-sensitivity conversion applied to Destination Object Identifiers (such as table, view, and column
names) in RED-generated SSIS packages. If no conversion is applied then the exact case of the identifier
defined in the RED metadata is used in SSIS.

SSIS Set Source-Code Page

Enables the SSIS source code page property.

SSIS Destination-AlwaysUseDefaultCodePage

Forces the use of the Default CodePage property value when describing character data.

SSIS Set Destination-Code Page

Enables the SSIS destination code page property.

SSIS Row Count Log

During an SSIS Load include Row Count logging.

258

Script based loads
A script based load table will have a Host Script defined. During the load process this host script is
executed and the results returned.

During the 'drag and drop' creation of a load table from a Windows file a script can be generated by
selecting one of the 'Script based' load options.

This script can then be edited to more fully meet any requirements.

There are a number of conventions that must be followed if these host scripts are to be used by the
WhereScape scheduler.

259

1 The first line of data in 'standard out' must contain the resultant status of the script. Valid values
are '1' to indicate success, '-1' to indicate a Warning condition occurred but the result is considered a
success, '-2' to indicate a handled Error occurred and subsequent dependent tasks should be held, -3
to indicate an unhandled Failure and that subsequent dependent tasks should be held.

2 The second line of data in 'standard out' must contain a resultant message of no more than 256
characters.

3 Any subsequent lines in 'standard out' are considered informational and are recorded in the audit
trail. The normal practice is to place a minimum of information in the audit trail. All bulk
information should be output to 'standard error'

4 Any data output to 'standard error' will be written to the error/detail log. Both the audit log and
detail log can be viewed from the RED tool under the scheduler window.

5 When doing Script based loads, it is easy to use the rebuild button to the right of the Script-name
field to rebuild the scripts.

Note: Script-based loads on Windows supports both DOS Batch and PowerShell scripts (see "24.11.1.1
Windows PowerShell Scripts" on page 657).

260

XML File Load
XML file loads are only supported from a Windows connection. There are multiple formats for data
exchange when using XML. See the following section for details on how an XML file is handled.
For more details about XML File load Properties and Source screen fields, please see Flat File Loads and
File Load - Source Screen.

To load an XML file located in a Windows directory proceed as follows:
• Create a connection to the Windows system.

• Browse to the connection and locate the XML file.

• Make Load tables the middle pane drop target by double clicking on the Load Table object group in
the left pane.

• Drag the XML file into the middle pane.

The only rules concerning the xml file are that the data element tags are the column names and each
row of data is a child of the root element.

For example:

<row>

 <dim_customer_key>7</dim_customer_key>

 <code>228</code>

 <name>JOHN AND JOES TOYS</name>

 <address>3700 PARNELL RISE</address>

 <city>BEAVERTON</city>

 <state>OR</state>

 <dss_source_system_key>1</dss_source_system_key>

 <dss_update_time>2003-10-03T10:02:15.310</dss_update_time>

</row>

Supported XML Formats

WhereScape RED supports two types of xml file construct. The normal xml standards have the data in
the xml file and the table definitions in a separate xsd (xml schema definition) file which is only
required when the table is being created or when the xml file is being validated for form. An alternate
standard is used by Microsoft. This second standard is an in line definition which produces one file
which contains a Schema element in the data stream where the column names and their approximate
data types are defined.

261

Separate XML and XSD files

The normal XML standards have the data in the xml file and the table definitions in a separate xsd (xml
schema definition) file which is only required when the table is being created or when the xml file is
being validated for form. The xsd file name is found within the xml file in an xsi (xml schema instance)
statement which can include a namespace definition; e.g.:

<root xmlns="http://www.wherescape.com/wsl-schema"

 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

 xsi:schemaLocation="http://www.wherescape.com/load_table.xsd">

or no namespace;e.g.

<root xmlns="http://www.wherescape.com/wsl-schema"

 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="load_table.xsd">

The xsd file is an xml file and should be found in the same directory as the xml file that calls it. This xsd
file will contain the column definitions for the load table which will be defined during the drag and drop.

The column definitions within the xsd file must be detailed enough to define a load table that the xml
file can be loaded into.

The data type mapping between the xsd file and the database have been implemented as below:

XSD Teradata

string with length char()

string with maxlength varchar()

integer integer

decimal with precision and scale numeric(x,y)

dateTime (ISO8601) timestamp

i2 integer

i4 integer

r4 varchar(40)

r8 varchar(40)

float varchar(40)

These are the ISO-ANSI SQL/XML standards and in the case of integers, dateTime and floats the
column can be defined with one line; e.g.:

<xsd:element name="Policy_ID" type="xsd:integer"/>

<xsd:element name="Quote_Date" type="xsd:dateTime"/>

262

<xsd:element name="Quote_Price" type="xsd:r4"/>

In the case of strings and decimals the column requires a bit more detail to produce the correct data
type. Strings can be fixed length with padded data by using the length attribute. The following will
produce a char(1) column called Excess_Waiver:

<xsd:element name="Excess_Waiver">

 <xsd:restriction base="xsd:string">

 <xsd:length value="1"/>

 </xsd:restriction>

</xsd:element>

Strings can be of variable length by using the maxLength attribute. The following produces a column of
varchar(8) called Password:

<xsd:element name="Password">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="8"/>

 </xsd:restriction>

</xsd:element>

Decimal numbers are defined with the precision and scale attributes. If the scale attribute is zero or
missing then the column will be a whole number of size precision. The following produces a column of
numeric(6):

<xsd:element name="code" >

 <xsd:restriction base="xsd:decimal">

 <xsd:precision value="6"/>

 <xsd:scale value="0"/>

 </xsd:restriction>

</xsd:element>

The following produces a column of numeric(8,2):

<xsd:element name="code" >

 <xsd:restriction base="xsd:decimal">

 <xsd:precision value="8"/>

 <xsd:scale value="2"/>

 </xsd:restriction>

</xsd:element>

An example file with most data types would be as follows:

263

<xsd:schema xmlns="http://www.wherescape.com/wsl-schema"

 xmlns:xsd="http://www.wherescape.com/XMLSchema">

<xsd:element name="Col_name1" type="xsd:integer"/>

<xsd:element name="Col_name4" type="xsd:dateTime"/>

<xsd:element name="Col_name5">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="100"/>

 </xsd:restriction>

</xsd:element>

<xsd:element name="Col_name6">

 <xsd:restriction base="xsd:string">

 <xsd:length value="100"/>

 </xsd:restriction>

</xsd:element>

<xsd:element name="Col_name7" type="xsd:float"/>

<xsd:element name="Col_name8" >

 <xsd:restriction base="xsd:decimal">

 <xsd:precision value="6"/>

 <xsd:scale value="2"/>

 </xsd:restriction>

</xsd:element>

</xsd:schema>

The column order will be the same as the xsd file.

Any columns which are missing from the row will be NULL in the loaded row.

264

The dateTime format in the xml file is defined as ISO8601 which looks like this:

2003-10-03T10:02:15.310

WhereScape RED will load this string into Teradata as:

CAST('20031003100215' AS TIMESTAMP FORMAT 'YYYYMMDDHHMISS')

• The xsd file is only required to create the load table, if the load table is only being loaded then this
file is ignored.

• To check that the xml and xsd files are well formed you can open them with any web browser. If the
files display with no errors then they are valid xml files.

In line schema definition

The other supported xml construct allows the use of in line schema definitions as produced by the
Microsoft FOR XML AUTO, ELEMENTS, XMLDATA query. This will produce one file which contains a
Schema element in which the column names and their approximate data types are defined. Because the
supplied data types are not concise enough to define the table columns correctly, this method will
produce load tables of data type varchar(4000). The column names are taken from the <element
type="col_name"/> strings within the Schema element. The data elements will be the same as above with
the column names making up the start and end tags and the rows being the children of the root element.
The file that is produced by the FOR XML query above needs to be changed slightly to comply with the
xml standard. Remove everything before the Schema element and then give the file a starting root
element and a closing root element.eg <root> and </root>

The xml files can optionally start with an xml pre process statement.eg

<?xml version="1.0"?>

They may also contain xml comments.eg

<!— comments -->

265

External Load
For an externally loaded table the only property that is executed is the Post Load procedure.

Any After transformations recorded against any of the columns in an Externally loaded table will also be
processed.

Apache Sqoop Load
The Apache Sqoop load type enables loading data directly from Hive/HDFS to any (non-Hive) targets,
however, for loading data directly from Hive into Teradata, it is recommended to use the TPT
functionality instead.

When processing Teradata loads from Hive/HDFS using Apache Sqoop, WhereScape recommends that
you use vendor supplied drivers, such as ‘Hortonworks Connector for Teradata’.

Scheduler loads and Apache Sqoop loads from a Hive connection to a Hive target are not supported.

The following known issues exist when using Sqoop loads with the generic JDBC driver on Teradata:

1 Sqoop loads from Hive to Teradata fail if column names and titles are different.

2 For Sqoop loads from Hive to Teradata where column names and titles are the same, complete the
following to enable the load to work:
In the Load table properties, select the Source tab and on the Generic Hadoop Arguments field enter
the following command: -Dsqoop.export.records.per.statement=1

266

To load tables directly from HDFS/Hive into Teradata target databases using the Apache Sqoop
load:
1 Ensure the relevant Data Warehouse connection has the following fields set:

• JDBC Connection string (JDBC URL)

• JDBC Driver Class Name

• Omit Sqoop Driver Option - tick this check-box for loads into Oracle target databases

• JDBC User ID

• JDBC Password

NOTE: Users loading into Teradata from a Hive or Hadoop connection using the Teradata
connection manager for Sqoop who need to load into more than one database will need to add
DATABASE=$OBJECT_DATABASE$ into their JDBC Connection String (JDBC URL) field on their
Teradata DataWarehouse connection, e.g.
jdbc:teradata://192.168.60.226/DATABASE=$OBJECT_DATABASE$.
BDA will replace $OBJECT_DATABASE$ with the database containing their load table when doing an
Apache Sqoop load.

267

2 When doing loads from Hadoop connections, please ensure the Hadoop connection has its BDA
server host and port fields set in addition to Hive connections.

268

3 Browse the desired Hadoop/Hive connection.

4 Drag and Drop the table from the Hadoop/Hive connection on the right hand-side into the middle
pane.

• Change the table name if necessary and select the relevant target location to place the table
from the drop-down list.

NOTE: The option Add meta data columns to table is used for creating load tables that are used
in creating Data Vault objects. If this option is selected, two DSS columns (dss_record_source and
dss_load_date) are included in the meta data for the table and are populated by transformations.
These two DSS columns could equally be applied to other load tables not used in a Data Vault system
but are particularly important to comply with the Data Vault standards. Please refer to the Data
Vaults chapter (see "Data Vaults" on page 402) for more details.

269

5 Select Apache Hadoop Load from the Load Type drop-down list.

270

6 Click the Source tab to add any Apache Sqoop specific options:

• Temporary HDFS Directory - Loading from a Hive source to the data warehouse is implemented
in two steps. First, the data is extracted from the Hive table into a temporary HDFS directory.
Then, this temporary directory is loaded using "sqoop export". The location of the temporary
directory can be configured in RED on the source tab of the load table. When this field is left
blank, the default is "/tmp".

• Generic Hadoop Arguments - This field allows adding additional arguments just after the Sqoop
command keyword, in this case it is import, in the Sqoop command line.

• Additional Tool Arguments - This field allows adding additional arguments after the generated
Sqoop command line.

NOTE: Sqoop loads from Hive to Teradata fail if column names and titles are different.
Please ensure column names and titles are the same and then, on Load table properties, go to the
source tab and on the Generic Hadoop Arguments field specify the following command=:
-Dsqoop.export.records.per.statement=1.

271

7 Click Create and Load to create and load the table.

272

Handling Missing Source Columns
By default a load will fail if a source column that is to be loaded does not exist. This default action can
be modified by using the 'Non mandatory source column' feature of a load table. When this feature is
enabled the load process will check all source columns, and if any are found to be missing will replace
those missing columns with a Null value (which can be changed, see below).

On the Source tab of a load tables properties there are two check-boxes and a drop-down list that we
will cover in this section.

See the following example:

Override Source Column/Transformation

When this is enabled the Source Columns edit window is enabled. With this enabled, a load table uses
the contents of the Source Columns to specify which columns are being extracted during a table load.

When this is unselected the load process builds up the statement to select from the source table(s) by
looking at the two fields source table and source column and any transformations associated with each

273

column in the load table. If a transformation is present then the transformation overrides the contents
of source table/source column. See the following section for more information on transformations.

Note: This box must be unselected to enable Allow Missing Source Columns support.

Allow Missing Source Columns

When this checkbox is selected the load process will examine every column in the load table. Based on
the source table/source column fields associated with each column it will check to see if the column
exists in the source database. If the column exists normal processing will occur. If the column does not
exist then a Null will be substituted for the column, and the load will proceed.

If one or more columns are found to be missing the load process reports this situation. The status level
of this reporting can be set via the Exit Status drop-down. See the following topic. In all cases the load
will be deemed to have been successful, if no other errors occur.

Often Null values are not desirable in a data warehouse. This Null value can be replaced by some other
value by means of a During or After transformation. For example, a During transformation, as shown
below, set on a missing column called 'State' will replace the Null with the value 'N/A'.

NVL(state,'N/A')

Exit Status When Missing Columns

If columns are found to be missing as a result of a 'Non Mandatory' check then a message is recorded in
the Audit trail and against the task if running in the Scheduler. The drop-down list of the same name
allows the choice of action in the event of a missing column or columns. The choices are:

Choice Impact

Success The message informing that columns are missing uses an
information status.

Warning The message issued is a warning. The table load will be identified as
successful but with warnings.

Error The message issued is an error. The table load will still complete
successfully albeit with an error message.

This drop list is only available if the Non Mandatory Source Columns option is set.

Limitations of Missing Column Check

The check for missing columns will only examine and check those columns that are recorded in the
source table and source column fields of a load table's column properties. Therefore if a source column
is used in a transformation or join, but is not recorded in the two fields mentioned above it will not be
checked.

274

If a column is used in a transformation, it should have the same usage (name and case) as is found in the
source column and source table fields.

This check has no upper limit on the number of missing columns. All columns can be missing and the
load will still succeed.

275

Load Table Transformations
Each load table column can have a transformation associated with it.

See Transformations (on page 593) and Load Table Column Transformations (on page 598) for more
details.

Post-Load Procedures
If a procedure name is entered in the post-load procedure field of a load table's properties, then this
procedure will be executed after the load has completed and after any after transformations have
occurred.

See Load Table Column Transformations (on page 598) for more details.

276

Changing Load Connection and Schema
The connection associated with a load table can be changed through the properties of that table.

Connections can also be changed en bulk by using the following process:

1 Double click on the Load Table object group in the left pane. This will display all load tables in the
middle pane.

2 Select those load tables that you wish to change using standard Windows selection.

3 Right-click to bring up a menu and select Change Connect/Schema.

4 Select the new connection to change all the selected load tables.

Note: You cannot change the connection type excepting that it is possible to change from Database to
ODBC connections when the following considerations are taken into account.

277

278

Switching Connection from ODBC to Database and vice versa
This switch should be successful in most cases, although it may not provide the most performant load
possible.

By default, ODBC connections use the source table/column transformation loading method as dates and
potentially other data types need to be converted.

When switching to a database link load any transformations will still occur although they may no longer
be necessary.

279

In This Chapter

Dimensions Overview ... 280
Building a Dimension ... 281
Generating the Dimension Update Procedure ... 289
Dimension Artificial Keys .. 301
Dimension Column Properties ... 303
Dimension Column Transformations ... 311
Dimension Hierarchies ... 312
Snowflake ... 315
Dimension Language Mapping ... 317

C h a p t e r 1 0

Dimensions

280

Dimensions Overview
A dimension table is normally defined, for our purposes, as a table that allows us to constrain queries on
the fact table.
A dimension is built from the Data Warehouse connection. Unless you are doing a retro-fit of an existing
system, dimensions are typically built from one or more load tables.

The normal steps for creating a dimension are defined below and are covered in this chapter. The steps
are:

• Identify the source transactional data that will constitute the dimension. If the data is sourced from
multiple tables ascertain if a join between the source tables is possible, or if a series of lookups
would be a better option.

• Using the 'drag and drop' functionality drag the load table that is the primary source of information
for the dimension into a dimension target. See Building a Dimension.

• If only one table is being sourced and most of the columns are to be used (or if prototyping) you can
select the auto create option to build and load the dimension and skip the next 4 steps. See Building
a Dimension.

• Add columns from other load tables if required. See Building a Dimension.

• Create the dimension table in the database. See Building a Dimension.

• Build the update procedure. See Generating the Dimension Update Procedure (on page 289).

• Run the update procedure and analyze the results. See Dimension Initial Build.

Modify the update procedure as required. See Dimension Initial Build.

Dimension Keys

Dimensions have two types of keys that we will refer to frequently. These are the Business Key and the
Artificial Key. A definition of these two key types follows:

Business Key

The business key is the column or columns that uniquely identify a record within the dimension. Where
the dimension maps back to a single or a main table in the source system, it is usually possible to
ascertain the business key by looking at the unique keys for that source table. Some people refer to the
business key as the 'natural' key. Examples of business keys are:

• The product SKU in a product dimension

• The customer code in a customer dimension

• The calendar date in a date dimension

• The 24 hour time in a time dimension (e.g. HHMM) (e.g.1710)

• The airport short code in an airport dimension.

It is assumed that business keys will never be NULL. If a null value is possible in a business key then the
generated code will need to be modified to handle the null value by assigning some default value. For
example, the 'Where' clause in a dimension update may become:

Where coalesce(business_key,'N/A') = coalesce(v_LoadRec.business_key,'N/A')

281

Note: Business keys are assumed to never be Null. If they could be null it is best to transform them to
some value prior to dimension or stage table update. If this is not done an unmodified update will
probably fail with a duplicate key error on the business key index.

Artificial Key

The artificial key is the unique identifier that is used to join a dimension record to a fact table. When
joining dimensions to fact tables, it would be possible to perform the join using the business key. For
fact tables with a large number of records, this however would result in slow query times and very large
indexes. As query time is one of our key drivers in data warehouse implementations, the best answer is
always to use some form of artificial key. A price is paid in the additional processing required to build
the fact table rows, but this is offset by the reduced query times and index sizes. We can also make use
of database specific features, such as bitmap indexes in Oracle.

The artificial key is an integer and is built sequentially from 1 upwards. See the section on artificial keys
for a more detailed explanation. An artificial key is sometimes referred to as a "surrogate" key.

Building a Dimension
Dimensions are often sourced from one table in the base application. In many cases there are also codes
that require description lookups to complete the de-normalization of the dimensional data. The process
for building a dimension is the same for most other tables and begins with the drag and drop of the load
table that contains the bulk of the dimensional information.

Drag and Drop
1 Create a dimension target by double-clicking on the Dimension group in the left pane.

2 The middle pane will display a list of all existing dimensions, when this list is displayed in the
middle pane, the pane is identified as a target for new dimension tables.

3 Browse to the Data Warehouse via the Browse/Source Data menu option.

4 Drag the load table, that contains the bulk of the dimensional columns, into the middle pane.

5 Drop the table anywhere in the pane.

6 The new object dialog box will appear and will identify the new object as a Dimension and will
provide a default name based on the load table name - either accept this name or enter the name of
the dimension.

7 Click OK to proceed.

282

Dimension Type

A dialog will appear as shown below. There are four choices for the default generation of the dimension
table and its update procedure.

• The first choice being a normal dimension where a dimensional record is updated and changed
whenever any of the non business key information changes - (see more details below).

• The second choice is a slowly changing dimension where new dimension records are created when
certain identified columns in the dimension change. - (see more details below).

• The third choice is a Previous values dimension, which allows the storing of the last values of
selected fields in secondary columns.

• The fourth choice is a Date Ranged dimension, which supports source systems that provide start
and end dates.

With any dimension we identify a business key that uniquely identifies the dimension records.

For example in the case of the product dimension from the tutorial the product code is deemed to be the
business key. The code uniquely identifies each product within the dimension. The product may also
have a name or description and various other attributes that distinguish it. (e.g. Size, shape, color, etc.).

A common question when handling dimensions is what to do when the name or description changes:

• Do we want to track our fact table records based only on the product code? or

• Do we also want to track records based on different descriptions?

An example :

code description product_group sub_group

1235 15oz can of brussel sprouts canned goods sprouts

283

This product has been sold for many years and we consequently have a very good history of sales and the
performance of the product in the market. The company does a '20% extra for free' promotion for 3
months during which time it increases the size of the can to 18oz. The description is also changed to be
'15 + 3oz can of brussel sprouts'. At the end of the promotion the product is reverted to its original size
and the description changed back to its original name.

The question is do we want to track the sales of the product when it had a different description (slowly
changing) , or should the description of the product simply change to reflect its current name (normal).
For this scenario a previous value dimension would not provide much advantage, so it is not discussed.

The decision is not a simple one and the advantages and disadvantages of each of the two choices is
discussed below.

Slowly Changing
• Allows the most comprehensive analysis capabilities when just using the product dimension.

• Complicates the analysis. Does not allow a continuous analysis of the product called '15oz can of
brussel sprouts' when the description is used. This analysis is however still available through the
code which has not changed.

• Adds considerable additional processing requirements to the building of the fact tables that utilize
this dimension.

• May track data quality improvements rather than real business change.

Normal
• Does not allow specific analysis of the product during its size change. Note, however that this

analysis will probably be available through the combination of a 'promotion' dimension.

• Provides a continuous analysis history for the product called '15oz can of brussel sprouts'. An
analysis via description and code will produce the same results.

• Simplifies analysis from an end user's perspective.

As mentioned above the choice is never a simple one. Even among experienced data warehouse
practitioners there will be a variety of opinions. The decision must be based on the business
requirements. In many cases keeping the analysis simple is the best choice, at least in the early stages of
a data warehouse development. Slowly changing dimensions do have a place, but there is nearly always
an alternate method that provides equal or better results. In the example above a promotion dimension
coupled with the product dimension could provide the same analysis results whilst still keeping product
only analysis simple and easy to understand.

TIP: Do not over complicate the design of an analysis area. Keep it simple and avoid the
unnecessary use of slowly changing dimensions.

284

Dimension Properties
• Once the dimension type is chosen the properties page will appear.

• Change the storage options if desired.

• If prototyping, and the dimension is simple (i.e. one source table) then it is possible to create, load
and update the dimension in a couple of steps. If you wish to do this select the (Build Procedure...)
option from the Update Procedure drop-down, and answer Create and Load to the next question.

Create and Load
If you chose to build the update procedure the following dialog appears after clicking OK on the
Properties page. This dialog asks if you want to create the Dimension table in the database and execute
the update procedure.

If you are satisfied with the columns that will be used and do not wish to add any additional columns
you can select the Create and Load button. Alternatively, the Create button creates the table in the
repository but does not execute an update, allowing you to change columns before loading data into the
table.

285

If Create or Create and Load is selected and a new procedure creation was chosen on the Properties
dialog you can proceed directly to the Generating the Dimension Update Procedure (on page 289)
section.

Note: It is possible to create and load the table via the Scheduler; by selecting this option from the
drop-down list on the Create and Load button:

If you have additional columns to add or columns to delete then select Close and proceed as follows.

Deleting and Changing columns
The columns defined for the dimension will be displayed in the middle pane.

• It is possible to delete any unwanted columns by highlighting a column name or a group of names
and choosing the Delete key.

• You can also change the name of a column by selecting the column and using the right-click menu
to edit its properties. Any new name must conform to the database naming standards.

• Good practice is to use alphanumerics and the underscore character. See the section on column
properties for a fuller description on what the various fields mean.

286

TIP: When prototyping, and in the initial stages of an analysis area build it is best not to remove
columns, nor to change their names to any great extent. This type of activity is best left until after end
users have used the data and provided feedback.

Adding additional columns
• With the columns of the dimension table displayed in the middle pane, this pane is considered a

drop target for additional columns.

• It is simple to select columns from other load tables and to drag these columns into the middle
pane.

The following column list is from the product table as supplied in the tutorial data set.

The source table shows where each column was dragged from. Although not the case in the tutorial, it is
often common to have columns of the same name coming from different tables. In the example above
the description column is acquired from the load_product, load_prod_group and load_prod_subgroup
tables. In order that the dimension table be created we need to assign these columns unique names, so
for this example the last two columns in question have been renamed to group_description and
subgroup_description.

There are a number of columns that do not have a source table. These columns have been added by
WhereScape RED, and are added depending on earlier choices.

A description of these columns follows.

287

Column name description

dim_product_key The unique identifier (artificial key) for the dimension. This key is
used in the joins to the fact table. It is generated via a sequence
associated with the table, except for the date dimension where it
has the form YYYYMMDD

dss_start_date Used for slowly changing dimensions. This column provides a date
time stamp when the dimension record came into existence. It is
used to ascertain which dimension record should be used when
multiple are available.

dss_end_date Used for slowly changing dimensions. This column provides a date
time stamp when the dimension record ceased to be the current
record. It is used to ascertain which dimension record should be
used when multiple are available.

dss_current_flag Used for slowly changing dimensions. This flag identifies the
current record where multiple versions exist.

dss_source_system_key Added to support dimensions that cannot be fully conformed, and
the inclusion of subsequent source systems. See the ancillary
settings section for more details.

dss_version Used for slowly changing dimensions. This column contains the
version number of a dimension record. Numbered from 1 upwards
with the highest number being the latest or current version. It forms
part of the unique constraint for the business key of a slowly
changing dimension.

dss_update_time Indicates when the record was last updated in the data warehouse.

dss_create_time Indicates when the record was first created in the data warehouse

Manually adding previous value columns
If a Previous value type of dimension is chosen, or in fact if the dimension is converted to this type, it is
possible to manually add any required columns that were not defined as part of the create. The steps
are:

1 Add a new column by dragging in the column that is to have a previous value stored.

2 Change the name to a unique name. Typically by adding the prefix 'prev_' to the column name.

3 Change the source table, to be that of the dimension we are building.

4 Set the Key Type to 4.

5 Having performed these actions WhereScape RED will detect the column and build the appropriate
code during the procedure generation phase.

288

Create the table
Once the dimension has been defined in the metadata you need to physically create the table in the
database.

• This is done by right-clicking on the dimension name and selecting Create (ReCreate) from the
pop-up menu.

• The results dialog box will display the results of the creation.

• The contents of this dialog are a message to the effect that the dimension table was created. A copy
of the actual database create statement, and if defined the results of any index create statements
will be listed. For the initial create no indexes will be defined.

• If the table was not created then ascertain and fix the problem. A common problem is a 'Duplicate
column' where a column has the same name in two of the source tables.

• The best way of finding this a column is to double click on the list heading 'Col name'. This will sort
the column names into alphabetic order. Another double click on the heading will sort the columns
back into their create order.

The next section covers the Generating the Dimension Update Procedure (on page 289).

289

Generating the Dimension Update Procedure
Once a dimension has been defined in the meta data and created in the database, an update procedure
can be generated to handle the joining of any tables and the update of the dimension records.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update Procedures
(on page 181) for details.

The zero key row

WhereScape RED always insert a record into the dimension with an artificial key value of zero by
default. This record is used to link any fact records that do not have valid dimension joins. The values of
the various columns in this record are acquired from the contents of the field Zero Key Value which is
set in the properties screen of each dimension column.

Generating a Procedure
1 Double click on the dimension object to edit the properties for the dimension.

2 From the Update Procedure drop-down list select (Build Procedure...).

3 Click OK to update the properties and start the process of generating the new procedure.

4 The Update Build Options screen displays, requesting you to select the relevant build options.

5 There are other steps to complete during the procedure generation based on the type of load
information. These steps are described below.

290

Processing tab

Business Key Columns: Columns that define the business key for update processing. This is required
for include Update options. The source table from which the dimension is derived would normally have
some form of unique constraint applied. In most cases this will be the business key. In the example
below product_id is selected as the business key.

• Clicking on the ellipsis button on the rightmost of the Business Key Columns field will bring
up the Business Key selection screen.

• Select the relevant Business Key.

• Click OK on the Update Build Options dialog.

TIP: Use the column name ascending/descending buttons to sort column names. To revert to the
meta column order, click on the meta column order button.

291

A business key will uniquely identify each dimension record and it can be made up of multiple columns,
but it must provide a unique identifier. Where multiple columns uniquely and separately identify the
dimension, choose one to act as the primary business key. For example, a source table may have a
unique constraint on both a product code and a product description. Therefore the description as well as
the code must be unique. It is of course possible to combine the two columns, but the normal practice
would be to choose the code as the business key.

NULL Values: None of the columns chosen as the business key should ever contain a NULL value. See
the note at the start of this chapter.

292

Parameters: Any parameters selected are included in the generated update procedure as variables. The
procedure will include code to retrieve the value of the parameter at run time and store it in the declared
variable.

• Clicking on the ellipsis button will bring up the Parameters selection screen.

The variables can also be used in column transformations and in the from/where clause for the update
procedure. Some databases have a 30 character limit for variable names. WhereScape RED ensures the
variables added for any parameters are less than 30 characters long by creating variable names in the
form v_ followed by the first 28 characters of the parameter name.

For example, a parameter called MINIMUM_ORDER_NUMBER_SINCE_LAST_SOURCE_LOAD will be
available as the variable v_MINIMUM_ORDER_NUMBER_SINCE_L.

TIP1: WhereScape RED parameters should be unique within the first 28 characters to avoid
conflicting variables names.

TIP2: If the desired parameter doesn't exist in the metadata yet, a new parameter can be added by
clicking the Add New button on the bottom leftmost corner of the Select Parameters dialog.

See Parameters (on page 132) for more information on WhereScape RED Parameters.

293

Include Initial Load Insert: adds an additional insert statement to the update procedure that runs if
the target Dimension is empty. The benefit of this is improved performance inserting into an empty
table without performing any checks to see if rows already exist. The default for this field is not set (i.e.
an initial insert statement is not added to the procedure).

Process by Batch: allows users to select a column to drive data processing in a loop based on the
distinct ordered values of the selected Business Key columns. The update procedure loops on this
column and performs the delete, update and/or insert for each value. If the column chosen is a date
datatype (date, datetime or timestamp), then the user is able to specify yearly, monthly, daily or column
level looping. The default for this field is not set (do not do batch processing).

Delete Before Insert: allows selecting how to process deletes. It enables a delete statement to be added
to the update procedure before any update or insert statement. This is a particularly useful option for
purging old data and for updates based on a source system batch number. When this option is selected,
it enables the Issue Warning if a Delete occurs and the Delete Where Clause Fields.

Issue Warning if a Delete occurs: this option sets the procedure to a warning state if any deletes
occur.

Delete Where Clause: the delete where clause is appended to the generated delete statement to
constrain the rows deleted.

Process Method: allows updating the Dimension with either an Insert/Update or a Merge statement.
Merge allows you to use one Merge statement instead of two separate Insert and update statements.

Source Table Locking: allows a locking request modifier to be specified for each source table. The
specified locking request modifier is applied to each source table during generated update procedures.
By default this is set to 'ACCESS' which locks each row being accessed, a blank entry will result in no
locking clause in the generated procedure. This option may also be presented in a separate dialog.

Insert Method

Include Insert Statement: set this field to include the insert statement in the procedure. This allows
inserting new rows in the Dimension.

Insert New Rows Only: uses change detection to work out which rows will require inserting.

New Row Identification Method: method used to identify that records in source are not currently
recorded in the target table. Select Join or Minus.

Include Update Statement: set this field to include an update statement in the procedure. This allows
updating the changing rows in the Dimension. If this is set, the Update Changed Rows Only option is
available.

Update Changed Rows Only: uses change detection to work out what rows require updating. When
set, this option enables the Change Row Identification Method.

Change Row Identification Method: method used to identify that records in source have changed
from what is currently recorded in the target table. Select Join or Minus.

Merge Method

Merge Changed Rows only: uses change detection to work out what rows require merging. When the
option is set, it enables the New Row Identification Method.

294

New Row Identification Method: method used to identify which records in the source are not
recorded or are recorded differently in the target table. Select between Join and Minus.

If non identity columns are used as artificial keys the only new row identification method is Join.

Dimension Update procedures usually perform faster when you use the Join method for new row
identification.

Source tab

Distinct Data Select: ensures duplicate rows are not added to the Dimension. This is achieved by
adding the the word DISTINCT to the source select in the update procedure. The default for this field is
not set.

Source Join: The From clause, including Source Join information. See example below for Joining
multiple source tables.

Where Clause: The Where clause. Use as a filter to extract only the necessary records that fulfill a
specified criteria.

Group By: The Group By clause. Use in collaboration with the SELECT statement to arrange identical
data into groups.

295

Joining multiple source tables
If multiple source tables were used to build the dimension, the tables will need to be joined on the
Source tab.

• Select the first two tables from the top drop-down list.

• Select one column for each of the two tables from the bottom drop-down lists to effect the join
between the selected tables.

In the example below, the load_product and load_prod_subgroup tables are joined by two columns -
prod_group and subgroup. In this case two joins are actioned for these two tables so both columns can
be selected.

Simple Join

Either a 'Where' or from clause join can be generated. A simple join only returns rows where data is
matched in both tables. So for example if table A has 100 rows and table B has a subset of 24 rows. If all
the rows in table B can be joined to table A then 24 rows will be returned. The other 76 rows from table A
will not be returned.

Outer Join

Either a 'Where' or from clause join can be generated. The ANSI standard ‘from clause’ join is
recommended. The outer join returns all rows in the master table, regardless of whether or not they
are found in the second table. Therefore, if the example above was executed with table A as the master
table, then 100 rows would be returned. 76 of those rows would have null values for the table B columns.

296

When WhereScape RED builds up a 'Where' clause join, it must place the outer join indicator next to the
appropriate column. As this indicator goes on the master, WhereScape RED needs to know which table is
master and which subordinate. Select the join column from the master table first.

In the example screen above, the table 'load_product' has had its column chosen and the column for the
table 'load_prod_subgroup' is currently being chosen. This will result in the 'load_product' table being
defined as the master, as per the example statement as shown in the 'Where' clause edit window above.
The results of this example select are that a row will be added containing product information,
regardless of whether or not a corresponding prod_subgroup entry exists.

As the join columns are selected, the join statement is built up in the large edit window above. Once all
joins have been made, the contents of this window can be changed if the join statement is not correct.

• When you are happy with the join clause click the OK button to proceed to the next step. This clause
will be either the 'Where' clause or a combined from and 'Where' clause depending on the option
chosen.

• This clause can be edited in the procedure that is generated if not correct.

• For Teradata, you have the choice between 'Where' statement joins and ANSI standard joins.

Using Change Detection - Change Detection Tab

Change Detection Fields: if the dimension was defined as a Changing Dimension you have to select
the change detection fields required for the Dimension on the Change Detection Tab. This will allow to
select the columns to be managed as slowly changing dimension columns.

297

The advantages and disadvantages of changing dimensions are discussed earlier in this chapter, but as
a general rule try to minimize their usage. They invariably complicate the processing and end user
queries.

• Click on the Change Detection tab in the Update Build Options dialog.

• Click on the ellipsis button at the rightmost corner of the Change Detection field.

• Select the required columns to be managed as slowly changing dimension columns and click OK to
continue.

• In the example below, the product_description is to be managed as a slowly changing column.

Null Support: if this option is set, the change detect column management will cater for Null values in
any changing columns. If this is not set and there are Null values in the changing columns there may be
errors while running the update procedure. The default for this option is not set (Nulls are not catered
for).

298

Null values are the enemy of a successful data warehouse. They result in unreliable query results and
can often lead to a lack of confidence in the data. If a column is considered important enough to be
managed as a slowly changing column then it should not normally contain null values. It is often best to
ensure that a Null cannot occur by using a Coalesce() transformation when loading the column.

Configuring dss_start_date and dss_end_date for Date Detection Values:

Reset Dates to Initial Values: resets dss_start_date and ds_end_date Values to original values.

Start Date for Initial Member: the start date for initial member field contains the start date for the
first version of a particular business key. The value should be specified in an appropriate form, taking
into account the default date format in the databases. The date may need to be explicitly cast to the
current data type. The default value provided will usually be cast to the correct database and can be
treated as a template. The default for this field is 1 January 1900.

End Date for Current Member: the end date for current member field contains the start date for the
current version (the row with a current flag of Y and the maximum version number) of a particular
business key. The value should be specified in an appropriate form, taking into account the default date
format in the databases. The date may need to be explicitly cast to the current data type. The default
value provided will usually be cast to the correct database and can be treated as a template. The default
for this field is 31 December 2999.

Start Date for New Member Entry: the start date for new member entry field contains the start date
for any subsequent rows added to the history table (not the first row for a particular business key i.e. not
version 1). The value should be specified in an appropriate form, taking into account the default date
format in the databases. The date may need to be explicitly cast to the current data type. The default
value provided will usually be cast to the correct database and can be treated as a template. The default
for this field is the current date and time.

End Date for Expiring Member Entry: the end date for the expiring member entry field contains the
end date for any rows updated no longer to no longer be the current row in the history table (i.e. rows
that are replaced by a new current row). The value should be specified in an appropriate form, taking
into account the default date format in the databases. The date may need to be explicitly cast to the
current data type. The default value provided will usually be cast to the correct database and can be
treated as a template. The default for this field is the current date and time less an arbitrary small
amount (for SQL Server this is 0.00000005 of a day, or about 4 thousandth of a second).

299

Building and Compiling the Procedure
• When the steps above are completed the procedure is built and compiled automatically. This will

display in the Results pane.

• If the compile fails, an error will be displayed along with the first few lines of error messages.
Compile fails typically occur when the physical creation of the table was not done.

• If the compile fails for some other reason the best approach is to use the procedure editor to edit
and compile the procedure. The procedure editor will highlight all the errors within the context of
the procedure.

• Once the procedure has been successfully compiled it can either be executed interactively or passed
to the scheduler.

300

Indexes
By default a number of indexes will be created to support the dimension. These indexes will be added
once the procedure has been built. An example of the type of indexes created is as follows:

This example shows three indexes being created. They are:

1 A primary key constraint placed on the artificial key for the dimension.

2 A unique index placed on the business key for the dimension.

3 A unique index placed on the business key and a slowly changing column from the dimension.

This third index is only created when a Slowly Changing dimension is chosen.

Additional indexes can be added, or these indexes changed. See the chapter on indexes for further
details.

301

Dimension Artificial Keys
The artificial (surrogate) key for a dimension is set via an identity column. This artificial key normally,
and by default, starts at one and progresses as far as is required.

A WhereScape standard for the creation of special rows in the dimension is as follows:

Key value Usage

1 upwards The normal dimension artificial keys are numbered from 1 upwards, with a
new number assigned for each distinct dimension record.

0 Used as a join to the dimension when no valid join existed. It is the normal
convention in the WhereScape generated code that any dimension business
key that either does not exist or does not match is assigned to key 0.

-1 through -9 Used for special cases. The most common being where a dimension is not
appropriate for the record. For example we may have a sales system that has
a promotion dimension. Not all sales have promotions. In this situation it is
best to create a specific record in the dimension that indicates that a fact
table record does not have a promotion. The stage table procedure would be
modified to assign such records to this specific key. A new key is used rather
than 0 as we want to distinguish between records that are invalid and not
appropriate.

 -10 backward Pseudo records. In many cases we have to deal with different granularities in
our fact data. For example, we may have a fact table that contains actual sales
at a product SKU level and budget information at a product group level. The
product dimension only contains SKU based information. To be able to map
the budget records to the dimension, we need to create these pseudo keys
that relate to product groups. The values -10 and backwards are normally
used for such keys. A template called 'Pseudo' is shipped with WhereScape
RED to illustrate the generation of these pseudo records in the dimension
table.

Surrogate keys for a Dimension set via a non identity column:

Normal, Slowly Changing and Date Ranged Dimension Tables can have non identity columns as
surrogate keys.
The generation of the update procedure will automatically add logic to the code which will associate a
sequential number to the artificial key of the dimension when a new row is inserted into the Dimension
table.
The order of these sequential numbers is determined by the business key of the source table. The value
of the first newly inserted artificial key will be the value of the highest artificial key in the dimension
table plus 1.
This automatically generated logic can be overwritten by defining a user specific logic on the
Dimension Transformation field on the Tools/Options menu or in the transformation column of the

302

artificial key.
To have a Dimension with a non identity column as a surrogate key, you can set the Dimension Data
Type to integer in the Tools/Options menu.
The old logic for dimensions can be retained if an identity column is chosen as surrogate key.

To allow for non identity surrogate keys on Dimensions:
1 Go to Tools>Options>Global Naming Conventions>Global Name of Key Columns.

2 Set the Dimension Data Type to be integer and click OK.

3 If your tables have been created previously, you will have to Recreate the tables after you set this
option in the Tools menu.

303

Dimension Column Properties
Each dimension column has a set of associated properties. The definition of each property is described
below:

TIP: If a database table's definition is changed in the metadata then the table will need to be altered
in the database. Use the Validate/Validate Table Create Status to compare metadata definitions to
physical database tables. The option also provides the ability to alter the database table, through a
pop-up menu option from the validated table name. See the example below.

A sample Properties screen is as follows:

The two special update keys allow you to update the column and step either forward or backward to the
next column's properties. ALT-Left Arrow and ALT-Right Arrow can also be used instead of the two
special update keys.

304

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. A good practice is to only use alphanumerics, and the
underscore character. Changing this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Title

Name that the business uses to refer to the column. It does not affect the physical table definition, but
rather provides input to the documentation and to the view ws_admin_v_dim_col which can be used to
assist in the population of a end user tool's end user layer. As such it is a free form entry and any
characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Description

This field contains the description for the column. It might contain information on where and how the
column was acquired. For example, if the column is sourced from multiple tables or is a composite or
derived column then this definition would normally describe the process used to populate the column.
This field is used in the documentation and is available via the view ws_admin_v_dim_col. This field is
also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The lowest
numbered column will appear first in the table. Although this affects the physical table definition no
action will be taken unless the table is re-created in the database. The columns can be re-numbered
based on the existing order by choosing the Respace order number pop-up menu option when
positioned over any column in the table. This action will number the columns in increments of 10
starting at 10. In addition to a simple change of the order field, the column order can be changed by first
displaying the columns in the middle pane and then using drag and drop to move the columns around.
This drag and drop process will automatically renumber the columns as required.

Data Type

Database-compliant data type that must be a valid for the target database. Typical Teradata databases
often have integer, numeric(), varchar(), char(), date and timestamp data types. See the database
documentation for a description of the data types available. Changing this field alters the table's
definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always mandatory.

305

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is specified
for the column.

Character Set

Database-compliant table column character-set used for storage. Select Latin or Unicode.

Format

Database-compliant table column format. It does not affect the physical table definition, but rather
provides input to the view ws_admin_v_dim_col which can be used to assist in the population of an end
user tool's end user layer. As such it is a free form entry and any characters are valid. Typically format
masks are only used on numeric fields. Example: #,###0.00. It is not worth the effort of populating this
field unless it can be utilized by the end user tools in use.

Character Comparison/Sorting

Determines how the column character values are treated for comparison and sorting operations. Choose
from: case specific, not case specific, uppercase case specific or uppercase not case specific.

Compress

Indicates whether the table column values are compressed when stored.

Compress/Compress Value

Optional list of values to be compressed. By default, only NULL is compressed if no list of values is
specified.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user layer.
The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column can be
summed when performing data grouping in a query. This is normally only relevant for fact tables. It does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tool's end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may have an
order number, or a invoice number stored in the fact table. Such columns are considered attributes,
rather than facts. This checkbox is therefore normally only relevant for fact tables. This checkbox does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col

306

which can be used to assist in the population of an end user tools end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

End User Layer display

Indicates whether the table column is available/visible to end users. If set the documentation will
include the column in the glossary and in the user documentation. It is also used to decide what
columns appear in the view ws_admin_v_dim_col. Typically columns such as the artificial key would
not be enabled for end user display.

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update procedure
build. [Normally maintained automatically]. Multiple columns can form the primary business key. This
indicator is set and cleared by WhereScape RED during the dimension update procedure generation
process. This checkbox should not normally be altered.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of
any business key. For example: By default the dss_source_system_key is added
to every dimension table. It is considered part of any lookup on that table and
has the key type set to 1. Set when the column is added during drag and drop
table generation.

2 Indicates that this column is a dimensional join. Used on fact tables to
indicate the dimension keys. Results in an index being built for the column
(Bitmap in Oracle). Set during the update procedure generation for a fact
table, based on information from the staging table.

3 Slowly changing column indicator. Used on dimension tables to indicate that
the column is being managed as a slowly changing column within the context
of a slowly changing dimension. Set when a column is identified during the
dimension update procedure generation.

4 Previous value column indicator. Used on dimension tables to indicate that
the column is being managed as a previous value column. The source column
identifies the parent column. Set during the dimension creation.

5 Start date of a date ranged dimension. Used on dimension tables to indicate
that the column is defined as the starting date for a source system date ranged
dimension. Forms part of the business key. Set during the dimension creation.

307

Key type Meaning

6 End date of a date ranged dimension. Used on dimension tables to indicate
that the column is defined as the ending date for a source system date ranged
dimension. Forms part of the business key. Set during the dimension creation.

A

Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used
during index generation and not normally set.

Zero Key Value

Determines the value populated for the column in the "Invalid Join" or "Unknown" record. By default,
NULL is used when a value is not specified.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a load
table within the data warehouse. If the column was sourced from multiple tables, then the normal
practice is to record one of the tables in this field and a comment listing all of the other tables in the
Source Strategy field. This field is used when generating a procedure to update the dimension. It is also
used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a load
table column, which in turn may have been a transformation or the combination of multiple columns.
For previous value managed columns the source column is the column in the table whose previous value
is being recorded.

Transformation

Transformation. [Read-only].

Join

Indicates whether the table column is used in a table join. Normally this is maintained automatically but
can be optionally changed to override the default logic used in the generated update procedure. The
default for this option is not set.

308

Changing a Column Name
If the Column name or Data type is changed for a column then the metadata will differ from the table
as recorded in the database.

• Use the Validate/Validate Table Create Status menu option or the right-click menu to compare
the metadata to the table in the database.

• A right-click menu option of Alter table is available when positioned on the table name after the
validate has completed. This option will alter the database table to match the metadata definition.

For example: Analysis Services does not like name as a column name.

For dim_customer it will therefore be necessary to change the column name from name to cname.

1 Click on the dim_customer object in the left pane to display the dim_customer columns in the
middle pane.

2 When positioned on the column name in the middle pane, right-click and select Properties from
the drop-down menu.

309

3 Change the column name from name to cname as shown below. Click OK to leave the properties
page.

310

4 Right-click on the dim_customer object in the left pane and select Validate against Database.

311

5 The results in the middle pane will show that the metadata has changed to cname while the column
name in the database is still name.

6 Right-click on dim_customer in the middle pane and select Alter table from the drop-down list.

7 A warning will appear, displaying the table and column name to be altered. Select Alter Table.

8 A dialog will appear confirming that dim_customer has been altered. Click OK.

Dimension Column Transformations
Each dimension table column can have a transformation associated with it. The transformation will be
included in the generated procedure and will be executed as part of the procedure update. The
transformation must therefore be a valid SQL construct that can be included in a Select statement. For
example, we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax column of
12.5%.

Click the Transformation tab to enter a transformation.

The transformation screen is as follows:

312

Note: Transformations are only put into effect when the procedure is re-generated.

Microsoft Analysis Services 2005+ Tabular Mode Tables: For Tabular Mode table column
transformations, Default DAX is the only applicable Function Set for after load transformations.

See Transformations (on page 593) for more details.

Dimension Hierarchies
The various hierarchies associated with a dimension can be recorded in the WhereScape RED metadata.
These hierarchies are often not used in any form, except to provide documentary completeness. They
can however be used in conjunction with the WhereScape hierarchy maintenance utility to allow the
maintenance of hierarchy elements externally to a production source system.

When used in conjunction with the hierarchy maintenance utility, these dimension hierarchies add a
powerful method of enriching the analysis capabilities of the data warehouse. For example, we may have
a source system that has a dimension called sales_person. This dimension has no information apart from
employee_code, name and title. We could add additional columns of sales_manager, territory, state and
region to this dimension. A hierarchy could then be formed from the salesperson name, sales_manager,
territory, state and region. The hierarchy maintenance utility allows the maintenance of this hierarchy

313

externally to the data warehouse. This external hierarchy can then become a source system to enrich the
data in the warehouse.

Two areas will be covered. Firstly the creation of hierarchies using WhereScape RED, and secondly the
process required to setup and use externally maintained hierarchies as source systems to the data
warehouse.

Adding a Dimension Hierarchy
Any number of hierarchies can be created against a dimension. There is no restriction on the form of the
hierarchy.

1 To add a new hierarchy, position on the dimension table in the left had pane and using the
right-click menu select Hierarchies/Add Hierarchy.

The following dialog will appear:

314

2 Enter a meaningful name for the hierarchy.

3 Enter a meaningful description for the hierarchy. This description is carried through into the
Hierarchy Description field of any OLAP Dimensions that are built from the original Dimension
object.

Note: The description text is automatically set to "Added at dimension creation for cube support" but
this can be edited to match the user's intended description.

The hierarchy is built with the highest level at the top; for example a customer dimension may have
state at the highest level, then city, then address and finally code at the lowest level.

• To enter the hierarchy elements, select them in the required order, from the left pane and click the
right arrow (>) to add them to the right column.

• Once all the hierarchy elements have been added, click OK.

• A hierarchy and its elements can be edited by listing the hierarchies associated with a dimension
and using the right-click menu options available in the middle pane.

Copying Dimension Hierarchies from Source

Hierarchies are automatically copied from a source table when the source table is dragged into the
middle pane to create a new Dimension.

To copy the hierarchies from the source objects manually, right-click on a dimension in the Object Pane
and select Hierarchies/Copy Hierarchies from Source. This feature is useful when the source for a
Dimension has been updated to contain new hierarchies.

315

Using a Maintained Hierarchy
Once a hierarchy has been added to a dimension, it can be maintained externally by the hierarchy
maintenance utility if the Maintained attribute is set.
The process for maintaining this hierarchy externally and using it as a source system to the data
warehouse is as follows.

1 Grant the user that is to undertake the maintenance select access to the following tables:
ws_dim_tab, ws_dim_col, ws_hie_header, ws_hie_link, ws_meta_tables.

2 Grant the user that is to undertake the maintenance select access to the dimension that has the
hierarchy.

3 Using the hierarchy maintenance utility (see online documentation) log on to the maintenance area
and create and populate/edit the maintenance table.

4 In WhereScape RED, create a connection to the hierarchy maintenance schema/database.

5 Browse the hierarchy connection.

6 Using drag and drop create a load table from the hierarchy maintenance table.

7 Edit the columns in the dimension that are to be sourced from the maintenance table and change
their source table and column to that of the load table and columns created in step 6.

8 Generate a new update procedure for the Dimension and either do a lookup of the maintenance table
or a join based on the business key.

9 Run the update procedure.

Snowflake
Snowflake schemas normalize dimensions to eliminate redundancy. That is, the dimension data has
been grouped into multiple tables instead of one large table. For example, a product dimension table in
a star schema might be normalized into a products table, a product_category table, and a
product_manufacturer table in a snowflake schema. While this saves space, it increases the number of
dimension tables and requires more foreign key joins. The result is more complex queries and reduced
query performance.

Creating a Snowflake
A snowflake dimensional structure is supported by WhereScape RED. A snowflake can be created for
EDW 3NF or partially EDW 3NF dimension tables. It is created by including the surrogate key of the
parent dimension in the child dimension. In the example below, the dim_state table represents the
parent dimension. The column dim_state_key is added to the child dimension dim_customer. Any fact
tables that include the dim_customer dimension will inherently have a link to the dim_state dimension.

The process for creating a snowflake is as follows:

1 Build both dimensions (see previous sections).

2 Expand dimensions in the left pane.

316

3 Click on the child dimension table in the left pane to display its columns in the middle pane.

4 Browse the data warehouse connection in the right pane.

5 Expand the parent dimension table in the right pane.

6 Drag the surrogate key of the parent dimension table from the right pane to the child dimension's
column list in the middle pane.

7 Create/Recreate the child dimension.

8 Rebuild the child dimension's update procedure.

9 A dialog will now appear asking for the business key column(s) in the child dimension that matches
the business key for the parent dimension:

10 Add the business key column(s) and click OK.

317

Dimension Language Mapping
The Dimension Properties screen has a tab called Language Mapping.

1 Select the language from the drop-down list and then enter the translations for the Business
Display Name and the Description in the chosen language.

2 The translations for these fields can then be pushed through into OLAP cubes.

318

Stage tables are used to transform the data to a star schema or third normal form model. A stage table
can be a fact or EDW 3NF table that only contains change data or a work table. In star schema data
warehouses, the stage table brings all the dimensional joins together in preparation for publishing into
the fact table.

A stage table is built from the Data Warehouse connection. Unless you are retrofitting an existing
system, stage tables are typically built from one or more load tables. They can utilize the surrogate keys
from a number of dimension tables.

The normal steps for creating a stage table are defined below and are covered in this chapter. As the
stage table is essentially a subset of the fact table, the design and creation of the stage table is
essentially the design and creation of the model table. The steps are:

1 Identify the source transactional data that will ultimately constitute the model table. If the data is
sourced from multiple tables ascertain if a join between the source tables is possible, or if a series of
passes will be required to populate the stage table. If the latter option is chosen then bespoke code is
needed.

2 Using the 'drag and drop' functionality drag the table with the lowest granular data into a stage
target. See Building the Stage Table (on page 319).

3 Add columns from other source tables. See Building the Stage Table (on page 319).

4 Create the stage table in the database. See Building the Stage Table (on page 319).

5 Build the update procedure. See Generating the Staging Update Procedure (on page 322).

NOTE: If you are building a Data Vault system, a Stage table with sub type of Data Vault Stage can be
created to generate hash keys that are used in building Data Vault objects (Hub, Link or Satellite tables).
Refer to Data Vaults (on page 402) for details.

In This Chapter

Building the Stage Table .. 319
Generating the Staging Update Procedure ... 322
Stage Table Custom Procedure... 331
Stage Table Column Properties .. 331
Stage Table Column Transformations .. 337
Permanent Stage Tables ... 338
Generating the Permanent Staging Update Procedure .. 339
Set Merge Procedure... 345

C h a p t e r 1 1

Staging

319

Building the Stage Table
Building the stage table is potentially the most challenging part of the overall task of building a data
warehouse analysis area. Most of the effort required is in the design phase, in terms of knowing what
data needs to come into the model table that will be ultimately built. This section assumes that the
decision as to what to include has been made.

Multiple data sources

A stage table typically contains the change data for a detail fact table. As such it normally maps to a
specific function within the business and in many cases relates back to one main OLTP table. In many
cases however it may be necessary to combine information from a number of tables. One of the
decisions required is whether or not it is practical or even possible to join the data from the different
source tables.

We may have to build a model table containing data from invoice headers, invoice lines, order headers
and order lines source tables. There are three basic options:

1 Join all four tables in one large join in our staging table.

2 Update the staging table in two passes. One pass updating the order information and one pass
updating the invoice information.

3 Generate two stage tables, one for order and one for invoice. Use these two staging tables to update
the one sales_detail model table.

Although all three options are viable and a normal situation in the WhereScape RED environment,
options (2) and (3) will require specific coding and modifications to the generated procedures from the
outset (or the use of a custom procedure). Given the example provided option (2) would be the normal
approach, although in some cases option (3) would be valid.

Drag and Drop

The best approach in creating a stage table is to choose the source table that contains the most fields
that we will be using and drag this table into the stage target. Then drag specific columns from the other
source tables until we have all the source data that is required.

The process for defining the metadata is as follows:

1 Double click on the Stage Table object group in the left pane. This will result in all existing stage
tables being displayed in the middle pane. This also sets the middle pane as a stage drop target.

2 Browse the DataWarehouse connection to display our load tables in the right pane. This is achieved
via the Browse/Source Tables menu option and then choosing the DataWarehouse connection.

3 Drag the primary load table (i.e. the one with the most columns, or the lowest data granularity)
from the right pane and drop it in the middle pane. A dialog will appear to create the new staging
object. Leave the object type as Stage Table and change the name to reflect what is being done. For
example in the tutorial the load_order_line table is dropped and a stage table called
stage_sales_detail defined.

4 Once a valid name is entered the properties for the new stage table are displayed. Normally these
would be left unchanged except perhaps for storage settings.

320

5 Once the Properties dialog is closed the columns for the new stage table are displayed in the middle
pane. This middle pane is now considered a drop target for this specific stage table. Any additional
columns or tables dropped into the middle pane are considered additions to this stage table
definition. Any columns that are not required can be deleted at this stage.

6 Drag and drop additional columns from other source tables if appropriate. In the tutorial we would
now drag the customer_code, order_date and ship_date from the load_order_header table.

7 If using surrogate keys, then drag in the model artificial key from each model table that is to be
joined to the stage table. We can only join a model if a business key exists amongst the stage table
columns or it is possible to derive that business key in some way from the columns or other model
tables.

Note: If a column is being used to join information from two or more source tables, that column must
only appear once in the stage table. It is irrelevant which table is used to create the column in the new
stage table.

Once completed our list of columns for the stage table should look something like the list below. Note
the source table for each column.

The source table (src table) reflects where each column was dragged from. In the example above, the
bulk of the columns came from the load_order_header table. Each model artificial key was dragged from
its appropriate table. The final column 'dss_update_time' was generated by RED and has no source.

321

Create the table

Once the stage table has been defined in the metadata we need to physically create the table in the
database.

1 Right-click on the stage table name and selecting Create (ReCreate) from the pop up menu.

2 A results box will appear to show the results of the creation. The following example shows a
successful creation.

The contents of this dialog are a message to the effect that the table was created followed by a copy of
the actual database create statement, and if defined the results of any index creates. For the initial
create no indexes will be defined.

If the table was not created then ascertain and fix the problem. A common problem is a 'Duplicate
column' where a column has been accidentally added twice.

The best way of finding such a column is to double click on the list heading 'Col name'. This will sort the
column names into alphabetic order.

Another double click on the heading will sort the columns back into their create order. Column ordering
can be changed by altering the column order value against a column's properties.

TIP: Double clicking on the heading of a column in a list sorts the list into alphabetical order based
on the column chosen.

The next section covers Generating the Staging Update Procedure (on page 322).

322

Generating the Staging Update Procedure
Once a stage table has been defined in the metadata and created in the data base an update procedure
can be generated to handle the joining of any tables and the lookup of the model table artificial keys.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update Procedures
(on page 181) for details.

Generating a Procedure
1 To generate a procedure, right-click on the stage table in the left pane and select Properties.

2 From the Update Procedure drop-down list, select (Build Procedure...).

3 Click OK to update the properties and start the process of generating the new procedure.

4 A series of prompts are displayed during the procedure generation to join the tables and link in the
model tables.

Procedure type
The first dialog box asks for the type of procedure that is to be generated:

A number of different types of procedure generation are available. Each type is discussed below.

The check box at the bottom of the dialog box is only visible if advanced procedure building features are
enabled. The check box enables editing of the 'Where' clause when no table joining is being performed,
and hence the 'Where' clause would not be exposed.

323

Set based procedure

A set based procedure performs one SQL statement to join all the model and source tables together and
then insert this data into the stage table. This is normally the fastest method of building the stage table.
Caution must be taken in regards to NULL values in the business keys that are used to make the table
joins. The generated code deliberately does not handle such null values.

Set Merge Procedure

This option is to allow the merging of two or more identical tables. The tables to be merged must have
exactly the same number of columns and column names. If necessary additional blank columns could be
added to one or other of the tables to make them identical. To use this procedure you must simply have
the tables to be merged mentioned at least once in the Source Table field of a columns properties. For
more details, see Set Merge Procedure (on page 345).

Set Distinct

Essentially the same as Set, except for the DISTINCT key word being added to the SELECT statement.
This option therefore removes duplicate rows.

Set Minus

The Set Minus option can be used to determine change data or for programmatic referential integrity
checking. This option works in a similar way to Set Merge. It generates SQL code in this form: SELECT
... FROM source_table1 {where} MINUS SELECT ... FROM source_table2 {where}. It requires exactly
two source tables to be specified. All source columns must exist in both source tables.

Locking Request Modifier
Source Table: Specify a locking request modifier to be applied to each source table during generated
update procedures. By default this is set to 'ACCESS' which locks each row being accessed, a blank
entry will result in no locking clause in the generated procedure.

324

Source Table Mapping
If multiple source tables are present then the definition of the joins between the various tables is
required. Note that at this stage we are not joining the model tables. These joins only relate to the
source tables.

The joining of the tables will provide part of the construct of the set based update in the update
procedure.

Only two tables may be joined at a time. To join two tables select the two tables in the left box and click
either the outer join or simple join button. Column lists for both tables will appear at the bottom of the
dialog box. Select the column (or one of the columns) that allows the two tables to be joined. If an outer
join is being used, the column for the master table must be chosen first. If there are multiple columns
joining two tables then this action must be repeated for each column. Continue to perform all joins
between all tables. The example below only has two tables with one join column so is a relatively simple
case. An additional option is available to allow either an ANSI standard join or a 'Where' clause based
join. The ANSI standard join should be chosen in most situations. See the example screen in the
following section.

325

Simple Join

A simple join joins the two tables, and only returns rows where data is matched in both tables. So for
example if table A has 100 rows and table B has a subset of 24 rows. If all the rows in table B can be
joined to table A then 24 rows will be returned. The other 76 rows from table A will not be returned.

Outer Join

An outer join joins the two tables, and returns all rows in the master table regardless of whether or not
they are found in the second table. Therefore, if the example above was executed with table A as the
master table, then 100 rows would be returned. 76 of those rows would have null values for the table B
columns. In the example screen above, the table 'load_order_line' has had its column chosen and the
column for the table 'load_order_header' is currently being chosen. This will result in the statement as
shown in the 'Where' clause edit window. The results of this select are that a row will be added
containing order_line information regardless of whether or not an order_header exists.

As the join columns are selected, the 'Where' statement is built up in the large edit window on the right
side. Once all joins have been made, the contents of this window can be changed if the join statement is
not correct.

Once satisfied with the 'Where' statement, click the OK button to proceed to the next step. As indicated
in its description, this statement is the 'Where' clause that will be applied to the select statement of the
cursor to allow the joining of the various source tables. It can of course be edited in the procedure that is
generated if not correct.

You have the choice between 'Where' statement joins and ANSI standard joins.

326

Note: 'Where' joins are not available if using outer joins in Teradata.

The example below shows the result of an ANSI standard join which takes place in the 'From' statement.

327

Parameter selection
The parameter selection dialog is used for choosing WhereScape RED parameters to be included as
variables in the stage table procedure. Each parameter chosen is included in the procedure as
v_parameter_name, limited to the first 30 characters. For example, parameter
THE_DAY_OF_THE_WEEK_FOR_LOADING_MONTH_END_DATA will be available in the procedure as
v_THE_DAY_OF_THE_WEEK_FOR_LOAD. RED automatically declares this variable and assigns it the
current value of the parameter every time the procedure is run. Parameter variables can be used in
column transformations or 'Where' clauses. A sample dialog box follows:

Note: If the desired parameter doesn't exist in the metadata yet, a new parameter can be added by
clicking on the Add New button on the bottom leftmost corner of the Select Parameters dialog.

328

Model/Dimension Joins
For each model/dimension key a dialog will now appear asking for the business key from the stage table
that matches the business key for the model/dimension.

In the example below, we are asked for the stage table business key for the customer dimension table.
The dimension name is shown both on the first prompt line and at the lower left side of the dialog box.

The customer dimension has a unique business key named customer_code.

We must provide the corresponding business key from the staging table. In the case of our example this
is the customer_code column.

Note: The Add Text button and the associated message and edit box are only shown if the user
possesses a full license, thus enabling the advanced procedure build options. When the Add Text button
is clicked any data in the edit box to the right of the button is placed in the stage table column list. In
this way a number or string can be assigned as part or all of a model join.

1 Click the OK button after the correct business key has been entered.

2 If the business key does not exist and will be derived from another dimension or from some form of
lookup then enter any column and edit the procedure once produced.

329

Model history information
If the model table being joined was defined as a model history table, then an additional dialog will
appear asking for a date in the model table that allows the coordination of the model record changes.
This dialog asks for a date field in the model table that enables RED to determine which version of the
tracked column (the customer_name field, below) to use based on the specified date field.

Select the appropriate date field for your business needs and click OK. If you wish to take the last (or
current) version for the tracked column, select No Date.

For Example:

As seen in the screen above, we have defined the customer_name as an column that we expect to have
versions for over time i.e. each time the data warehouse processing sees a new customer_name value,
the model table will record the date range for that version's validity - even though the business key
(customer_code in this example) remains the same. This implies we want to create a new record in the
model table whenever a customer name is changed even though the customer_code remains the same.
Let's say a customer changes their name on the 5th of the month. If the Staging Table Dates field is set
to order_date, any order received before the 5th of the month is identified under the old customer name
and any order received on or after the 5th has the new customer name.
Alternatively, by setting the Staging Table Dates to ship_date, we can specify that any order shipped
on or after the 5th of the month is shipped with the new name.

330

Building and Compiling the Procedure
• Once the above questions are completed the procedure is built and compiled automatically.

• If the compile fails, an error is displayed along with the first few lines of error messages.

• Compilation failures typically occur when the physical creation of the table was not done.

• If the compile fails for some other reason, the best approach is to use the procedure editor to edit
and compile the procedure.

• The procedure editor will highlight all the errors within the context of the procedure.

• Once the procedure has been successfully compiled it can either be executed interactively or passed
to the scheduler.

331

Stage Table Custom Procedure
A second procedure can be created on every stage table. This is called the custom procedure. Rather
than modifying the generated procedure, it is often more practical to make additions to the generated
code in a separate procedure. This allows for regeneration of the staging table's update procedure
without loosing changes (and having to reapply them).

The generated procedure for a custom procedure is template code. That is, a procedure that declares and
initializes variables, does nothing and returns the correct return code and message for the WhereScape
RED scheduler.

Stage Table Column Properties
Each stage table column has a set of associated properties. The definition of each property is defined
below:

If the Column name or Data type is changed for a column then the metadata will differ from the table
as recorded in the database. Use the Validate/Validate Table Create Status menu option to compare
the metadata to the table in the database. A right-click menu option of Alter Table is available when
positioned on the table name after the validate has completed. This option will alter the database table
to match the metadata definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be altered
in the database. Use the Validate/Validate Table Create Status to compare metadata definitions to
physical database tables. The option also provides the ability to alter the database table, through a
pop-up menu option from the validated table name.

332

A sample Properties screen is as follows:

The two special update keys allow you to update the column and step either forward or backward to the
next column's properties. ALT-Left Arrow and ALT-Right Arrow can also be used instead of the two
special update keys.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. A good practice is to only use alphanumerics, and the
underscore character. Changing this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Title

Name that the business uses to refer to the column. It does not affect the physical table definition, but
rather provides input to the documentation and to the view ws_admin_v_dim_col which can be used to
assist in the population of a end user tool's end user layer. As such it is a free form entry and any
characters are valid.

333

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Description

This field contains the description for the column. It might contain information on where and how the
column was acquired. For example if the column is sourced from multiple tables or is a composite or
derived column then this definition would normally describe the process used to populate the column.
This field is used in the documentation and is available via the view ws_admin_v_dim_col . This field is
also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The lowest
numbered column will appear first in the table. Although this affects the physical table definition no
action will be taken unless the table is re-created in the database. The columns can be re-numbered
based on the existing order by choosing the Respace order number pop-up menu option when
positioned over any column in the table. This action will number the columns in increments of 10
starting at 10. In addition to a simple change of the order field, the column order can be changed by first
displaying the columns in the middle pane and then using drag and drop to move the columns around.
This drag and drop process will automatically renumber the columns as required.

Data Type

Database-compliant data type that must be a valid for the target database. Typical Teradata databases
often have integer, numeric(), varchar(), char(), date and timestamp data types. See the database
documentation for a description of the data types available. Changing this field alters the table's
definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is specified
for the column.

Character Set

Database-compliant table column character-set used for storage. Select Latin or Unicode.

Format

Database-compliant table column format. It does not affect the physical table definition, but rather
provides input to the view ws_admin_v_dim_col which can be used to assist in the population of an end
user tool's end user layer. As such it is a free form entry and any characters are valid. Typically format
masks are only used on numeric fields. Example: #,###0.00. It is not worth the effort of populating this
field unless it can be utilized by the end user tools in use.

334

Character Comparison/Sorting

Determines how the column character values are treated for comparison and sorting operations. Choose
from: case specific, not case specific, uppercase case specific or uppercase not case specific.

Compress

Indicates whether the table column values are compressed when stored.

Compress/Compress Value

Optional list of values to be compressed. By default, only NULL is compressed if no list of values is
specified.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user layer.
The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column can be
summed when performing data grouping in a query. This is normally only relevant for fact tables. It does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tool's end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example, we may have an
order number, or an invoice number stored in the fact table. Such columns are considered attributes,
rather than facts. This checkbox is therefore normally only relevant for fact tables. This checkbox does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tools end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update procedure
build. [Normally maintained automatically]. Multiple columns can form the primary business key. This
indicator is set and cleared by WhereScape RED during the dimension update procedure generation
process. This checkbox should not normally be altered.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested.

The supported values are:

335

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of
any business key. It is considered part of any lookup on that table and has the
key type set to 1. Set when the column is added during drag and drop table
generation.

2 Indicates that this column is a model table join. Used on model tables to
indicate the model keys to other model tables. Results in indexes being defined
for the columns. Set during the update procedure generation for a model table,
based on information from the staging table.

3 Not used in WhereScape RED for Teradata.

4 Not used in WhereScape RED for Teradata.

5 Indicates a column is a start date column.

6 Indicates a column is a end date column.

7 History column indicator. Used on model history tables to indicate that the
column is being managed as a history column within the context of a model
history table. Set when a column is identified during the model history update
procedure generation.

c Change Hash Key column indicator. Used in Data Vault tables to indicate the
differences in the descriptive columns of a Satellite table. Refer to Data
Vaults (on page 402) for details.

h Hub Hash Key column indicator. Used in Data Vault tables to indicate the hash
key column of a Hub Table. Refer to Data Vaults (on page 402) for details.

l Link Hash Key column indicator. Used in Data Vault tables to indicate the hash
key column of a Link Table. Refer to Data Vaults (on page 402) for details

A Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used during
index generation and not normally set.

Key Sources

This field is only displayed for Hash key types. Displays the hash source columns that are used to
generate the selected Hub, Link or Change hash key.

336

Key Source For

This field is only displayed for Hash key types. Displays the hash keys columns that use the displayed
hash key sources.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a load
table or a model table within the data warehouse. If the column was sourced from multiple tables, then
the normal practice is to record one of the tables in this field and a comment listing all of the other
tables in the Source strategy field. This field is used when generating a procedure to update the
dimension. It is also used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a load
table column, which in turn may have been a transformation or the combination of multiple columns.
This may also be a model table key where a model is being joined.

Transformation

Transformation. [Read-only].

Join

Indicates whether the table column is used in a table join. [Normally maintained automatically but can
be optionally changed to override the default join logic used in the generated update procedure]. The
Source table and Source column fields will provide the dimension table's side of the join. The options
for this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the dimension table is looked up during the staging table
update procedure build. It allows you to join the dimension manually in the Cursor mapping dialog
(where the 'Where' clause is built). The usual dialog for matching the dimension business key to a
column or columns in the staging table is not displayed if this option is enabled.

Setting this field to Pre Join activates the Pre Join Source Table field and allows you to select a table
from the drop-down list.

Pre Join Source Table

Indicates the table from which the pre joined column was sourced. When the Join option is set to False,
this field becomes inactive. When the Join option is set to True or Manual, this field is set to the current
table name. When the Join option is set to Pre Join, then you can select the required table from the
drop-down list.

337

Stage Table Column Transformations
Each stage table column can have a transformation associated with it. The transformation will be
included in the generated procedure and will be executed as part of the procedure update.

The transformation must therefore be a valid SQL construct that can be included in a Select statement.

For example we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax column of
12.5%. Click the Transformation tab to enter a transformation.

The transformation screen is as follows:

Note: Transformations are only put into effect when the procedure is re-generated.

See Transformations (on page 593) for more details.

338

Permanent Stage Tables
Normally stage tables have all data removed from them at the start of their update procedure.

Sometimes it's necessary to hold more than a single set of data in a stage table. Permanent stage tables
allow this.

By default, a permanent stage table update does not start with all data being removed. However, options
are available to selectively remove data.

For example, a permanent stage table may be used to hold the last three months source data provide
functionality to remove all data for a day if new data for that day arrives.

339

Generating the Permanent Staging Update Procedure
Once a permanent stage table has been defined in the metadata and created in the data base an update
procedure can be generated to handle the joining of any tables.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update Procedures
(on page 181) for details.

Generating a Procedure
1 To generate a procedure, right-click on the permanent stage table name in the left pane and select

Properties.

2 From the Update Procedure drop-down list select (Build Procedure...).

3 Click OK to update the properties and start the process of generating the new procedure.

4 A series of prompts are displayed during the procedure generation to join the tables and link in the
model tables.

Procedure type

The first dialog box asks for the type of procedure that is to be generated:

A number of different types of procedure generation are available. Each type is discussed below. A check
box appears at the bottom of the dialog if advanced procedure building features are enabled in the
Tools>Options screen. This check box enables the editing of the 'Where' clause when no table joining is
being performed, and hence the 'Where' clause would not be exposed.

340

Set based procedure

A set based procedure performs one SQL statement to join all the source tables together and then insert
this data into the stage table. This is normally the fastest method of building the stage table. Caution
must be taken in regards to NULL values in the business keys that are used to make the table joins. The
generated code deliberately does not handle such null values.

Set Merge Procedure

This option is to allow the merging of two or more identical tables. The tables to be merged must have
exactly the same number of columns and column names. If necessary additional blank columns could be
added to one or other of the tables to make them identical. To use this procedure you must simply have
the tables to be merged mentioned at least once in the Source Table field of a columns properties.

Set Distinct

Essentially the same as Set, except for the DISTINCT key word being added to the SELECT statement.
This options therefore removes duplicate rows.

Set Minus

The Set Minus option can be used to determine change data or for programmatic referential integrity
checking. This option works in a similar way to Set Merge. It generates SQL code in this form: SELECT
... FROM source_table1 {where} MINUS SELECT ... FROM source_table2 {where}. It requires exactly
two source tables to be specified. All source columns must exist in both source tables.

Business Key definition

A dialog will appear asking for the business key that will uniquely identify each permanent stage record.

The source table from which the permanent stage is derived would normally have some form of unique
constraint applied. In most cases this will be the business key.

341

In the example below order_number and order_line_no are selected as the business key.

A business key can be made up of multiple columns, but it must provide a unique identifier. Where
multiple columns uniquely and separately identify the permanent stage, choose one to act as the
primary business key. For example a source table may have a unique constraint on both a product code
and a product description. Therefore the description as well as the code must be unique. It is of course
possible to combine the two columns, but the normal practice would be to choose the code as the
business key.

NULL Values: none of the columns chosen as the business key should ever contain a NULL value. See
the note at the start of this chapter.

342

The Include delete before insert check will display an additional dialog wizard for building the 'Where'
clause of the delete statement; at the start of the update procedure.

Note: If a business key is specified, the generated procedure includes both the update and insert
statement; otherwise only an insert statement is supplied.

Source table joins

If multiple source tables are present then the definition of the joins between the various tables is
required.

The joining of the tables will provide part of the construct of the set based update in the update
procedure.

Only two tables may be joined at a time. To join two tables select the two tables in the left box and click
either the outer join or simple join button. Column lists for both tables will appear at the bottom of the
dialog box.

Select the column (or one of the columns) that allows the two tables to be joined. If an outer join is
being used, the column for the master table must be chosen first. If there are multiple columns joining
two tables then this action must be repeated for each column. Continue to perform all joins between all
tables.

343

The example below only has two tables with one join column so is a relatively simple case. An additional
option is available to allow either an ANSI standard join or a 'Where' clause based join. The ANSI
standard join should be chosen in most situations. See the example screen in the following section.

Simple Join

A simple join joins the two tables, and only returns rows where data is matched in both tables. So for
example if table A has 100 rows and table B has a subset of 24 rows. If all the rows in table B can be
joined to table A then 24 rows will be returned. The other 76 rows from table A will not be returned.

Outer Join

An outer join joins the two tables, and returns all rows in the master table regardless of whether or not
they are found in the second table. Therefore, if the example above was executed with table A as the
master table, then 100 rows would be returned. 76 of those rows would have null values for the table B
columns. In the example screen above the table 'load_order_line' has had its column chosen and the
column for the table 'load_order_header' is currently being chosen. This will result in the statement as
shown in the 'Where' clause edit window. The results of this select are that a row will be added
containing order_line information, regardless of whether or not an order_header exists.

As the join columns are selected, the 'Where' statement is built up in the large edit window on the right.
Once all joins have been made, the contents of this window can be changed if the join statement is not
correct.

Once satisfied with the 'Where' statement click OK to proceed to the next step. As indicated in its
description, this statement is the 'Where' clause that will be applied to the select statement of the cursor

344

to allow the joining of the various source tables. It can of course be edited in the procedure that is
generated if not correct.

You have the choice between 'Where' statement joins and ANSI standard joins.

Note: 'Where' joins are not available if using outer joins in Teradata.

The example below shows the result of an ANSI standard join which takes place in the 'From' statement.

Building and Compiling the Procedure
• Once the above questions are completed the procedure is built and compiled automatically.

• If the compile fails an error will be displayed along with the first few lines of error messages.

• Compilation failures typically occur when the physical creation of the table was not done.

• If the compile fails for some other reason the best approach is to use the procedure editor to edit
and compile the procedure.

• The procedure editor will highlight all the errors within the context of the procedure.

• Once the procedure has been successfully compiled it can either be executed interactively or passed
to the scheduler.

345

Set Merge Procedure
The set merge procedure type allows the merging of two or more identical tables. The tables to be
merged must have exactly the same number of columns and column names.

If necessary additional blank columns could be added to one or other of the tables to make them
identical.

To use this procedure you must simply have the tables to be merged mentioned at least once in the
Source Table field of a columns Properties.

In this example, we will merge three load tables into a single stage table.

1 The browser pane shows the three load tables:

1 Double click on the stage table object group and then drag one of these load tables from the source
pane, into the Stage Object work area.

2 Name the stage table, for example stage_ordersMaster.

3 Next, modify the source table column to include one instance of each of the three load tables; the
order does not matter.

346

You can do this either by typing in the table directly, or by going to each of the column's properties
screen.

4 Right-click on the stage table and select Create (ReCreate).

347

5 Double click on the stage table in the left pane to bring up the Properties dialog.

• Click the Rebuild button to rebuild the stored procedure.

• Select Set Merge as the procedure type.

348

6 The stored procedure is rebuilt, as follows:

349

350

351

In This Chapter

Data Store Objects Overview .. 352
Building a Data Store Object .. 354
Generating the Data Store Update Procedure .. 359
Data Store Artificial Keys ... 367
Data Store Column Properties .. 371
Data Store Column Transformations ... 376

C h a p t e r 1 2

Data Store Objects

352

Data Store Objects Overview
A Data Store Object is a data warehouse object used to store any type of data for later processing. In
WhereScape RED, Data Store objects have many of the code generating attributes of stage, dimension
and fact tables. Data Store objects can be thought of as a source system for the data warehouse.
Alternatively, they may be reported off directly by users and reporting tools. Data Store Objects can be
considered either reference or transactional in nature.

A Data Store Object is built from the Data Warehouse connection. Unless you are retrofitting an existing
system, Data Store Objects are typically built from one or more load or stage tables. The Data Store
model may be retrofitted from an enterprise modeling tool. See Importing a Data Model (on page 986)
for more details.

The usual steps for creating a Data Store model are defined below and are covered in this chapter. The
steps are:

1 Identify the source reference or transactional data that will constitute the Data Store Object. If the
data is sourced from multiple tables ascertain if a join between the source tables is possible, or if one
or more intermediate stage (work) tables would be a better option.

2 Using the 'drag and drop' functionality drag the load or stage table that is the primary source of
information for the Data Store Object into a Data Store target. See Building a Data Store Object (on
page 354).

3 If there's only one source table and all of the columns from it are being used, you can select the auto
create option to build and load the table. This automatically completes the next four steps. See .

4 Add columns from other load and/or stage tables if required. See Building a Data Store Object (on
page 354).

5 Create the Data Store Object in the database. See Building a Data Store Object (on page 354).

6 Build the update procedure. See Generating the Data Store Update Procedure (on page 359).

7 Run the update procedure and analyze the results.

If necessary, modify the update procedure or create a custom procedure.

353

Data Store Object Keys

Data Store Objects have Business Keys, they do not usually have Artificial Keys.

Business Key

The business key is the column or columns that uniquely identify a record within a Data Store Object.
Where the Data Store Object maps back to a single or a main table in the source system, it is usually
possible to ascertain the business key by looking at the unique keys for that source table. The business
key is sometimes referred to as the 'natural' key. Examples of business keys are:

• The product SKU in a product table

• The customer code in a customer table

• The IATA airport code in an airport table.

It is assumed that business keys will never be NULL. If a null value is possible in a business key then the
generated code will need to be modified to handle the null value by assigning some default value. In the
following examples, the business key column is modified by using a database function and default value:

• COALESCE(business_key,'N/A')

Note: Business keys are assumed to never be Null. If they can be null it is best to transform them to
some value prior to the Data Store or stage table update. If this is not done, an un-modified update
procedure will probably fail with a duplicate key error on the business key index.

354

Building a Data Store Object
Data Store Objects are often sourced from one table in the base application. The process for building a
Data Store Object begins with the drag and drop of the load or stage table that contains the bulk of the
Data Store Object's information.

Drag and Drop
1 Create a Data Store Object target by double clicking on the Data Store group in the left pane. The

middle pane will display a list of all existing Data Store Objects in the current project. When this list
is displayed in the middle pane, the pane is identified as a target for new Data Store Objects.

2 Browse to the Data Warehouse via the Browse Connection menu option.

3 Drag the load or stage table that contains the bulk of the Data Store Object columns into the middle
pane.

4 Drop the table anywhere in the pane. The new object dialog box will appear identifying the new
object as a Data Store Object and providing a default name based on the load or stage table name.

5 Either accept this name or enter a name for Data Store Object and click ADD to proceed:

Data Store Object Properties
The table properties dialog for the new table displays.

355

• If required, the Data Store Object can be changed to be a history table by choosing History from the
table type drop-down list on the right side of the dialog. History tables are like slowly changing
dimensions in dimensional data warehouses. See Building a Dimension for more information.
Change the storage options if desired.

• If prototyping, and the Data Store Object is simple (i.e. one source table) then it is possible to create,
load and update the Data Store Object in just a couple of steps.

• If you want to do this, select the (Build Procedure...) option from the Update Procedure
drop-down, and click Create and Load to the next screen.

Create and Load
If you chose to build the update procedure the following dialog appears after clicking OK on the
Properties page. This dialog asks if you want to create the Data Store table in the database and execute
the update procedure.

If you are satisfied with the columns that will be used and do not wish to add any columns you can select
the Create and Load button. Alternatively, the Create button creates the table in the repository but
does not execute an update, allowing you to change columns before loading data into the table.

If Create or Create and Load is selected and a new procedure creation was chosen proceed directly to
the Generating the Data Store Update Procedure (on page 359) section.

If you have additional columns to add or columns to delete, click Close and proceed as below (Deleting
and Changing Columns).

Note: It is possible to create and load the table via the Scheduler; by selecting this option from the
drop-down list on the Create and Load button:

356

357

Deleting and Changing columns
The columns defined for the Data Store Object will be displayed in the middle pane.

• It is possible to delete any unwanted columns by highlighting a column name or a group of names
and clicking the Delete key.

• You can change a column name by selecting the column and using the right-click menu to edit its
properties.

• Any new name must conform to the database naming standards. Good practice is to use
alphanumerics and the underscore character.

• See the section Data Store Column Properties (on page 371) for a full description of fields.

TIP: When prototyping, and in the initial stages of an analysis area build, it is best not to remove
columns, nor to change their names to any great extent. This type of activity is best left until after end
users have used the data and provided feedback.

Adding additional columns
With the Data Store Object columns displayed in the middle pane, this pane is considered a drop target
for additional columns.

• It is simple to select columns from other load and/or stage tables and drag these columns into the
middle pane.

• The source table column in the middle pane shows where each column was dragged from.

• The column description could be acquired from three different tables.

• Best practice is to rename at least two of the columns, perhaps also adding context to the column
name. For example, description could become group_description, and so forth.

• There are a number of WhereScape RED ancillary columns that do not have a source table. These
columns have been added by WhereScape RED, and are added depending on earlier choices.

A description of these columns follows.

Column name Description

dss_start_date Used for history tables. This column provides a date time stamp
when the Data Store Object record came into existence. It is used to
ascertain which Data Store Object record should be used when
multiple are available.

dss_end_date Used for history tables. This column provides a date time stamp
when the Data Store Object record ceased to be the current record.
It is used to ascertain which Data Store Object record should be used
when multiple are available.

358

Column name Description

dss_current_flag Used for Data Store history tables. This flag identifies the current
record where multiple versions exist.

dss_source_system_key Added to support history tables that cannot be fully conformed, and
the inclusion of subsequent source systems. See the ancillary
settings section for more details.

dss_version Used for Data Store history tables. This column contains the version
number of a Data Store history tables record. Numbered from 1
upwards with the highest number being the latest or current
version. It forms part of the unique constraint for the business key
of a Data Store history tables.

dss_update_time Indicates when the record was last updated in the data warehouse.

dss_create_time Indicates when the record was first created in the data warehouse

Create the table
Once the Data Store Object has been defined in the metadata you need to physically create the table in
the database.

1 To do this, right-click on the Data Store Object name and select Create (ReCreate) from the pop-up
menu.

2 The Results pane will display the results of the creation: a copy of the actual database create
statement and if defined the results of any index create statements will be listed. For the initial
create no indexes will be defined.

3 If the table was not created then ascertain and fix the problem. A common problem is a 'Duplicate
column' where a column has the same name in two of the source tables. The best way of finding such
a column is to double click on the list heading Col name. This will sort the column names into
alphabetic order.

4 Another double click on the heading will sort the columns back into their create order.

The next section covers Generating the Data Store Update Procedure (on page 359).

359

Generating the Data Store Update Procedure
Once a Data Store Object has been defined in the metadata and created in the database, an update
procedure can be generated to handle the joining of any tables and the update of the Data Store Object.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update Procedures
(on page 181) for details.

Generating a Procedure
1 To generate a procedure, right-click on the Data Store Object in the left pane and select Properties.

2 Click on the Rebuild button to start the process of generating the new procedure.

3 A series of options are available.

Processing tab

Template: Enables you to generate update procedures via a template (see "Rebuilding Update
Procedures" on page 181).

360

Business Key Columns: Columns that define the business key for update processing. Required for
include Update options.

Clicking on the ellipsis button will bring up the Business Key selection screen.

TIP: Use the column name ascending/descending buttons to sort column names. To revert to the
metadata column order, click on the meta column order button.

A business key can be made up of multiple columns, but it must provide a unique identifier. Where
multiple columns separately uniquely identify rows in the Data Store Object, choose one to act as the
primary business key.

For example, a source table may have a unique constraint on both a product code and a product
description. Therefore, the description as well as the code must be unique. It is of course possible to
combine the two columns, but the normal practice would be to choose the code as the business key.

NULL Values: none of the columns chosen as the business key should ever contain a NULL value.

361

Parameters: Any parameters selected are included in the generated update procedure as variables.

The procedure will include code to retrieve the value of the parameter at run time and store it in the
declared variable.

362

 Clicking on the ellipsis button opens the Parameters selection screen.

The variables can also be used in column transformations and in the from/where clause for the update
procedure. Some databases have a 30 character limit for variable names. WhereScape RED ensures the
variables added for any parameters are less than 30 characters long by creating variable names in the
form v_ followed by the first 28 characters of the parameter name.

For example, a parameter called MINIMUM_ORDER_NUMBER_SINCE_LAST_SOURCE_LOAD will be
available as the variable v_MINIMUM_ORDER_NUMBER_SINCE_L.

TIP1: WhereScape RED parameters should be unique within the first 28 characters to avoid
conflicting variables names.

TIP2: If the desired parameter doesn't exist in the metadata yet, a new parameter can be added by
clicking on the Add New button on the bottom leftmost corner of the Select Parameters dialog.

See Parameters (on page 132) for more information on WhereScape RED Parameters

Include Initial Load Insert: adds an additional insert statement to the update procedure that runs if
the target Data Store is empty. The benefit of this is improved performance inserting into an empty

363

table without performing any checks to see if rows already exist. The default for this field is not set (i.e.
an initial insert statement is not added to the procedure).

Process by Batch: allows users to select a column to drive data processing in a loop based on the
distinct ordered values of the selected Business Key columns. The update procedure loops on this
column and performs the delete, update and/or insert for each value. If the column chosen is a date
datatype (date, datetime or timestamp), then the user is able to specify yearly, monthly, daily or column
level looping. The default for this field is not set (do not do batch processing).

Delete Before Insert: allows selecting how to process deletes. It enables a delete statement to be added
to the update procedure before any update or insert statement. This is a particularly useful option for
purging old data and for updates based on a source system batch number. When this option is selected,
it enables the Issue Warning if a Delete occurs and the Delete Where Clause Fields.

Issue Warning if a Delete occurs: this option sets the procedure to a warning state if any deletes
occur.

Delete Where Clause: the delete where clause is appended to the generated delete statement to
constrain the rows deleted.

Process Method: allows updating the Dimension with either an Insert/Update or a Merge statement.
Merge allows you to use one Merge statement instead of two separate Insert and update statements.

Source Table Locking: allows a locking request modifier to be specified for each source table. The
specified locking request modifier is applied to each source table during generated update procedures.
By default this is set to 'ACCESS' which locks each row being accessed, a blank entry will result in no
locking clause in the generated procedure.

Insert Method

Include Insert Statement: set this field to include the insert statement in the procedure. This allows
inserting new rows in the Data Store.

Insert New Rows Only: uses change detection to work out which rows will require inserting.

New Row Identification Method: method used to identify that records in source are not currently
recorded in the target table. Select Join or Minus.

Include Update Statement: set this field to include an update statement in the procedure. This allows
updating the changing rows in the Data Store. If this is set, the Update Changed Rows Only option is
available.

Update Changed Rows Only: uses change detection to work out what rows require updating. When
set, this option enables the Change Row Identification Method.

Change Row Identification Method: method used to identify that records in source have changed
from what is currently recorded in the target table. Select Join or Minus.

Merge Method

Merge Changed Rows only: uses change detection to work out what rows require merging. When the
option is set, it enables the New Row Identification Method.

364

New Row Identification Method: method used to identify which records in the source are not
recorded or are recorded differently in the target table. Select between Join and Minus.

If non identity columns are used as artificial keys the only new row identification method is Join.

Data Store Update procedures usually perform faster when you use the Join method for new row
identification.

Source tab

Distinct Data Select: ensures duplicate rows are not added to the Data Store. This is achieved by adding
the word DISTINCT to the source select in the update procedure. The default for this field is not set.

Source Join: The From clause, including Source Join information.

Simple Join

A simple join only returns rows where data is matched in both tables. So for example if table A has 100
rows and table B has a subset of 24 rows. If all the rows in table B can be joined to table A then 24 rows
will be returned. The other 76 rows from table A will not be returned.

365

Outer Join

The outer join returns all rows in the master table regardless of whether or not they are found in the
second table. Therefore, if the example above was executed with table A as the master table, then 100
rows would be returned. 76 of those rows would have null values for the table B columns.

Note: When WhereScape RED builds up an outer join, it needs to know which table is the master table
and which is subordinate. Select the join column from the master table first. In the example screen
above the table 'load_order_header' has had its column chosen and the column for the table
'load_order_line' is currently being chosen. This will result in the 'load_order_header' table being defined
as the master, as per the example statement above. The results of this example select are that a row will
be added containing order information regardless of whether or not a corresponding load_order_line
entry exists.

Where Clause: The Where clause. Use as a filter to extract only the necessary records that fulfill a
specified criteria.

Group By: The Group By clause. Use in collaboration with the SELECT statement to arrange identical
data into groups.

Building and Compiling the Procedure
• Once the relevant options are completed, click OK. The procedure will be built and compiled.

• If the compile fails an error will be displayed along with the first few lines of error messages.
Compile fails typically occur when the physical creation of the table was not done.

• If the compile fails for some other reason the best approach is to use the procedure editor to edit
and compile the procedure. The procedure editor will highlight all the errors within the context of
the procedure.

• Once the procedure has been successfully compiled it can either be executed interactively or passed
to the scheduler.

Indexes

By default, a number of indexes will be created to support each Data Store Object. These indexes will be
added once the procedure has been built.

An example of the type of indexes created is as follows:

366

Additional indexes can be added, or these indexes changed. See the chapter on indexes for further
details.

367

Data Store Artificial Keys
By default, Data Store Objects in WhereScape RED do not have an artificial (surrogate) key. Artificial
keys can be added manually, but needing to do so could indicate Data Store Objects are not the correct
WhereScape RED object for this table (perhaps an EDW 3NF Table would be more appropriate).

There is also an option for artificial keys to be automatically added to Data Store tables through an
option in the Tools menu (see below - Allowing for non identity surrogate keys on Data Store tables).

To manually add an extra artificial key column to a Data Store table:
1 Right click in the middle pane and click either Add Column or Duplicate Column.

2 Edit the properties of the new column to have the correct name and order, source table and column,
datatype, key type and flags as below.

3 The Column Name and Source Column should be the same.

4 The Source Table should be empty.

5 The Data Type should be integer.

6 The Key Type should be 0.

7 Only the Numeric and Artificial Key flags should be set.

The following example shows a manually added artificial key column:

368

The artificial key for a Data Store Object is set via an identity column. This artificial key normally, and
by default, starts at one and progresses as far as is required.

A WhereScape standard for the creation of special rows in the EDW 3NF tables is as follows:

Key value Usage

1 upwards The standard artificial keys are numbered from 1 upwards, with a new
number assigned for each distinct Data Store Object record.

0 Used as a join to the Data Store Object when no valid join existed. It is the
convention in the WhereScape generated code that any EDW 3NF table
business key that either does not exist or does not match is assigned to key
0.

-1 through -9 Used for special cases. The most common being where an EDW 3NF table is
not appropriate for the record. A new key is used rather than 0 as we want to
distinguish between records that are invalid and not appropriate.

369

Key value Usage

 -10 backward Pseudo records. In many cases we have to deal with different granularities in
our data. For example we may have a table that contains actual sales at a
product SKU level and budget information at a product group level. The
product table only contains SKU based information. To be able to map the
budget records to the same table, we need to create these pseudo keys that
relate to product groups. The values -10 and backwards are normally used
for such keys.

Artificial keys set via a non identity column:

Data Store Tables can have non identity columns as surrogate keys.

The generation of the update procedure will automatically add logic to the code which will associate a
sequential number to the artificial key when a new row is inserted into the EDW 3NF table.

The order of these sequential numbers is determined by the business key of the source table. The value
of the first newly inserted artificial key will be the value of the highest artificial key in the dimension
table plus 1.

This automatically generated logic can be overwritten by defining a user specific logic on the
Dimension Transformation field on the Tools/Options menu or in the transformation column of the
artificial key.

To have an EDW 3NF table with a non identity column as a surrogate key, you can set the table Data
Type to integer in the Tools/Options menu.

The old logic for dimensions can be retained if an identity column is chosen as surrogate key.

370

Allowing for non identity surrogate keys on Data Store tables:
1 Go to Tools -> Options -> Global Naming Conventions -> Global Name of Key Columns.

2 Expand the Data Store section.

3 Set the Data Store have a Surrogate Key auto added field if you want a surrogate key added by
default to all Data Store tables.

4 Set the Data Store Data Type to be integer and click OK.

5 If your tables have been created previously, you will have to Recreate the tables after you set this
option in the Tools menu.

371

Data Store Column Properties
Each Data Store Object column has a set of associated properties. The definition of each property is
described below:

If the Column name or Data type is changed for a column then the metadata will differ from the table
as recorded in the database. Use the Validate/Validate Table Create Status menu option or the
right-click menu to compare the metadata to the table in the database. A right-click menu option of
Alter table is available when positioned on the table name after the validate has completed. This option
will alter the database table to match the metadata definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be altered
in the database. Use the Validate/Validate Table Create Status to compare metadata definitions to
physical database tables. The option also provides the ability to alter the database table, through a
pop-up menu option from the validated table name.

A sample Properties screen is as follows:

372

The two special update keys allow you to update the column and step either forward or backward to the
next column's properties.
ALT-Left Arrow and ALT-Right Arrow can also be used instead of the two special update keys.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. Typically column-naming standards exclude the use of spaces
etc. A good practice is to only use alphanumerics, and the underscore character. Changing this field
alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Business Display Name

Name that the business uses to refer to the column, which is included in the RED-generated
documentation and can be used in the end user layer of other tools. [Does NOT affect the physical
database table]. As such it is a free form entry and any characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Description

This field contains the description for the column. It may be a description from a business user's point of
view. This field might additionally contain information on where and how the column was acquired. For
example if the column is sourced from multiple tables or is a composite or derived column then this
definition would normally describe the process used to populate the column. This field is used in the
documentation and is available via the view ws_admin_v_dim_col . This field is also stored as a
comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The lowest
numbered column will appear first in the table. Although this affects the physical table definition no
action will be taken unless the table is re-created in the database. The columns can be re-numbered
based on the existing order by choosing the Respace Order Number pop-up menu option when
positioned over any column in the table. This action will number the columns in increments of 10
starting at 10. In addition to a simple change of the order field, the column order can be changed by first
displaying the columns in the middle pane and then using drag and drop to move the columns around.
This drag and drop process will automatically renumber the columns as required.

Data Type

Database-compliant data type that must be a valid for the target database. Typical Teradata databases
often have integer, numeric(), varchar(), char(), date and timestamp data types. See the database

373

documentation for a description of the data types available. Changing this field alters the table's
definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is specified
for the column.

Character Set

Database-compliant table column character-set used for storage. Select Latin or Unicode.

Format

Optional format mask that can be used in end user tools. [Does NOT affect the physical database table].
As such it is a free form entry and any characters are valid. Typically format masks are only used on
numeric fields. Example: #,###0.00. It is not worth the effort of populating this field unless it can be
utilized by the end user tools in use.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user layer.
The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column can be
summed when performing data grouping in a query. This is normally only relevant for fact tables. It does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tool's end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may have an
order number, or a invoice number stored in the fact table. Such columns are considered attributes,
rather than facts. This checkbox is therefore normally only relevant for fact tables. This checkbox does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tools end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update procedure
build. [Normally maintained automatically]. Multiple columns can form the primary business key.

374

Artificial Key

Indicates whether the column is the artificial key. Only one artificial key is supported. This indicator is
set by WhereScape RED during the initial drag and drop creation of a table, and should not normally be
altered.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of
any business key.

A Indicates that the column is part of the primary business key. Set whenever
a business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used
during index generation and not normally set.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a load
table within the data warehouse. If the column was sourced from multiple tables, then the normal
practice is to record one of the tables in this field and a comment listing all of the other tables in the
Source strategy field. This field is used when generating a procedure to update the Data Store object. It
is also used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a load
table column, which in turn may have been a transformation or the combination of multiple columns.
This may also be a dimensional key where a dimension is being joined.

Transformation

Transformation. [Read-only].

Join

Indicates whether the table column is used in a table join. [Normally maintained automatically but can
be optionally changed to override the default join logic used in the generated update procedure]. The
Source Table and Source Column fields will provide the dimension table's side of the join. The options
for this field are: False, True, Manual and Pre Join.

375

Setting this field to Manual changes the way the dimension table is looked up during the update
procedure build. It allows you to join the dimension manually in the Cursor mapping dialog (where the
'Where' clause is built).

Setting this field to Pre Join activates the Pre Join Source Table field and allows you to select a table
from the drop-down list.

Pre Join Source Table

Indicates the table from which the pre joined column was sourced. When the Join option is set to False,
this field becomes inactive. When the Join option is set to True or Manual, this field is set to the current
table name. When the Join option is set to Pre Join, then you can select the required table from the
drop-down list.

376

Data Store Column Transformations
Each Data Store Object column can have a transformation associated with it. The transformation will be
included in the generated procedure and will be executed as part of the procedure update. The
transformation must therefore be a valid SQL construct that can be included in a Select statement.

For example, we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax column of
12.5%.

Click the Transformation tab to enter a transformation.
The transformation screen is as follows:

Note: Transformations are only put into effect when the procedure is re-generated.

See Transformations (on page 593) for more details.

377

NOTE: EDW 3NF/Normalized Table rename

Former WhereScape RED Normalized Tables have been renamed to EDW 3NF from RED version
6.8.4.3.
However, this change applies only for new metadata repositories, existing metadata repositories will not
be affected and will not have its table's naming modified.
All references to Normalized tables have been updated in the RED documentation from version 6.8.4.3
onwards, however, some screenshots of the RED left pane browser might still show instances of the
Normalized object type instead of the new EDW 3NF type.

To modify table naming from Normalized to EDW 3NF in existing repositories see Object Type Names
and Global Naming Conventions.
Please note that short name and table prefixes can be overwritten by the Local Naming conventions
setting in the User Preferences. If this is the case, you can disable this option here: Local Naming
conventions.

In This Chapter

EDW 3NF Tables Overview ... 378
Building EDW 3NF Table ... 380
Generating the EDW 3NF Update Procedure.. 384
EDW 3NF Table Artificial Keys ... 392
EDW 3NF Table Column Properties ... 395
EDW 3NF Table Column Transformations ... 400

C h a p t e r 1 3

EDW 3NF Tables

378

EDW 3NF Tables Overview
An EDW 3NF Table is a data warehouse object used to build third normal form enterprise data
warehouses. In WhereScape RED, EDW 3NF objects have many of the code generating attributes of
stage, dimension and fact tables. Third normal form enterprise data warehouses can be thought of as a
source system for star schema data marts. Alternatively, they may be reported off directly by users and
reporting tools. EDW 3NF Tables can be considered either reference or transactional in nature.

An EDW 3NF Table is built from the Data Warehouse connection. Unless you are retrofitting an existing
system, EDW 3NF Tables are typically built from one or more load or stage tables.
The EDW 3NF model may be retrofitted from an enterprise modeling tool. See Importing a Data Model
(on page 986) for more details.

The usual steps for creating an EDW 3NF model are defined below and are covered in this chapter. The
steps are:

1 Identify the source reference or transactional data that will constitute the EDW 3NF Table. If the
data is sourced from multiple tables ascertain if a join between the source tables is possible, or if one
or more intermediate stage (work) tables would be a better option.

2 Using the 'drag and drop' functionality drag the load or stage table that is the primary source of
information for the EDW 3NF Table into an EDW 3NF target. See Building an EDW 3NF Table (see
"Building EDW 3NF Table" on page 380)

3 If there's only one source table and all of the columns from it are being used, you can select the auto
create option to build and load the table. This automatically completes the next four steps. See
Building an EDW 3NF Table (see "Building EDW 3NF Table" on page 380)

4 Add columns from other load and/or stage tables if required. See Building a EDW 3NF Table (see
"Building EDW 3NF Table" on page 380)

5 Create the EDW 3NF Table in the database. See Building an EDW 3NF Table (see "Building EDW
3NF Table" on page 380)

6 Build the update procedure. See Generating the EDW 3NF Update Procedure (on page 384)

7 Run the update procedure and analyze the results.

If necessary, modify the update procedure or create a custom procedure.

EDW 3NF Table Keys

EDW 3NF Tables have two types of keys that we will refer to frequently. These are the Business Key and
the Artificial Key. A definition of these two key types follows:

Business Key

The business key is the column or columns that uniquely identify a record within an EDW 3NF Table.
Where the EDW 3NF Table maps back to a single or a main table in the source system, it is usually
possible to ascertain the business key by looking at the unique keys for that source table. The business
key is sometimes referred to as the 'natural' key. Examples of business keys are:

379

• The product SKU in a product table

• The customer code in a customer table

• The IATA airport code in an airport table.

It is assumed that business keys will never be NULL. If a null value is possible in a business key then the
generated code will need to be modified to handle the null value by assigning some default value. In the
following examples, the business key column is modified by using a database function and default value:

• COALESCE(business_key,'N/A')

Note: Business keys are assumed to never be Null. If they can be null it is best to transform them to
some value prior to the EDW 3NF or stage table update. If this is not done, an un-modified update
procedure will probably fail with a duplicate key error on the business key index.

Artificial Key

By default, EDW 3NF Tables in WhereScape RED do not have an artificial key (artificial keys can be
added manually or set to be added by default through the Tools menu. See EDW 3NF Table Artificial
Keys for more details.

An artificial key is the unique identifier that can be used to join an EDW 3NF Table record to other EDW
3NF Tables. When joining EDW 3NF Tables it would be possible to perform the join using the business
key. For EDW 3NF Tables that satisfy one of more of the following conditions, joining with business keys
could result in slow query times and excessive use of database storage:

• Multiple column business keys (excessive storage and multiple column joins)

• One or more large character business key columns (excessive storage)

• Very large tables (excessive storage - integer artificial keys often use less space than one small
character field)

• History EDW 3NF Tables (complex joins involving a between dates construct)

As query time is one of our key drivers in data warehouse implementations the best answer is often to
use some form of artificial key. A price is paid in the additional processing required doing key lookups,
but this is offset by the reduced query times and reduced complexity.

The artificial key is an integer and is built sequentially from 1 upwards. See the section on artificial keys
for a more detailed explanation. An artificial key is sometimes referred to as a "surrogate" key.

380

Building EDW 3NF Table
EDW 3NF tables are often sourced from one table in the base application. The process for building an
EDW 3NF table begins with the drag and drop of the load or stage table that contains the bulk of the
EDW 3NF table's information.

Drag and Drop
1 Create an EDW 3NF table target by double clicking on the EDW 3NF group in the left pane. The

middle pane will display a list of all existing EDW 3NF tables in the current project.
When such a list is displayed in the middle pane, the pane is identified as a target for new EDW 3NF
tables.

2 Browse to the Data Warehouse via the Browse/Source Data menu option.

3 Drag the load or stage table, that contains the bulk of the EDW 3NF table columns, into the middle
pane. Drop the table anywhere in the pane.

4 The new object dialog box will appear and will identify the new object as an EDW 3NF table and will
provide a default name based on the load or stage table name.

5 Either accept this name or enter the name of the EDW 3NF table and click ADD to proceed.

EDW 3NF Table Properties

The table properties dialog for the new table is now displayed.

If required, the EDW 3NF table can be changed to be a history table by choosing History from the table
type drop-down list on the right side of the dialog.
History tables are like slowly changing dimensions in dimensional data warehouses. See EDW 3NF
Table Column Properties (on page 395) for more information. Change the storage options if desired.

If prototyping, and the EDW 3NF table is simple (i.e. one source table) then it is possible to create, load
and update the EDW 3NF table in a couple of steps.

381

If you wish to do this select the (Build Procedure...) option from the Update Procedure drop-down,
and answer Create and Load to the next question.

Create and Load

If you chose to build the update procedure the following dialog appears after clicking OK on the
Properties page. This dialog asks if you want to create the EDW 3NF table in the database and execute
the update procedure.

If you are satisfied with the columns that will be used and do not wish to add any columns you can select
the Create and Load button. Alternatively, the Create button creates the table in the repository but
does not execute an update, allowing you to change columns before loading data into the table.
If Create or Create and Load is selected and a new procedure creation was chosen proceed directly to
the Generating the EDW 3NF Update Procedure (on page 384) section.

Note: It is possible to create and load the table via the Scheduler; by selecting this option from the
drop-down list on the Create and Load button:

If you have additional columns to add or columns to delete, then select Finish and proceed as follows.

Deleting and Changing columns

The columns defined for the EDW 3NF table will be displayed in the middle pane. It is possible to delete
any unwanted columns by highlighting a column name or a group of names and clicking the Delete key.
The name of a column can also be changed by selecting the column and using the right-click menu to
edit its properties. Any new name must conform to the database naming standards.

382

Good practice is to use alphanumerics and the underscore character. See the section on column
properties for a fuller description on what the various fields mean.

TIP: When prototyping, and in the initial stages of an analysis area build it is best not to remove
columns, nor to change their names to any great extent. This type of activity is best left until after end
users have used the data and provided feedback.

Adding additional columns

With the columns of the EDW 3NF table displayed in the middle pane, this pane is considered a drop
target for additional columns.

It is a simple matter to select columns from other load and/or stage tables and drag these columns into
the middle pane. The source table column in the middle pane shows where each column was dragged
from. The column description could be acquired from three different tables. The best practice is to
rename at least two of the columns, perhaps also adding context to the column name. For example,
description could become group_description, and so forth.
There are a number of WhereScape RED ancillary columns that do not have a source table. These
columns have been added by WhereScape RED, and are added depending on earlier choices.

A description of these columns follows.

Column name Description

dss_start_date Used for history tables. This column provides a date time stamp
when the EDW 3NF table record came into existence. It is used to
ascertain which EDW 3NF table record should be used when multiple
are available.

dss_end_date Used for history tables. This column provides a date time stamp
when the EDW 3NF table record ceased to be the current record. It is
used to ascertain which EDW 3NF table record should be used when
multiple are available.

dss_current_flag Used for EDW 3NF history tables. This flag identifies the current
record where multiple versions exist.

dss_source_system_key Added to support history tables that cannot be fully conformed, and
the inclusion of subsequent source systems. See the ancillary settings
section for more details.

dss_version Used for EDW 3NF history tables. This column contains the version
number of an EDW 3NF history tables record. Numbered from 1
upwards with the highest number being the latest or current version.
It forms part of the unique constraint for the business key of an EDW
3NF history tables.

dss_update_time Indicates when the record was last updated in the data warehouse.

dss_create_time Indicates when the record was first created in the data warehouse

383

Create the table

Once the EDW 3NF table has been defined in the metadata we need to physically create the table in the
database.
This is achieved by right-clicking on the EDW 3NF table name and selecting Create (ReCreate) from the
pop-up menu.

A results dialog box will appear to show the results of the creation. The contents of this dialog are a
message to the effect that the EDW 3NF table was created.

A copy of the actual database create statement and if defined the results of any index create statements
will be listed. For the initial create no indexes will be defined.

If the table was not created then ascertain and fix the problem. A common problem is a 'Duplicate
column' where a column has the same name in two of the source tables. The best way of finding such a
column is to double click on the list heading 'Col name'. This will sort the column names into alphabetic
order.

Another double click on the heading will sort the columns back into their create order.

The next section covers Generating the EDW 3NF Update Procedure (on page 384).

384

Generating the EDW 3NF Update Procedure
Once an EDW 3NF Object has been defined in the metadata and created in the database, an update
procedure can be generated to handle the joining of any tables and the update of the EDW 3NF Object.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update Procedures
(on page 181) for details.

Generating a Procedure
1 To generate a procedure, right-click on the EDW 3NF Object in the left pane and select Properties.

2 Click on the Rebuild button to start the process of generating the new procedure.

3 A series of options are available.

Processing tab

Template: Enables you to generate update procedures via a template (see "Rebuilding Update
Procedures" on page 181).

Business Key Columns: Columns that define the business key for update processing. Required for
include Update options.

Clicking on the ellipsis button will bring up the Business Key selection screen.

385

TIP: Use the column name ascending/descending buttons to sort column names. To revert to the
metadata column order, click on the meta column order button.

A business key can be made up of multiple columns, but it must provide a unique identifier. Where
multiple columns separately uniquely identify rows in the EDW 3NF Object, choose one to act as the
primary business key. For example a source table may have a unique constraint on both a product code
and a product description. Therefore the description as well as the code must be unique. It is of course
possible to combine the two columns, but the normal practice would be to choose the code as the
business key.

NULL Values: none of the columns chosen as the business key should ever contain a NULL value.

386

Parameters: Any parameters selected are included in the generated update procedure as variables. The
procedure will include code to retrieve the value of the parameter at run time and store it in the declared
variable.

Clicking on the ellipsis button will bring up the Parameters selection screen.
If the desired parameter doesn't exist in the metadata yet, a new parameter can be added by clicking on
the Add New button on the bottom leftmost corner of the Select Parameters dialog.

The variables can also be used in column transformations and in the from/where clause for the update
procedure. Some databases have a 30 character limit for variable names. WhereScape RED ensures the
variables added for any parameters are less than 30 characters long by creating variable names in the
form v_ followed by the first 28 characters of the parameter name.

For example, a parameter called MINIMUM_ORDER_NUMBER_SINCE_LAST_SOURCE_LOAD will be
available as the variable v_MINIMUM_ORDER_NUMBER_SINCE_L.

TIP: WhereScape RED parameters should be unique within the first 28 characters to avoid
conflicting variables names.

See Parameters (on page 132) for more information on WhereScape RED Parameters

387

Include Initial Load Insert: adds an additional insert statement to the update procedure that runs if
the target EDW 3NF table is empty. The benefit of this is improved performance inserting into an empty
table without performing any checks to see if rows already exist. The default for this field is not set (i.e.
an initial insert statement is not added to the procedure).

Process by Batch: allows users to select a column to drive data processing in a loop based on the
distinct ordered values of the selected Business Key columns. The update procedure loops on this
column and performs the delete, update and/or insert for each value. If the column chosen is a date
datatype (date, datetime or timestamp), then the user is able to specify yearly, monthly, daily or column
level looping. The default for this field is not set (do not do batch processing).

Delete Before Insert: allows selecting how to process deletes. It enables a delete statement to be added
to the update procedure before any update or insert statement. This is a particularly useful option for
purging old data and for updates based on a source system batch number. When this option is selected,
it enables the Issue Warning if a Delete occurs and the Delete Where Clause Fields.

Issue Warning if a Delete occurs: this option sets the procedure to a warning state if any deletes
occur.

Delete Where Clause: the delete where clause is appended to the generated delete statement to
constrain the rows deleted.

Process Method: allows updating the EDW 3NF table with either an Insert/Update or a Merge
statement. Merge allows you to use one Merge statement instead of two separate Insert and update
statements.

Source Table Locking: allows a locking request modifier to be specified for each source table. The
specified locking request modifier is applied to each source table during generated update procedures.
By default, this is set to 'ACCESS' which locks each row being accessed, a blank entry will result in no
locking clause in the generated procedure.

Insert Method

Include Insert Statement: set this field to include the insert statement in the procedure. This allows
inserting new rows in the EDW 3NF table.

Insert New Rows Only: uses change detection to work out which rows will require inserting.

New Row Identification Method: method used to identify that records in source are not currently
recorded in the target table. Select Join or Minus.

Include Update Statement: set this field to include an update statement in the procedure. This allows
updating the changing rows in the EDW 3NF table. If this is set, the Update Changed Rows Only
option is available.

Update Changed Rows Only: uses change detection to work out which rows require updating. When
set, this option enables the Change Row Identification Method.

Change Row Identification Method: method used to identify that records in source have changed
from what is currently recorded in the target table. Select Join or Minus.

Merge Method

Merge Changed Rows only: uses change detection to work out what rows require merging. When the
option is set, it enables the New Row Identification Method.

388

New Row Identification Method: method used to identify which records in the source are not
recorded or are recorded differently in the target table. Select between Join and Minus.

If non identity columns are used as artificial keys the only new row identification method is Join.

EDW 3NF Update procedures usually perform faster when you use the Join method for new row
identification.

Source tab

Distinct Data Select: ensures duplicate rows are not added to the EDW 3NF Object. This is achieved by
the word DISTINCT being added to the source select in the update procedure. The default for this field is
off.

Source Join: The From clause, including Source Join information.

Simple Join

A simple join only returns rows where data is matched in both tables. So for example if table A has 100
rows and table B has a subset of 24 rows. If all the rows in table B can be joined to table A, then 24 rows
will be returned. The other 76 rows from table A will not be returned.

389

Outer Join

The outer join returns all rows in the master table, regardless of whether or not they are found in the
second table. Therefore, if the example above was executed with table A as the master table, then 100
rows would be returned. 76 of those rows would have null values for the table B columns.

Note: When WhereScape RED builds up an outer join, it needs to know which table is the master table
and which is subordinate. Select the join column from the master table first. In the example screen
above, the table 'load_order_header' has had its column chosen and the column for the table
'load_order_line' is currently being chosen. This will result in the 'load_order_header' table being defined
as the master, as per the example statement above. The results of this example select are that a row will
be added containing order information regardless of whether or not a corresponding load_order_line
entry exists.

Where Clause: The Where clause.

Group By: The Group By clause.

Building and Compiling the Procedure

• Once the relevant options are completed, click OK. The procedure will be built and compiled.

• If the compile fails an error will be displayed along with the first few lines of error messages.
Compile fails typically occur when the physical creation of the table was not done.

• If the compile fails for some other reason the best approach is to use the procedure editor to edit
and compile the procedure. The procedure editor will highlight all the errors within the context of
the procedure.

• Once the procedure has been successfully compiled it can either be executed interactively or passed
to the scheduler.

Indexes
By default a number of indexes will be created to support each EDW 3NF table.
An example of the type of indexes created is as follows:

390

Additional indexes can be added, or these indexes changed. See the chapter on indexes for further
details.

Converting an existing EDW 3NF Table to a EDW 3NF History Table
To convert a EDW 3NF table to a EDW 3NF history table, change the table type to History, select (Build
Procedure...) from the Update Procedure drop-down list and click OK.

If the existing EDW 3NF table is NOT to be dropped and recreated, then the following process should be
followed:

1 Click Alter on the Adding Additional Columns dialog.

2 Click Alter Table on the Alter Table Commands dialog:

Note: The SQL in this dialog can be edited if required.

391

3 Click OK on all remaining dialogs.

392

EDW 3NF Table Artificial Keys
By default, EDW 3NF tables in WhereScape RED do not have an artificial (surrogate) key. Artificial keys
can be added manually but you can also set an option in the Tools menu to have them automatically
added to new tables as well (see below - Allowing for non identity surrogate keys on EDW 3NF tables).

To manually add an extra artificial key column to an EDW 3NF table:
1 Right click in the middle pane and click either Add Column or Duplicate Column.

2 Edit the properties of the new column to have the correct name and order, source table and column,
datatype, key type and flags as below.

3 The Column Name and Source Column should be the same.

4 The Source Table should be empty.

5 The Data Type should be integer.

6 The Key Type should be 0.

7 Only the Numeric and Artificial Key flags should be set on.

The following example shows a manually added artificial key column:

393

Artificial Keys set via identity columns:

The artificial key for an EDW 3NF table is set via an identity column. This artificial key normally, and by
default, starts at one and progresses as far as is required.

A WhereScape standard for the creation of special rows in the EDW 3NF tables is as follows:

Key value Usage

1 upwards The standard artificial keys are numbered from 1 upwards, with a new
number assigned for each distinct EDW 3NF table record.

0 Used as a join to the EDW 3NF table when no valid join existed. It is the
convention in the WhereScape generated code that any EDW 3NF table
business key that either does not exist or does not match is assigned to key 0.

-1 through -9 Used for special cases. The most common being where an EDW 3NF table is
not appropriate for the record. A new key is used rather than 0 as we want to
distinguish between records that are invalid and not appropriate.

 -10 backward Pseudo records. In many cases we have to deal with different granularities in
our data. For example, we may have a table that contains actual sales at a
product SKU level and budget information at a product group level. The
product table only contains SKU based information. To be able to map the
budget records to the same table, we need to create these pseudo keys that
relate to product groups. The values -10 and backwards are normally used for
such keys.

Artificial keys set via a non identity column:
EDW 3NF Tables can have non identity columns as surrogate keys.

The generation of the update procedure will automatically add logic to the code which will associate a
sequential number to the artificial key when a new row is inserted into the EDW 3NF table.

The order of these sequential numbers is determined by the business key of the source table. The value
of the first newly inserted artificial key will be the value of the highest artificial key in the dimension
table plus 1.

This automatically generated logic can be overwritten by defining a user specific logic on the
Dimension Transformation field on the Tools/Options menu or in the transformation column of the
artificial key.

To have an EDW 3NF table with a non identity column as a surrogate key, you can set the table Data
Type to integer in the Tools/Options menu.

The old logic for dimensions can be retained, if an identity column is chosen as surrogate key.

394

Allowing for non identity surrogate keys on EDW 3NF tables:
• Go to Tools>Options>Global Naming Conventions>Global Name of Key Columns.

• Expand the EDW 3NF section.

• Set the EDW 3NF table to have a Surrogate Key auto added if you want a surrogate key added by
default to all EDW 3NF tables.

• Set the EDW 3NF Data Type to be integer and click OK.

• If your tables have been created previously, you will have to Recreate the tables after you set this
option in the Tools menu.

395

EDW 3NF Table Column Properties
Each EDW 3NF table column has a set of associated properties. The definition of each property is
described below:

If the Column name or Data type is changed for a column then the metadata will differ from the table
as recorded in the database. Use the Validate/Validate Table Create Status menu option or the
right-click menu to compare the metadata to the table in the database. A right-click menu option of
Alter table is available when positioned on the table name after the validate has completed. This option
will alter the database table to match the metadata definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be altered
in the database. Use the Validate/Validate Table Create Status to compare metadata definitions to
physical database tables. The option also provides the ability to alter the database table, through a
pop-up menu option from the validated table name.

A sample Properties screen is as follows:

396

The two special update keys allow you to update the column and step either forward or backward to the
next column's properties.
ALT-Left Arrow and ALT-Right Arrow can also be used instead of the two special update keys.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. A good practice is to only use alphanumerics, and the
underscore character. Changing this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Title

Name that the business uses to refer to the column. It does not affect the physical table definition, but
rather provides input to the documentation and to the view ws_admin_v_dim_col which can be used to
assist in the population of a end user tool's end user layer. As such it is a free form entry and any
characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Description

This field contains the description for the column. It might contain information on where and how the
column was acquired. For example if the column is sourced from multiple tables or is a composite or
derived column then this definition would normally describe the process used to populate the column.
This field is used in the documentation and is available via the view ws_admin_v_dim_col . This field is
also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The lowest
numbered column will appear first in the table. Although this affects the physical table definition no
action will be taken unless the table is re-created in the database. The columns can be re-numbered
based on the existing order by choosing the Respace order number pop-up menu option when
positioned over any column in the table. This action will number the columns in increments of 10
starting at 10. In addition to a simple change of the order field, the column order can be changed by first
displaying the columns in the middle pane and then using drag and drop to move the columns around.
This drag and drop process will automatically renumber the columns as required.

Data Type

Database-compliant data type that must be a valid for the target database. Typical Teradata databases
often have integer, numeric(), varchar(), char(), date and timestamp data types. See the database
documentation for a description of the data types available. Changing this field alters the table's
definition.

397

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is specified
for the column.

Character Set

Database-compliant table column character-set used for storage. Select Latin or Unicode.

Format

Database-compliant table column format. It does not affect the physical table definition, but rather
provides input to the view ws_admin_v_dim_col which can be used to assist in the population of an end
user tool's end user layer. As such it is a free form entry and any characters are valid. Typically format
masks are only used on numeric fields. Example: #,###0.00. It is not worth the effort of populating this
field unless it can be utilized by the end user tools in use.

Character Comparison/Sorting

Determines how the column character values are treated for comparison and sorting operations. Choose
from: case specific, not case specific, uppercase case specific or uppercase not case specific.

Compress

Indicates whether the table column values are compressed when stored.

Compress/Compress Value

Optional list of values to be compressed. By default, only NULL is compressed if no list of values is
specified.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user layer.
The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column can be
summed when performing data grouping in a query. This is normally only relevant for fact tables. It does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tool's end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may have an

398

order number, or a invoice number stored in the fact table. Such columns are considered attributes,
rather than facts. This checkbox is therefore normally only relevant for fact tables. This checkbox does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tools end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

End User Layer display

Indicates whether the table column is available/visible to end users. If set the documentation will
include the column in the glossary and in the user documentation. It is also used to decide what
columns appear in the view ws_admin_v_dim_col. Typically columns such as the artificial key would
not be enabled for end user display.

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update procedure
build. [Normally maintained automatically]. Multiple columns can form the primary business key. This
indicator is set and cleared by WhereScape RED during the dimension update procedure generation
process. This checkbox should not normally be altered.

Artificial Key

Indicates whether the column is the artificial key. Only one artificial key is supported. This indicator is
set by WhereScape RED during the initial drag and drop creation of a table, and should not normally be
altered.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of
any business key.

A Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used
during index generation and not normally set.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a load
table within the data warehouse. If the column was sourced from multiple tables, then the normal
practice is to record one of the tables in this field and a comment listing all of the other tables in the

399

Source strategy field. This field is used when generating a procedure to update the data store object. It
is also used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a load
table column, which in turn may have been a transformation or the combination of multiple columns.
This may also be a model table key where a model is being joined.

Transformation

Transformation. [Read-only].

Join

Indicates whether the table column is used in a table join. [Normally maintained automatically but can
be optionally changed to override the default join logic used in the generated update procedure]. The
Source table and Source column fields will provide the other EDW 3NF table's side of the join. The
options for this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the other EDW 3NF table is looked up during the update
procedure build. It allows you to join the other EDW 3NF table manually in the Cursor mapping dialog
(where the 'Where' clause is built). The usual dialog for matching the other EDW 3NF table's business
key to a column or columns in the table is not displayed if this option is enabled.

Setting this field to Pre Join activates the Join Source field and allows you to select a table from the
drop-down list.

Pre Join Source Table

Indicates the table from which the pre joined column was sourced. When the Join option is set to False,
this field becomes inactive. When the Join option is set to True or Manual, this field is set to the current
table name. When the Join option is set to Pre Join, then you can select the required table from the
drop-down list.

400

EDW 3NF Table Column Transformations
Each EDW 3NF table column can have a transformation associated with it. The transformation will be
included in the generated procedure and will be executed as part of the procedure update. The
transformation must therefore be a valid SQL construct that can be included in a Select statement. For
example we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax column of
12.5%.

Click the Transformation tab to enter a transformation.
The transformation screen is as follows:

Note: Transformations are only put into effect when the procedure is re-generated.

Microsoft Analysis Services 2005+ Tabular Mode Tables: For Tabular Mode table column
transformations, Default DAX is the only applicable Function Set for after load transformations.

401

See Transformations (on page 593) for more details.

402

The Data Vault system is an alternative approach to modelling an enterprise data warehouse that has
been gaining popularity among organizations.

The Data Vault data warehouse architecture was invented by Dan Linstedt to provide an alternative to
the traditional data warehouse modelling approach that includes developing 3rd Normal Form (3NF)
type models or dimensional star schema models. The data vault methodology seeks to improve the
efficiency of data ingestion and the flexibility of structure changes. For more information about Data
Vaults, please refer to Dan Lindstedt’s website (http://danlinstedt.com/solutions-2/data-vault-basics/).

WhereScape RED has been enhanced to expand its current Data Vault functionality and provide
improved automation for creating and managing Data Vault objects in WhereScape RED managed Data
Warehouses. The enhancement includes the following:

• New DSS columns for Load tables

• New Wizard for Hash key generation

• New Wizard for building Hub, Link and Satellite tables

• New Templates for Procedure generation

All these enhancements are designed to be compliant with Data Vault 2.0 standards and are described in
the succeeding sections below.

Note that previous releases of WhereScape RED used a workflow for Data Vault objects that is similar to
the workflow for creating Data Store Objects.

The Hub, Link and Satellite tables are based on standard Load or Stage tables (that do not include the
hash key column type flags) then WhereScape RED reverts to this behaviour and the resulting
procedures are generated by internal WhereScape RED automation and not via templates.

If the above legacy method of creating Data Vault Objects is required, please refer to the Data Store
Objects chapter of this User Guide. You can also refer to the previous version of this User Guide, for
details on the previous process used to import Data Vault objects into WhereScape RED.

For more information on Data Vault design, refer to Building a Scalable Data Warehouse With Data
Vault 2.0 by Daniel Linstedt and Michael Olschimke.

In This Chapter

Data Vault Functions and Features .. 403
Building Data Vault Objects ... 414

C h a p t e r 1 4

Data Vaults

403

Data Vault Functions and Features
The following describe the WhereScape RED functions and features that are used for building Data Vault
objects (Hub, Link and Satellite) to create a Data Vault model.

Load Table Meta Data Columns
The option to add default meta data columns to a new Load table object in WhereScape RED.

If the option Add meta data columns to table is selected, two DSS columns (dss_record_source and
dss_load_date) are included in the meta data for the table and are populated by transformations. Note
that these two DSS columns could equally be applied to other load tables not used in a Data Vault model
but are particularly important to comply with the Data Vault standards.

404

Data Vault Stage Table
WhereScape RED object type called Data Vault Stage table has been introduced:

405

The Data Vault Stage option can now be selected from Table Type drop-down of the Stage Table
Properties screen. This object type is created via a Wizard which is described in the section below.

406

Hash Key Generation Wizard
This Wizard is launched when building a Stage table with Table Type of Data Vault Stage. It enables
you to specify the source columns to be used in defining the Hub, Link and Change hash key columns.

The generated Hash Keys are used to build the Hub, Link and Satellite objects in WhereScapeRED.
The detailed steps for using this Wizard is described in the succeeding section, Creating Data Vault
Stage tables (on page 417).

407

Hub, Link and Satellite Creation Wizard
This Wizard is launched when building a Data Vault object (Hub, Link or Satellite table) by dragging
and dropping the source Data Vault Stage table from the right pane to the middle pane.

The detailed steps for using this Wizard is described in the succeeding section, Creating the Hub, Link
and Satellite Tables (on page 431).

408

Data Vault Templates
Templates are used to generate update procedures for Data Vault objects. Users must select a template
to use when generating the update procedure for Data Vault objects created in WhereScape RED.

The Teradata Data Vault templates are described below:

• wsl_teradata_proc_dv_stage –this template creates a Teradata procedure for updating
WhereScapeRED Data Vault Stage tables.

• wsl_teradata_proc_dv_perm – this template creates a Teradata procedure for updating
WhereScapeRED Data Vault objects (Hub, Link and Satellite tables).

• wsl_teradata_utility_dv – this utility template contains generic Teradata macros that are used by
the other two templates above.

The above templates are available in WhereScape RED version 6.9.1.0 and above. If the templates are
not visible in Template objects list after installing/upgrading WhereScape RED, use the WhereScape
RED Setup Administrator to Validate the MetaData Repository.

Note: Templates for SQL Server and Oracle are also supplied by WhereScape. For other database
types, users need to create/provide their own templates.

A Wizard to generate update procedures via templates is used to populate Data Vault tables. The
detailed steps for using this Wizard is described in the succeeding section, Building Data Vault Objects
(on page 414).

409

Data Vault Settings
Settings for Data Vault objects can be configured from the Tools > Options screen.

Object Types settings:
The Default Sub Type for Stage Table Objects drop-down includes the Data Vault Stage option.

Configure this setting, if you want to set Data Vault Stage to be the default Table Type in the Stage
Table Properties screen.

410

Global Naming Conventions settings:
The Global Naming of Tables setting for Hub, Satellite and Link tables have been set to comply with
the recommended standard naming convention for Data Vault tables. You can edit this setting to suit
your requirements.

411

DSS Tables and Columns settings:
The DSS Columns to Include and Naming setting includes two additional columns which is described
below:

• dss_create_time – this column is added to all Stage, ODS, Normalized, Dimension, Fact and
Aggregate tables for information purposes only. Leave blank to deactivate.

• dss_change_hash – this column is used to identify the differences in the descriptive columns of
a Satellite table which is required for generating the change hash key for a Satellite table.

412

Table Column Properties
The Key Type field drop-down include options for Data Vault hash keys, e.g. Change Hash Key (c),
Hub Hash Key (h) and Link Hash Key (l).

413

Hash Key source information are also displayed for these key types.

• Hash Key Sources – displays the source columns that are used to generate the selected Hub, Link
or Change hash key.

• Hash Key Source For – displays the hash keys columns that use the displayed hash key sources.

The hash key generation Wizard enables you to specify the source columns to be used in defining the
Hub, Link and Change hash key columns. The detailed steps for using this Wizard is described in the
succeeding section, Creating Data Vault Stage Tables (on page 417).

Once the hash key columns have been defined, another Wizard is used to generate the procedure to
populate the columns. The detailed steps for using this Wizard is described in the next section,
Generating Update Procedures for the Data Vault Stage Table (on page 427).

414

Maintain Hash Key Columns
The context menu for Stage Table objects, listed in the left pane provides an option for maintaining
Data Vault hash key columns.

You can review the composition of existing hash keys for a Data Vault Stage table (Hub, Link and
Satellite) and create additional hash keys by selecting the Maintain DV Hash Key Columns option
from the selected Stage Table’s context menu. This launches the hash key generation Wizard which
enables you to maintain the source columns defined for the hash keys.

Note: To remove or change a hash key column, you need to delete it first, e.g. right click the column
listed in the middle pane and then select Delete Column from the context menu.

415

Building Data Vault Objects
To build Data Vault objects (Hub, Link and Satellite) in WhereScape RED, involves the following
procedures.

1 Creating Load Tables with the required DSS columns.

2 Creating Data Vault Stage tables.

3 Generating update procedures for the Stage table via templates.

4 Creating the Hub, Link and Satellite tables.

5 Generating update procedures for the Hub, Link and Satellite tables via templates.

The detailed steps for each procedure are outlined in the following sections.

Creating Load Tables
The following describe the steps for creating a Load table:

1 Browse to the source system connection required (Browse>Source Tables).

2 Double-click the Load Table object group in the left pane, the middle pane displays a list of existing
Load tables.

3 Click the source table from the right pane and drag it to the middle pane. You need to create the
Load table with the required DSS columns—the option to add default meta data columns to the load
table must be selected:

When the build table is performed, the load table created has the two additional columns, which are
populated by transformations:

416

• dss_record_source – the connection or source for the load table.

• dss_load_date – the date when the data was loaded to the table. This is updated every time a
load operation is performed.

417

These DSS columns added, include column description and transformation information.

Creating Data Vault Stage Tables
The following describe the steps for creating a Data Vault Stage table:

418

1 Browse to the Data Warehouse connection to create the Stage table.

2 Double-click the Stage Table object group in the left pane, the middle pane displays a list of
existing Stage tables.

3 Click the source Load table from the right pane and drag it to the middle pane. The selected Load
table must have the required DSS columns (dss_record_source and dss_load_date).

419

4 The Add a New Metadata Object screen appears and classifies the new object as a Stage table. It
provides a default name based on the Load table name. Accept the name or enter a new name for
the Stage table and click ADD to continue.

5 On the Table Properties screen, select the Data Vault Stage option from the Table Type
drop-down.

Notes:

You can set this table type to be the default by configuring the Default Sub Type for Stage Table
Objects setting in the Tools > Options > Object Types > Object Sub Types screen.

 RED displays the name of the previously used update procedure template by default, below the
Update Procedure drop-down.

420

6 Click OK on the Table Properties screen to launch the Wizard that enables you to define the source
columns for the Hub, Link and Change hash key columns.

421

7 Select the source column(s) to use in defining the first Hub hash key. The Hash Key Name is formed
based on the prefix (defined in the Tools > Options > Global Naming Conventions settings) and
the source column(s) name. You can manually amend the name if required.

422

8 Click Add to create the first Hub hash key. Repeat the same steps as required. Once all the required
Hub Hash Keys are created, click Next to progress to the Link hash key generation screen.

423

9 Creating the Link Hash Keys involves the same process, follow the previous steps (6 and 7) to select
multiple source columns to combine to create the Link hash key. Click Add to create the first Link
hash key. Repeat the same steps for any subsequent keys. Once all the required Link Hash Keys are
created, click Next to progress to the Change hash key generation screen.

424

10 Follow the same steps to select the columns to use for the Change Hash Key.

Notes: Creating a Change Hash Key via the new Wizard in WhereScape RED is limited to one key
per Data Vault Stage table. This limitation does not apply for Data Vault models imported from
WhereScape 3D.

The name of the Change hash key column is fixed and cannot be changed on this screen. It is defined
in the Tools > Options > Global Naming Conventions settings.

425

11 Click Finish, once you have defined the required list of descriptive columns for the Change hash key.
The new Stage table is added to the Stage Table objects list in the left pane and the columns
included in the table are listed in the middle pane.

In addition to the columns defined from the Load table, the following columns and their metadata
have been added to the Data Vault Stage table:

• The Hub Hash Keys

• The Link Hash Keys

• The Change Hash Key

• The DSS_CREATE_TIME column

• The DSS_UPDATE_TIME column

The metadata for the hash columns include the source columns that were used to create them (used
to generate the hash keys).

The hash keys created are used in the subsequent Data Vault object (Hub, Links and Satellites)
creation Wizards.

Tip: You can review the composition of existing hash keys for a Data Vault Stage table (Hub, Link
and Satellite) and create additional hash keys by selecting the Maintain DV Hash Key Columns
option from the selected Stage Table’s context menu. This launches the hash key generation
Wizard which enables you to maintain the source columns defined for the hash keys.

Note: To remove or change a hash key column, you need to delete it first, e.g. right click the column
listed in the middle pane and then select Delete Column from the context menu.

426

12 Right-click the new Stage table you defined from the left pane, under the Stage Table objects list
and select Create (ReCreate) from the context menu to create the table.

13 Click Yes on the Primary Index prompt.

14 Specify code on the Primary Index Columns field and then click OK.

427

15 The Results pane displays confirmation that the Stage table was successfully created.

Once the new Data Vault Stage table is defined and created, clicking the Rebuild button on the
Table Properties screen launches the Wizard to generate the procedure to populate the table.
This Wizard utilizes a template to create the procedure.

The detailed steps for using this Wizard is described in the next section, Generating Update
Procedures for the Data Vault Stage Table.

Generating Update Procedures for the Data Vault Stage Table
After successfully defining and creating the Stage table, you can generate the update procedure via a
template to populate the table.

Note: Please ensure that you have installed the WhereScape supplied templates (see "Data Vault
Templates" on page 407) or created your own Data Vault templates, before performing the steps below.

428

1 Click the Rebuild button on the Table Properties screen to launch the procedure generation
Wizard to populate the table.

Note:RED displays the name of the previously used update procedure template by default, below the
Update Procedure drop-down.

429

2 On the Processing tab of Table Update Build Options screen, select the template to use from the
Template drop-down or use the previous update procedure template.

Note that you do not need to define the Business Key Columns because the procedure generation is
based on the defined hash keys.

430

3 Click OK to proceed with the procedure generation. The Results pane displays confirmation that
the procedure was generated.

4 Right-click the Stage table in the left pane, under the Stage Table objects list and select

Code>View update from the context menu to view the contents of the update procedure generated.

431

5 Right-click the Stage table in the left pane and select Execute Update Procedure from the context
menu to run the procedure. The Results pane displays the number of records created.

432

Creating the Hub, Link and Satellite Tables
After successfully creating and populating the Stage table you can now create the Hub, Link and
Satellite tables. The Hub, Link and Change hash keys information stored in the Stage table is used by
the Wizard for building these Data Vault objects.

Creating the Hub table
The following describe the steps for creating a Hub table:

1 Browse to the Data Warehouse connection to create the Hub table.

2 Double-click the Hub object group in the left pane, the middle pane displays a list of existing Hub
tables.

3 Click the source Data Vault Stage table from the right pane and drag it to the middle pane.

4 The Hub table creation Wizard appears and prompts you to select the Hash Key to use from the
Available Hash Keys pane. The columns that comprise the selected Hash Key are displayed under
the Selected Columns pane—these are the columns that will be populated by the Wizard on the
new Hub table.

433

5 Select the Hash Key you want to use from the Available Hash Keys pane to see the columns that
will be included in your Hub table under the Selected Columns pane. Click OK to continue.

6 The Add a New Metadata Object screen appears and classifies the new object as a Hub table. It
provides a default name based on the source Data Vault Stage table name. Accept the name or
enter a new name for the Hub table and click ADD to continue.

434

7 Click the OK button on the Table Properties screen to finish defining the meta data for the Hub
table. The new Hub table is added to the Hub objects list in the left pane and the columns included
in the table are listed in the middle pane.

435

8 Right-click the new Hub table you defined in the left pane and select Create (ReCreate) from the
context menu to create the table.

9 Click Yes on the Primary Index prompt and specify code on the Primary Index Columns field and
then click OK. The Results pane displays confirmation that the Hub table was successfully
created.

After the new Hub table is defined and created, clicking the Rebuild button on the Table Properties
screen launches the Wizard to generate the update procedure to populate the table. This Wizard
utilizes a template to create the procedure.

The detailed steps for using this Wizard is described in the section, Generating Update Procedures
for the Hub, Link and Satellite Tables (see "Generating Update Procedures for Hub, Link and
Satellite Tables" on page Error! Bookmark not defined.).

436

Once you have run the generated update procedures, you can view the generated Hub Hash keys, by
right-clicking the new Hub table you created in the left pane and then selecting Display Data from
the context menu:

437

Creating the Link table
The steps for creating the Link table is similar to the steps used in creating the Hub table:

1 Browse to the Data Warehouse connection to create the Hub table.

2 Double-click the Link object group in the left pane, the middle pane displays a list of existing Link
tables.

3 Click the source Data Vault Stage table from the right pane and drag it to the middle pane.

4 The Link table creation Wizard appears and prompts you to select the Hash Key to use from the
Available Hash Keys pane. The columns that comprise the selected Hash Key are displayed under
the Selected Columns pane—these are the columns that will be populated by the Wizard on the
new Link table.

5 Select the Hash Key you want to use from the Available Hash Keys pane to see the columns that

will be included in your Link table under the Selected Columns pane. Click OK to continue.

438

6 The Add a New Metadata Object screen appears and classifies the new object as a Link table. It
provides a default name based on the source Data Vault Stage table name. Accept the name or
enter a new name for the Link table and click ADD to continue.

7 Click the OK button on the Table Properties screen to finish defining the meta data for the Link

table. The new Link table is added to the Link objects list in the left pane and the columns
included in the table are listed in the middle pane.

8 Right-click the new Link table you defined in the left pane and select Create (ReCreate) from the

context menu to create the table.

439

9 Click Yes on the Primary Index prompt and specify code on the Primary Index Columns field and
then click OK. The Results pane displays confirmation that the Link table was successfully
created.

After the new Link table is defined and created, clicking the Rebuild button on the Table
Properties screen launches the Wizard to generate the update procedure to populate the table.
This Wizard utilizes a template to create the procedure.

The detailed steps for using this Wizard is described in the succeeding section, Generating Update
Procedures for the Hub, Link and Satellite Tables (see "Generating Update Procedures for Hub,
Link and Satellite Tables" on page Error! Bookmark not defined.).

Once you have run the generated update procedures, you can view the generated Link Hash keys, by
right-clicking the new Link table you created in the left pane and then selecting Display Data from
the context menu:

440

Creating the Satellite table
The following describe the steps for creating a Satellite table:

441

1 Browse to the Data Warehouse connection to create the Satellite tables.

2 Double-click the Satellite object group in the left pane, the middle pane displays a list of existing
Satellite tables.

3 Click the source Data Vault Stage table from the right pane and drag it to the middle pane.

4 The Satellite table creation Wizard appears and prompts you to select the Hash Key to use from the
Available Hash Keys pane. The columns that comprise the selected Hash Key are displayed under
the Selected Columns pane—these are the columns that will be populated by the Wizard on the
new Satellite table.

5 Select the Hash Key you want to use from the Available Hash Keys pane to see the columns that

will be included in your Satellite table under the Selected Columns pane. Click OK to continue.

442

6 The Add a New Metadata Object screen appears and classifies the new object as a Satellite table. It
provides a default name based on the source Data Vault Stage table name. Accept the name or
enter a new name for the Satellite table and click ADD to continue.

7 Click the OK button on the Table Properties screen to finish defining the meta data for the Satellite

table. The new Satellite table is added to the Satellite objects list in the left pane and the columns
included in the table are listed in the middle pane.

8 Right-click the new Satellite table you defined in the left pane and select Create (ReCreate) from

the context menu to create the table.

443

9 Click Yes on the Primary Index prompt and specify code on the Primary Index Columns field and
then click OK. The Results pane displays confirmation that the Satellite table was successfully
created.

After the new Satellite table is defined and created, clicking the Rebuild button on the Table
Properties screen launches the Wizard to generate the update procedure to populate the table.
This Wizard utilizes a template to create the procedure.

The detailed steps for using this Wizard is described in the succeeding section, Generating Update
Procedures for the Hub, Link and Satellite Tables (see "Generating Update Procedures for Hub,
Link and Satellite Tables" on page Error! Bookmark not defined.).

Once you have run the generated update procedures, you can view the generated Satellite Hash keys,
by right-clicking the new Satellite table you created in the left pane and then selecting Display Data
from the context menu:

444

Generating Update Procedures for Hub, Link and Satellite Tables
The following describe the steps for generating update procedures via a template.

Hub table
After successfully defining and creating the Hub table, you can generate the update procedure via a
template to populate the table.

445

1 Click the Rebuild button on the Table Properties screen to launch the procedure generation
Wizard to populate the table.

Note:RED displays the name of the previously used update procedure template by default, below the
Update Procedure drop-down.

446

2 On the Processing tab of Table Update Build Options screen, select the template to use from the
Template drop-down or use the previous update procedure template.

3 Click OK to proceed with the procedure generation. The Results pane displays confirmation that the

procedure was generated.

447

4 Right-click the Hub table in the left pane, under the Hub objects list and select Code>View update
from the context menu to view the contents of the update procedure generated.

5 Right-click the Hub table in the left pane and select Execute Update Procedure from the context

menu to run the procedure. The Results pane displays the number of records created.

448

Link and Satellite Tables
Follow the same steps described above to create and execute the update procedures for the Link and
Satellite tables, via a template to populate the tables.

449

Custom1 and Custom2 objects are user defined objects. These Object Types can be renamed in the
Tools/Options/Object Types/Object Names menu.

A Custom object license is required for these object types.

Custom objects have the same options and properties as EDW 3NF tables, for more information see
EDW 3NF Tables (on page 377).

C h a p t e r 1 5

Custom Objects

450

In This Chapter

Model Table Overview .. 451
Building a Model Table ... 453
Generating the Model Table Update Procedure ... 458
Model Table Artificial Keys .. 465
Model Table Custom Procedure ... 466
Model History Tables .. 466
Generating History Table Update Procedures .. 468
Model Table Column Properties ... 471
Model Table Column Transformations .. 476

C h a p t e r 1 6

Model Tables

451

Model Table Overview
Model objects are used to create EDW 3NF models in an enterprise data warehouse. They can contain
surrogate keys to other model tables.

A model is built from the Data Warehouse connection. Unless you are doing a retro-fit of an existing
system, model tables are typically built from one or more stage tables.

The normal steps for creating a model table are defined below and are covered in this chapter. The steps
are:

• Identify the source transactional or reference data that will constitute the model table. If the data is
sourced from multiple tables ascertain if a join between the source tables is possible.

• Using the 'drag and drop' functionality drag the load table that is the primary source of information
for the model table into a model target. See Building a Model Table (on page 453).

• If only one table is being sourced and most of the columns are to be used (or if prototyping) you can
select the auto create option to build and load the model table and skip the next 4 steps. See
Building a Model Table (on page 453).

• Add columns from other load tables if required. See Building a Model Table (on page 453).

• Create the model table in the database. See Building a Model Table (on page 453).

• Build the update procedure. See Generating the Model Table Update Procedure (on page 458).

• Run the update procedure and analyze the results. See Generating the Model Table Update
Procedure (on page 458).

Modify the update procedure as required.

Model Keys

Model tables have up to two types of keys that we will refer to frequently.

These are the Business Key and the Artificial Key. A Definition of these two key types follows:

Business Key

The business key is the column or columns that uniquely identify a record within the model table.
Where the model maps back to a single or a main table in the source system, it is usually possible to
ascertain the business key by looking at the unique keys for that source table. Some people refer to the
business key as the 'natural' key. Examples of business keys are:

• The product SKU in a product model table

• The customer code in a customer model table

• The calendar date in a date model table

• The 24 hour time in a time model table (i.e.HHMM) (e.g.1710)

• The airport short code in an airport model table.

It is assumed that business keys will never be NULL. If a null value is possible in a business key then the
generated code will need to be modified to handle the null value by assigning some default value. For
example the 'Where' clause in a model update may become:

452

Where coalesce(business_key,'N/A') = coalesce (v_LoadRec.business_key,'N/A')

Note: Business keys are assumed to never be Null. If they could be null it is best to transform them to
some value prior to model or stage table update. If this is not done an unmodified update will probably
fail with a duplicate key error on the business key index.

Artificial Key

The artificial key is the unique identifier that is used to join a model table record to another model table.
When joining model tables to other model tables it would be possible to perform the join using the
business key. For model tables with a large number of records this however would result in slow query
times and very large indexes. As query time is one of our key drivers in data warehouse implementations
the best answer is often to use some form of artificial key. A price is paid in the additional processing
required to build the model table rows (particularly high volume transaction model tables rows), but this
is offset by the reduced query times, storage and index sizes.

The artificial key is an integer and is built sequentially from 1 upwards. See the section on artificial keys
for a more detailed explanation. An artificial key is sometimes referred to as a "surrogate" key.

Note: The default behavior of RED can be changed to not automatically add surrogate keys. See Settings
- Repository Attributes and Options (see "Settings - Repository Identification" on page 74).

453

Building a Model Table
Model Tables are often sourced from one table in the base application. The process for building a model
table is the same for most other tables and begins with the drag and drop of the stage table that contains
the bulk of the model information.

Drag and Drop
Create a model target by double clicking on the Dimension object group in the left pane. The middle
pane will display a list of all existing Dimension tables.
Browse to the Data Warehouse via the Browse/Source Data menu option.
Drag the table that contains the bulk of the model table columns, into the middle pane. Drop the table
anywhere in the pane.
The new object dialog box will appear and will identify the new object as a Dimension table and will
provide a default name based on the load table name.
Either accept this name or change the name to reflect the new model table and click OK to proceed.

Model Table Properties
At this stage change the Table type to Model Table and change any other storage options if desired.
If prototyping, and the model table is simple (i.e. one source table) then it is possible to create, load and
update the model table in a couple of steps.
If you want to do this select the (Build Procedure...) option from the 'Update Procedure' drop-down,
and click Create and Load on the next dialog.

454

Create and Load
If you chose to build the update procedure the following dialog appears after clicking OK on the
Properties page. This dialog asks if you want to create the Model table in the database and execute the
update procedure.

If you are satisfied with the columns that will be used and do not wish to add any columns you can select
the Create and Load button. Alternatively, the Create button creates the table in the repository but
does not execute an update, allowing you to change columns before loading data into the table.

455

If Create or Create and Load is selected and a new procedure creation was chosen proceed directly to
the Generating the Model Table Update Procedure (on page 458) section.

If you have additional columns to add or columns to delete then select Close and proceed as follows.

Note: It is possible to create and load the table via the Scheduler; by selecting this option from the
drop-down list on the Create and Load button:

Deleting and Changing columns
The columns defined for the model table will be displayed in the middle pane. At this stage it is possible
to delete any unwanted columns by highlighting a column name or a group of names and clicking the
Delete key.

The name of a column can also be changed at this stage by selecting the column and using the
right-click menu to edit its properties. Any new name must conform to the database naming standards.
Good practice is to use alphanumerics and the underscore character. See the section on column
properties for a fuller description on what the various fields mean.

Note: When prototyping, and in the initial stages of an analysis area build it is best not to remove
columns, nor to change their names to any great extent. This type of activity is best left until after end
users have used the data and provided feedback.

Adding additional columns
With the columns of the model table displayed in the middle pane, this pane is considered a drop target
for additional columns.

It is a simple matter therefore to select columns from other load tables and drag these columns into the
middle pane.

The source table shows where each column was dragged from. Although not the case in the tutorial, it is
often common to have columns of the same name coming from different tables. In the example above
the description column is acquired from the load_product, load_prod_group and load_prod_subgroup

456

tables. In order that the model table can be created we need to assign these columns unique names, so
for this example the last two columns in question have been renamed to group_description and
subgroup_description.

There are a number of columns that do not have a source table. These columns have been added by
WhereScape RED, and are added depending on earlier choices. A description of these columns follows.

Column name Description

model_customer_key The unique identifier (artificial key) for the model table. This key is
used in the joins to the fact table. It is generated via an identity
associated with the table, except for the date model table where it has
the form YYYYMMDD. If you have changed the default behavior of
RED not automatically add surrogate keys, this column will not have
been added. See Settings - Repository Attributes and Options (see
"Settings - Repository Identification" on page 74).

dss_start_date Used for model history tables. This column provides a date time
stamp when the model table record came into existence. It is used to
ascertain which model table record should be used when multiple are
available.

dss_end_date Used for model history tables. This column provides a date time
stamp when the model table record ceased to be the current record. It
is used to ascertain which model table record should be used when
multiple are available.

dss_current_flag Used for model history tables. This flag identifies the current record
where multiple versions exist.

dss_version Used for model history tables. This column contains the version
number of a model table record. Numbered from 1 upwards with the
highest number being the latest or current version. It forms part of
the unique constraint for the business key of a model history table.

dss_update_time Indicates when the record was last updated in the data warehouse.

dss_create_time Indicates when the record was first created in the data warehouse

Create the table
Once the model table has been defined in the metadata we need to physically create the table in the
database. This is achieved by right-clicking on the model name and selecting Create (ReCreate) from
the pop up menu.

A results dialog box will appear to show the results of the creation.

457

The contents of this dialog are a message to the effect that the model table was created. A copy of the
actual database create statement and if defined the results of any index create statements will be listed.
For the initial create no indexes will be defined.

If the table was not created then ascertain and fix the problem. A common problem is a 'Duplicate
column' where a column has the same name in two of the source tables. The best way of finding such a
column is to double click on the list heading 'Col name'. This will sort the column names into alphabetic
order. Another double click on the heading will sort the columns back into their create order.

The next section covers the Generating the Model Table Update Procedure (on page 458).

458

Generating the Model Table Update Procedure
Once a model table has been defined in the metadata and created in the data base an update procedure
can be generated to handle the joining of any tables and the update of the model table records.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update Procedures
(on page 181) for details.

Generating a Procedure
To generate a procedure, right-click on the model table in the left pane and select Properties.
Click on the Rebuild button to start the process of generating the new procedure.
A series of questions will be asked during the procedure generation based on the type of load
information.

Business Key definition
A dialog will appear asking for the business key that will uniquely identify each model table record. The
source table from which the model table is derived would normally have some form of unique constraint
applied. In most cases, this will be the business key. In the example below, the customer code is selected
as the business key.

459

A business key can be made up of multiple columns, but it must provide a unique identifier. Where
multiple columns uniquely and separately identify the model table, choose one to act as the primary
business key. For example, a source table may have a unique constraint on both a product code and a
product description. Therefore, the description as well as the code must be unique. It is of course
possible to combine the two columns, but the normal practice would be to choose the code as the
business key.

None of the columns chosen as the business key should ever contain a NULL value. See the note at the
start of this chapter.

The Include Minus Change Detection checkbox will detect new rows using a minus sub-query rather
than the default where not exists query. Enabling this option can significantly improve performance.

The Use Merge for Update and Insert checkbox will generate merge syntax. This option is only
available for non-history model tables.

460

The Include Separate Initial Build Insert adds a second insert to the procedure to separately insert all
data if the target model table is empty. This significantly improves performance with a large model table
being loaded the first time.

Locking Request Modifier
Source Table: Specify a locking request modifier to be applied to each source table during generated
update procedures. By default, this is set to 'ACCESS' which locks each row being accessed, a blank
entry will result in no locking clause in the generated procedure.

Source Table Mapping
WhereScape RED generates a default update statement with a 'Where' clause to join source and target
tables together. The default update statement can be edited via the following dialog.

461

If there is more than one source table, additional joins will also have to be created. See Joining multiple
source tables below.

Insert query where clause

If multiple source tables were used to build the model table, then a dialog box will appear prompting for
the joins. This applies to the insert statement only in the generated procedure. See Joining multiple
source tables for more information.

462

Joining multiple source tables

The example below shows the joining of the product, prod_line and prod_group tables as supplied with
the tutorial data set.

Select two tables in the left box and then click one of the join buttons. The columns for the two tables
then appear at the bottom of the dialog and one column is selected from each drop-down list to effect
the join between the selected tables. In the example above, the load_product and load_prod_group tables
are joined by two columns namely prod_line and group. In such a case, two joins are actioned for these
two tables, so that both columns can be selected.

Simple Join

A simple join joins the two tables via either a 'Where' clause or from clause join (ANSI). A simple join
only returns rows where data is matched in both tables. So for example, if table A has 100 rows and table
B has a subset of 24 rows. If all the rows in table B can be joined to table A, then 24 rows will be
returned. The other 76 rows from table A will not be returned.

Outer Join

An outer join joins the two tables, and returns all rows in the master table, regardless of whether or not
they are found in the second table. Therefore, if the example above was executed with table A as the
master table then 100 rows would be returned. 76 of those rows would have null values for the table B
columns. When RED builds up a 'Where' clause join, it must place the outer join indicator next to the
appropriate column. RED needs to know which table is master and which subordinate.

Select the join column from the master table first. In the example screen above, the table 'load_product'
has had its column chosen and the column for the table 'load_prod_subgroup' is currently being chosen.

463

This will result in the 'load_product' table being defined as the master, as per the example statement as
shown in the 'Where' clause edit window above.

The results of this example select are that a row will be added containing product information,
regardless of whether or not a corresponding prod_subgroup entry exists.

As the join columns are selected, the join statement is built up in the large edit window on the right.
Once all joins have been made, the contents of this window can be changed if the join statement is not
correct.

Once satisfied with the join clause click the OK button to proceed to the next step. This clause will be a
combined from and 'Where' clause. This clause can of course be edited in the procedure that is
generated if not correct.

Only ANSI Outer Joins are available in Teradata.

Building and Compiling the Procedure
Once the above questions are completed, the procedure is built and compiled automatically. If the
compile fails an error will be displayed along with the first few lines of error messages. Compile fails
typically occur when the physical creation of the table was not done. If the compile fails for some other
reason, the best approach is to use the procedure editor to edit and compile the procedure. The
procedure editor will highlight all the errors within the context of the procedure.

Once the procedure has been successfully compiled it can either be executed interactively or passed to
the scheduler.

Indexes

By default, a number of indexes will be created in the RED meta repository to support the model table.
The primary index is the only Active index. Secondary indexes can add significant performance cost
during updates in Teradata, so these are defined in the RED meta repository but are not active (so are
not created on the table). An example of the type of indexes defined is as follows:

This example shows three indexes being created. They are:

464

1 A primary key constraint placed on the artificial key for the model table.

2 A unique index placed on the business key for the model table.

3 The primary index of the model table.

Only the third kind of index is active. To activate one of the other indexes as a secondary index, click the
active checkbox in the index properties dialog.

Additional indexes can be added, or these indexes changed. See the chapter on indexes for further
details.

465

Model Table Artificial Keys
The artificial (surrogate) key for a model table is set via an identity column. This artificial key normally,
and by default, starts at one and progresses as far as is required.
A WhereScape standard for the creation of special rows in the model table is as follows:

Key value Usage

1 upwards The normal model table artificial keys are numbered from 1 upwards,
with a new number assigned for each distinct model table record.

0 Used as a join to the model table when no valid join existed. It is the
normal convention in the WhereScape generated code that any model
table business key that either does not exist or does not match is
assigned to key 0.

-1 through -9 Used for special cases. The most common being where a model table is
not appropriate for the record. For example, we may have a sales
system that has a promotion model table. Not all sales have
promotions. In this situation it is best to create a specific record in the
model table that indicates that a fact table record does not have a
promotion. The stage table procedure would be modified to assign such
records to this specific key. A new key is used rather than 0 as we want
to distinguish between records that are invalid and not appropriate.

 -10 backward Pseudo records. In many cases, we have to deal with different
granularities in our fact data. For example, we may have a fact table
that contains actual sales at a product SKU level and budget
information at a product group level. The product model table only
contains SKU based information. To be able to map the budget records
to the model table we need to create these pseudo keys that relate to
product groups. The values -10 and backwards are normally used for
such keys. A template called 'Pseudo' is shipped with WhereScape RED
to illustrate the generation of these pseudo records in the model table
table.

466

Model Table Custom Procedure
A second procedure can be created on every model table. This is called the custom procedure. Rather
than modifying the generated procedure, it is often more practical to make additions to the generated
code in a separate procedure. This allows for regeneration of the model table's update procedure without
losing changes (and having to reapply them).

The generated procedure for a custom procedure is template code. That is, a procedure that declares and
initializes a variable, does nothing and returns the correct return code and message for the WhereScape
RED scheduler.

Model History Tables
Model history tables are a special type of model table where new records are created when certain
identified columns in the model table change.

With any model table we identify a business key that uniquely identifies the model table records. For
example in the case of the product model table from the tutorial the product code is deemed to be the
business key. The code uniquely identifies each product within the model table. The product may also
have a name or description and various other attributes that distinguish it. (e.g. Size, shape, color etc.).
A common question when handling model tables is what do we do when the name or description
changes. Do we want to track transactional records in other model table based only on the product code
or do we also want to track records based on different descriptions.

An example:

code description product_group sub_group

1235 15oz can of brussel
sprouts

canned goods sprouts

This product is sold for many years and we consequently have a very good history of sales and the
performance of the product in the market. The company does a '20% extra for free' promotion for 3
months during which time it increases the size of the can to 18oz. The description is also changed to be
'15 + 3oz can of brussel sprouts'. At the end of the promotion the product is reverted to its original size
and the description changed back to its original name.
The question is do we want to track the sales of the product when it had a different description (using a
model history table), or should the description of the product simply change to reflect its current name
(a standard model table).
The decision is not a simple one and the advantages and disadvantages of each of the two choices is
discussed below.

467

Model History Table
• Allows the most comprehensive analysis capabilities when just using the product model table.

• Complicates the analysis. Does not allow a continuous analysis of the product called '15oz can of
brussel sprouts' when the description is used. This analysis is however still available through the
code which has not changed.

• Adds considerable additional processing requirements to the building of any other model tables
joined to this model table.

Model Table
• Does not allow specific analysis of the product during its size change. Note, however that this

analysis will probably be available through the combination of a 'promotion' model table.

• Provides a continuous analysis history for the product called '15oz can of brussel sprouts'. An
analysis via description and code will produce the same results.

• Simplifies analysis from an end user's perspective.

As mentioned above the choice is never a simple one. Even amongst experienced data warehouse
practitioners there will be a variety of opinions. The decision must be based on the business
requirements. In many cases keeping the analysis simple is the best choice, at least in the early stages of
a data warehouse development. Model history tables do have a place, but there is nearly always an
alternate method that provides equal or better results. In the example above a promotion model history
table coupled with the product model table could provide the same analysis results whilst still keeping
product only analysis simple and easy to understand.

468

Generating History Table Update Procedures
Business Key definition

This is almost identical to standard model tables.

An additional check-box, Source System supplied Start and End dates is supplied. This allows for
start and end dates to be specified in the source data.

Source System supplied Start and End dates

If Source System supplied Start and End dates are enabled, the define start and end date dialog is
displayed. Choose the start date first, then the end date and click OK.

469

Default Start and End Dates

The dss_start_date and dss_end_date columns are used to track the start and end dates of history
records. Defaults must be entered to ensure the null values are not placed in these columns. Use the
history records dialog to enter these.

470

The default interval and interval type should also be chosen. These provide the difference between the
end of the previous record and the start of the new record.

History columns

The change detection fields dialog requests the selection of the columns to be managed as history
columns. Select the required columns and click OK to proceed. In the example below; columns
customer_code and customer_name are to be managed as history columns.

Update query statement

This is the same as standard model tables.

Insert query where clause

This is the same as standard model tables.

Joining multiple source tables

This is the same as standard model tables.

471

Model Table Column Properties
Each model table column has a set of associated properties. The definition of each property is described
below:

If the Column name or Data type is changed for a column then the metadata will differ from the table as
recorded in the database. Use the Validate/Validate Table Create Status menu option or the
right-click menu to compare the metadata to the table in the database. A right-click menu option of
Alter table is available when positioned on the table name after the validate has completed. This option
will alter the database table to match the metadata definition.

If a database table's definition is changed in the metadata then the table will need to be altered in
the database. Use the Validate/Validate Table Create Status to compare metadata definitions to
physical database tables. The option also provides the ability to alter the database table, through a
pop-up menu option from the validated table name.

A sample Properties screen is as follows:

472

The two special update keys allow you to update the column and step either forward or backward to the
next columns properties.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. A good practice is to only use alphanumerics, and the
underscore character. Changing this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Title

Name that the business uses to refer to the column. It does not affect the physical table definition, but
rather provides input to the documentation and to the view ws_admin_v_dim_col which can be used to
assist in the population of a end user tool's end user layer. As such it is a free form entry and any
characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Description

This field contains the description for the column. It might contain information on where and how the
column was acquired. For example if the column is sourced from multiple tables or is a composite or
derived column then this definition would normally describe the process used to populate the column.
This field is used in the documentation and is available via the view ws_admin_v_dim_col . This field is
also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The lowest
numbered column will appear first in the table. Although this affects the physical table definition no
action will be taken unless the table is re-created in the database. The columns can be re-numbered
based on the existing order by choosing the Respace order number pop-up menu option when
positioned over any column in the table. This action will number the columns in increments of 10
starting at 10. In addition to a simple change of the order field, the column order can be changed by first
displaying the columns in the middle pane and then using drag and drop to move the columns around.
This drag and drop process will automatically renumber the columns as required.

Data Type

Database-compliant data type that must be a valid for the target database. Typical Teradata databases
often have integer, numeric(), varchar(), char(), date and timestamp data types. See the database
documentation for a description of the data types available. Changing this field alters the table's
definition.

473

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is specified
for the column.

Character Set

Database-compliant table column character-set used for storage. Select Latin or Unicode.

Format

Database-compliant table column format. It does not affect the physical table definition, but rather
provides input to the view ws_admin_v_dim_col which can be used to assist in the population of an end
user tool's end user layer. As such it is a free form entry and any characters are valid. Typically format
masks are only used on numeric fields. Example: #,###0.00. It is not worth the effort of populating this
field unless it can be utilized by the end user tools in use.

Character Comparison/Sorting

Determines how the column character values are treated for comparison and sorting operations. Choose
from: case specific, not case specific, uppercase case specific or uppercase not case specific.

Compress

Indicates whether the table column values are compressed when stored.

Compress/Compress Value

Optional list of values to be compressed. By default, only NULL is compressed if no list of values is
specified.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user layer.
The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column can be
summed when performing data grouping in a query. This is normally only relevant for fact tables. It does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tool's end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may have an

474

order number, or a invoice number stored in the fact table. Such columns are considered attributes,
rather than facts. This checkbox is therefore normally only relevant for fact tables. This checkbox does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tools end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

End User Layer display

Indicates whether the table column is available/visible to end users. If set the documentation will
include the column in the glossary and in the user documentation. It is also used to decide what
columns appear in the view ws_admin_v_dim_col. Typically columns such as the artificial key would
not be enabled for end user display.

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update procedure
build. [Normally maintained automatically]. Multiple columns can form the primary business key. This
indicator is set and cleared by WhereScape RED during the dimension update procedure generation
process. This checkbox should not normally be altered.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part
of any business key. It is considered part of any lookup on that table and
has the key type set to 1. Set when the column is added during drag and
drop table generation.

2 Indicates that this column is a model table join. Used on model tables to
indicate the model keys to other model tables. Results in indexes being
defined for the columns. Set during the update procedure generation for a
model table, based on information from the staging table.

3 Not used in WhereScape RED for Teradata.

4 Not used in WhereScape RED for Teradata.

5 Indicates a column is a start date column.

6 Indicates a column is a end date column.

7 History column indicator. Used on model history tables to indicate that
the column is being managed as a history column within the context of a
model history table. Set when a column is identified during the model
history update procedure generation.

475

Key type Meaning

A Indicates that the column is part of the primary business key. Set
whenever a business key is defined as part of an update procedure
generation.

B-Z Indicates that the column is part of a secondary business key. Only used
during index generation and not normally set.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a load
table, stage table or another model table within the data warehouse. If the column was sourced from
multiple tables, then the normal practice is to record one of the tables in this field and a comment
listing all of the other tables in the Source strategy field. This field is used when generating a procedure
to update the model table. It is also used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a load
table column, which in turn may have been a transformation or the combination of multiple columns.
This may also be a model table key where a model table is being joined.

Transformation

Transformation. [Read-only].

476

Model Table Column Transformations
Each model table column can have a transformation associated with it. The transformation will be
included in the generated procedure and will be executed as part of the procedure update. The
transformation must therefore be a valid SQL construct that can be included in a Select statement. For
example we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax column of
12.5%.

Click the Transformation tab to enter a transformation.
It is possible to do transformations on model table columns. It is recommended that transformations are
not performed on columns that are model keys or the business keys for the table.
The transformation screen is as follows:

Note: Transformations are only put into effect when the procedure is re-generated.

See Transformations (on page 593) for more details.

477

A Fact Table is normally defined, for our purposes, as a table with facts (measures) and dimensional keys
that allow the linking of multiple dimensions. It is normally illustrated in the form of a Star Schema with
the central fact table and the outlying dimensions.

The ultimate goal of the Fact Table is to provide business information to the end user community. In
many cases, different types of fact tables are required to address different end user requirements.

In This Chapter

Detail Fact Tables ... 478
Fact Table Column Properties .. 485
Fact Table Column Transformations.. 491
Fact Table Language Mapping.. 493

C h a p t e r 1 7

Fact Tables

478

Detail Fact Tables
A detail fact table is normally a transactional table that represents the business data at its lowest level of
granularity. In many ways these tables reflect the business processes within the organization. Such fact
tables are usually large and are focused on a specified analysis area.

There may be quite a large number of detail fact tables in a data warehouse implementation, of which
only a few are used on any regular basis by the end user community. The disadvantage of such fact
tables is that they provide isolated pools of information. Although joined by conformed dimensions, it is
still often difficult to answer queries across the various analysis areas. They do however provide the
ultimate drill down for all information and also the platform on which to build higher level and more
complex fact tables. In terms of the time dimension detail fact tables are typically at a daily or even
hourly granular level.

An example of a detail fact table may be the sales, or orders fact tables that have a daily granularity, and
show all sales by product, by customer etc. on a given day.

Creating Detail Fact Tables
A detail fact table is typically created by dragging a staging table onto a fact table list.

In the following example screen the fact table list has been produced by double clicking on the Fact
Table object group under the Sales project. A list is produced showing the existing fact tables.

A fact_sales_detail detail fact table can be created by selecting the stage_sales_detail name in the right
pane of the builder window, holding down the left mouse button and dragging the table into the middle
(fact table list) pane.

Once released, the dialog to create the fact table will start.

479

When a staging table is dragged into the list window (middle pane) all fact tables are by default detail
fact tables. If manually creating a table, then the table type can be selected under the Properties of the
fact table.

Detail Fact Columns

The columns for a detail fact table are typically those of the staging table. Such fact tables typically
contain a wide range of measures and attributes as well as the business keys used to look up the artificial
dimension keys. These business keys should be included whenever possible as they provide a means of
rebuilding the dimensional link. If size prohibits their inclusion it will probably be necessary to backup
or archive all source data to ensure that the fact table can be rebuilt.

These fact tables normally contain a large number of attributes such as dates, which have not been
converted to dimensions. Also contained would be information such as order numbers, invoice numbers
etc.

See the first tutorial for an example of a fact table creation.

Generating the Detail Fact Update Procedure
Once a detail fact table has been defined in the metadata and created in the database, an update
procedure can be generated to handle the update of the fact table.

480

Note: You can also generate an update procedure via a template, refer to Rebuilding Update Procedures
(on page 181) for details.

Generating a Procedure
• To generate a procedure, right-click on the fact table in the left pane and select Properties.

• Click on the Rebuild button to start the process of generating the new procedure.

Define Fact Procedure Type and Options
• The first dialog displayed when generating a detail fact table update procedure is the define Fact

Procedure Type and Options dialog.

• Several other fields need to be set or adjusted on this dialog to ensure the required type of update
procedure is generated.

• Once the required options have been selected, click OK to proceed to the next dialog.

Template
Enables you to generate update procedures via a template (see "Rebuilding Update Procedures" on page
181).

481

Define Fact Business Key Columns
The next dialog displayed is the define fact business key columns dialog, asking for the business key that
will uniquely identify each fact table record. The source table from which the fact table is derived would
normally have some form of unique constraint applied. In most cases this will be the business key. In the
example below the order_numer and order_line_no are selected for the business key list.

TIP: Use the column name ascending/descending buttons to sort column names. To revert to the
meta column order, click on the meta column order button.

A business key can be made up of multiple columns, but it must provide a unique identifier. Where
multiple columns separately uniquely identify rows in the fact table, choose one to act as the primary
business key. For example a source table may have a unique constraint on both a product code and a
product description. Therefore the description as well as the code must be unique.

NULL Values: none of the columns chosen as the business key should ever contain a NULL value.

482

Select Parameters

The next dialog displayed is the Select Parameters dialog. If WhereScape RED parameters exist in the
metadata, the following dialog is displayed. Any parameters selected in this dialog (by moving them to
right side), are included in the generated update procedure as variables. The procedure will include code
to retrieve the value of the parameter at run time and store it in the declared variable.

Select a parameter by clicking on the parameter and then the > arrow to move it to the right column;
then click OK.
If the desired parameter doesn't exist in the metadata yet, a new parameter can be added by clicking on
the Add New button on the bottom leftmost corner of the Select Parameters dialog.

The variables can also be used in column transformations and in the from/where clause for the update
procedure.

Some databases have a 30 character limit for variable names. WhereScape RED ensures the variables
added for any parameters are less than 30 characters long by creating variable names in the form v_
followed by the first 28 characters of the parameter name.

For example, a parameter called MINIMUM_ORDER_NUMBER_SINCE_LAST_SOURCE_LOAD will be
available as the variable v_MINIMUM_ORDER_NUMBER_SINCE_L.

483

TIP: WhereScape RED parameters should be unique within the first 28 characters to avoid
conflicting variables names.

See Parameters (on page 132) for more information on WhereScape RED Parameters.

Include initial load insert

The include initial load insert option adds an additional insert statement to the update procedure that
runs if the target Data Store Object is empty. The benefit of this is improved performance inserting into
an empty table without performing any checks to see if rows already exist. The default for this field is off
(i.e. an initial insert statement is not added to the procedure).

Process by batch

The process by batch field allows the user to select a column to use to break up the data being
processed in a loop based on the distinct values in the column. The update procedure loops on this
column and performs the delete, update and/or insert for each value. If the column chosen is a date
datatype (date, datetime or timestamp), then the user is able to specify yearly, monthly, daily or column
level looping. The default for this field is off (do not do batch processing).

Batch Processing Field - allows selecting a field to batch process on. If you select a date field you will
have the ability to process by date part. If you select a join field to process by you can choose and
attribute of that related table to group by.

Delete before insert

The delete before insert option enables a delete statement to be added to the update procedure before
any update or insert statement. This is a particularly useful option for purging old data and for updates
based on a source system batch number. If this option is set Issue a Warning if a Delete Occurs and
Delete Where Clause fields are enabled.The default for this field is off (i.e. a delete statement is not
added to the procedure).

Truncate - if this option is chosen, the delete is ignored and the Fact Object is truncated.

Issue warning if a delete occurs: sets the procedure to a warning state if any deletes occur.

Delete 'Where' clause: the delete where clause that is appended to the generated delete statement to
constrain the rows deleted.

Update processing

The update process method option allows you to use the Merge statement instead of two separate
Insert and Update statements. The default value for this option is Insert/Update.

Source table locking

This section allows a locking request modifier to be specified for each source table. The specified locking
request modifier is applied to each source table during generated update procedures. By default this is

484

set to 'ACCESS' which locks each row being accessed, a blank entry will result in no locking clause in the
generated procedure.

Insert method

The include insert statement option includes an insert statement in the procedure to insert new rows
in the Fact Object. If this option is chosen, then the New rows only option is available. Choosing this
option, displays the code type drop-down, enabling the generated update statement to use either a
sub-select with except change detection or checksum change detection to work out what rows in the
source table(s) are new. If this option is turned off, the update procedure will not contain an insert
statement. The default for this field is on (i.e. an insert statement is included).

Update method

The include update statement option includes an update statement in the procedure to update
changing rows in the Fact Object. If this option is chosen, then the Changed rows only option is
available. Choosing this option, displays the code type drop-down, enabling the generated update
statement to use either a sub-select with except change detection or checksum change detection to work
out what rows in the Fact Object require updating. If this option is turned off, the update procedure will
not contain an update statement. The default for this field is on (i.e. an update statement is included).

Changed and New Rows Only

Choosing this option, displays the code type drop-down, enabling the generated merge statement to
use either a sub-select with Join change detection or Minus change detection to work out what rows in
the Fact Object are new or which require updating.

Source Tab
This dialog is used to join source tables, add 'Where' clauses and specify group by clauses.

485

Distinct data select

The distinct data select option ensures duplicate rows are not added to the Data Store Object. This is
achieved by the word DISTINCT being added to the source select in the update procedure.

The default for this field is not set (i.e. duplicates are not removed).

As source table joins should have been performed in the stage table, see Generating the Staging Update
Procedure (on page 322) for more details.

486

Fact Table Column Properties
Each fact table column has a set of associated properties. The definition of each property is defined
below.

If the Column name or Data type is changed for a column then the metadata will differ from the table
as recorded in the database.

Use the Validate/Validate Table Create Status menu option to compare the metadata to the table in
the database.

A right-click menu option of Alter table is available when positioned on the table name after the
validate has completed. This option will alter the database table to match the metadata definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be altered
in the database.

Use the Validate/Validate Table Create Status to compare metadata definitions to physical database
tables. The option also provides the ability to alter the database table, through a pop-up menu option
from the validated table name.

A sample Properties screen is as follows:

487

The two special update keys allow you to update the column and step either forward or backward to the
next column's properties.
ALT-Left Arrow and ALT-Right Arrow can also be used instead of the two special update keys.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. Typically column-naming standards exclude the use of spaces
etc. A good practice is to only use alphanumerics, and the underscore character. Changing this field
alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Business Display Name

Name that the business uses to refer to the column, which is included in the RED-generated
documentation and can be used in the end user layer of other tools. [Does NOT affect the physical
database table]. As such it is a free form entry and any characters are valid.

488

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Description

This field contains the description for the column. It may be a description from a business user's point of
view. This field might additionally contain information on where and how the column was acquired. For
example if the column is sourced from multiple tables or is a composite or derived column then this
definition would normally describe the process used to populate the column. This field is used in the
documentation and is available via the view ws_admin_v_dim_col . This field is also stored as a
comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The lowest
numbered column will appear first in the table. Although this affects the physical table definition no
action will be taken unless the table is re-created in the database. The columns can be re-numbered
based on the existing order by choosing the Respace Order Number pop-up menu option when
positioned over any column in the table. This action will number the columns in increments of 10
starting at 10. In addition to a simple change of the order field, the column order can be changed by first
displaying the columns in the middle pane and then using drag and drop to move the columns around.
This drag and drop process will automatically renumber the columns as required.

Data Type

Database-compliant data type that must be a valid for the target database. Typical Teradata databases
often have integer, numeric(), varchar(), char(), date and timestamp data types. See the database
documentation for a description of the data types available. Changing this field alters the table's
definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is specified
for the column.

Format

Optional format mask that can be used in end user tools. [Does NOT affect the physical database table].
As such it is a free form entry and any characters are valid. Typically format masks are only used on
numeric fields. Example: #,###0.00. It is not worth the effort of populating this field unless it can be
utilized by the end user tools in use.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user layer.
The use of this field is not relevant unless it can be utilized by the end user tools.

489

Additive

Indicates whether the table column holds values that are additive. This implies that the column can be
summed when performing data grouping in a query. This is normally only relevant for fact tables. It does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tool's end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may have an
order number, or a invoice number stored in the fact table. Such columns are considered attributes,
rather than facts. This checkbox is therefore normally only relevant for fact tables. This checkbox does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tools end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

End User Layer Display

Indicates whether the table column is available/visible to end users. If set the documentation will
include the column in the glossary and in the user documentation. It is also used to decide what
columns appear in the view ws_admin_v_dim_col. Typically columns such as the artificial key would
not be enabled for end user display.

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update procedure
build. [Normally maintained automatically]. Multiple columns can form the primary business key.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of any
business key. For example: By default the dss_source_system_key is added to
every dimension table. It is considered part of any lookup on that table and has
the key type set to 1. Set when the column is added during drag and drop table
generation.

490

Key type Meaning

2 Indicates that this column is a dimensional join. Used on fact tables to indicate
the dimension keys. Results in bitmap indexes being built for the columns. Set
during the update procedure generation for a fact table, based on information
from the staging table.

3 Slowly changing column indicator. Used on dimension tables to indicate that the
column is being managed as a slowly changing column within the context of a
slowly changing dimension. Set when a column is identified during the dimension
update procedure generation.

4 Previous value column indicator. Used on dimension tables to indicate that the
column is being managed as a previous value column. The source column
identifies the parent column. Set during the dimension creation.

A Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used during
index generation and not normally set.

KPI Column Type

Only used by KPI fact tables. This field defines the column type for the KPI Fact Table. Refer to the KPI
table creation section for more details on this field.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a stage
table within the data warehouse. If the column was sourced from multiple tables, then the normal
practice is to record one of the tables in this field and a comment listing all of the other tables in the
Source strategy field. This field is used when generating a procedure to update the fact table. It is also
used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a stage
table column, which in turn may have been a transformation or the combination of multiple columns.
This may also be a dimensional key where a dimension is being joined.

Transformation

Transformation. [Read-only].

Join

Indicates whether the table column is used in a table join. [Normally maintained automatically but can
be optionally changed to override the default join logic used in the generated update procedure]. The

491

Source Table and Source Column fields will provide the dimension table's side of the join. The options
for this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the dimension table is looked up during the update
procedure build. It allows you to join the dimension manually in the Cursor mapping dialog (where the
'Where' clause is built).

Setting this field to Pre Join activates the Pre Join Source Table field and allows you to select a table
from the drop-down list.

Pre Join Source Table

Indicates the table from which the pre joined column was sourced. When the Join option is set to False,
this field becomes inactive. When the Join option is set to True or Manual, this field is set to the current
table name. When the Join option is set to Pre Join, then you can select the required table from the
drop-down list.

492

Fact Table Column Transformations
Each fact table column can have a transformation associated with it. The transformation will be
included in the generated procedure and will be executed as part of the procedure update.

The transformation must therefore be a valid SQL construct that can be included in a Select statement.

For example we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax column of
12.5%. Click the Transformation tab to enter a transformation.

Note: Transformations are only put into effect when the procedure is re-generated.

Microsoft Analysis Services 2005+ Tabular Mode Tables: For Tabular Mode table column
transformations, Default DAX is the only applicable Function Set for after load transformations.

See Transformations (on page 593) for more details.

493

Fact Table Language Mapping
The Fact Properties screen has a tab called Language Mapping.

Select the language from the drop-down list and then enter the translations for the Business Display
Name and the Description in the chosen language.

The translations for these fields can then be pushed through into OLAP cubes.

494

Two types of aggregate tables are discussed.

The first is where all non-additive facts and one or more dimensions are removed from a fact table.
Typically this results in a smaller table that can answer a subset of the queries that could be posed
against the fact table. This aggregate table still maintains full integrity to the remaining dimensions,
and consequently reflects all changes to those dimensions.

The second type, we will call an aggregate summary, or summary table. This table includes additive
measures and in some cases hierarchical elements of one or more of the dimensions providing a
rolled-up summary of the fact table data. For example we may choose to deal at product group level
rather than product SKU which is the granularity of the dimension.

In This Chapter

Creating an Aggregate Table .. 495
Creating an Aggregate Summary Table .. 496
Aggregate Table Column Properties .. 496
Aggregate Table Column Transformations .. 501

C h a p t e r 1 8

Aggregation

495

Creating an Aggregate Table
1 In the left pane double click on the aggregate group to list the aggregates in the middle pane and set

aggregates as the drop target.

2 From the Data Warehouse browse (right) pane drag a fact table into the middle pane. Remove any
columns that will not make sense at an aggregated level. For example, dss_fact_table_key, any
business keys, any non-additive facts, any measures that relate to detail (e.g. unit price).

3 Create the aggregate table in the database by right-clicking on the aggregate and selecting
Create(ReCreate).

4 Create a procedure to update the aggregate by right-clicking on the aggregate, selecting Properties
and selecting (Build Procedure...) in the Update Procedure field. You will be asked for the date in
the fact table that is to be used as the basis for rebuilding changes in the fact table. The aggregate
update process looks at any records that have been updated in the fact table in the last 7 days (by
default). It then rebuilds all the information for the dates that have been altered.
You will also be asked to specify a locking request modifier to be applied to each source table during
generated update procedures. By default this is set to 'ACCESS' which locks each row being
accessed, a blank entry will result in no locking clause in the generated procedure.

496

Creating an Aggregate Summary Table
The creation of a summary table proceeds initially in the same way as an aggregate table.

1 In the left pane double click on the aggregate group to list the aggregates in the middle pane and set
aggregates as the drop target.

2 From the Data Warehouse browse (right) pane drag a fact table into the middle pane. Remove any
columns that will not make sense at an aggregated level. For example, dss_fact_table_key, any
business keys, any non-additive facts, any measures that relate to detail (e.g. unit price).

3 Drag over columns from dimensions that are linked to the fact table. Delete the dimension keys to
allow a rollup to the level of the dimension elements.

4 In the properties of the aggregate table change the Table Type to Summary.

5 Create the aggregate summary table in the database by right-clicking on the aggregate and selecting
Create(ReCreate).

6 Create a procedure to update the aggregate summary by right-clicking on the aggregate, selecting
Properties and selecting (Build Procedure...) in the Update Procedure field. The aggregate
summary table is totally rebuilt each time the procedure is executed.

Aggregate Table Column Properties
Each aggregate table column has a set of associated properties. The definition of each property is
defined below:

If the Column name or Data type is changed for a column then the metadata will differ from the table
as recorded in the database. Use the Validate/Validate Table Create Status menu option to compare
the metadata to the table in the database. A right-click menu option of Alter Table is available when
positioned on the table name after the validate has completed. This option will alter the database table
to match the metadata definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be altered
in the database. Use the Validate/Validate Table Create Status to compare metadata definitions to
physical database tables. The option also provides the ability to alter the database table, through a
pop-up menu option from the validated table name.

A sample Properties screen is as follows:

497

The two special update keys allow you to update the column and step either forward or backward to the
next column's properties. ALT-Left Arrow and ALT-Right Arrow can also be used instead of the two
special update keys.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. Typically column-naming standards exclude the use of spaces
etc. A good practice is to only use alphanumerics, and the underscore character. Changing this field
alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Business Display Name

Name that the business uses to refer to the column, which is included in the RED-generated
documentation and can be used in the end user layer of other tools. [Does NOT affect the physical
database table]. As such it is a free form entry and any characters are valid.

498

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

499

Column Description

This field contains the description for the column. It may be a description from a business user's point of
view. This field might additionally contain information on where and how the column was acquired. For
example if the column is sourced from multiple tables or is a composite or derived column then this
definition would normally describe the process used to populate the column. This field is used in the
documentation and is available via the view ws_admin_v_dim_col . This field is also stored as a
comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The lowest
numbered column will appear first in the table. Although this affects the physical table definition no
action will be taken unless the table is re-created in the database. The columns can be re-numbered
based on the existing order by choosing the Respace Order Number pop-up menu option when
positioned over any column in the table. This action will number the columns in increments of 10
starting at 10. In addition to a simple change of the order field, the column order can be changed by first
displaying the columns in the middle pane and then using drag and drop to move the columns around.
This drag and drop process will automatically renumber the columns as required.

Data Type

Database-compliant data type that must be a valid for the target database. Typical Teradata databases
often have integer, numeric(), varchar(), char(), date and timestamp data types. See the database
documentation for a description of the data types available. Changing this field alters the table's
definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is specified
for the column.

Format

Optional format mask that can be used in end user tools. [Does NOT affect the physical database table].
As such it is a free form entry and any characters are valid. Typically format masks are only used on
numeric fields. Example: #,###0.00. It is not worth the effort of populating this field unless it can be
utilized by the end user tools in use.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user layer.
The use of this field is not relevant unless it can be utilized by the end user tools.

500

Additive

Indicates whether the table column holds values that are additive. This implies that the column can be
summed when performing data grouping in a query. This is normally only relevant for fact tables. It does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tool's end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may have an
order number, or a invoice number stored in the fact table. Such columns are considered attributes,
rather than facts. This checkbox is therefore normally only relevant for fact tables. This checkbox does
not affect the physical table definition, but rather provides input to the view ws_admin_v_dim_col
which can be used to assist in the population of an end user tools end user layer. The use of this field is
not relevant unless it can be utilized by the end user tools.

End User Layer Display

Indicates whether the table column is available/visible to end users. If set the documentation will
include the column in the glossary and in the user documentation. It is also used to decide what
columns appear in the view ws_admin_v_dim_col. Typically columns such as the artificial key would
not be enabled for end user display.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of any
business key. For example: By default the dss_source_system_key is added to
every dimension table. It is considered part of any lookup on that table and has
the key type set to 1. Set when the column is added during drag and drop table
generation.

2 Indicates that this column is a dimensional join. Used on fact tables to indicate
the dimension keys. Results in bitmap indexes being built for the columns. Set
during the update procedure generation for a fact table, based on information
from the staging table.

3 Slowly changing column indicator. Used on dimension tables to indicate that the
column is being managed as a slowly changing column within the context of a
slowly changing dimension. Set when a column is identified during the dimension
update procedure generation.

501

Key type Meaning

4 Previous value column indicator. Used on dimension tables to indicate that the
column is being managed as a previous value column. The source column
identifies the parent column. Set during the dimension creation.

A Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used during
index generation and not normally set.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a fact
table or a dimension table within the data warehouse. If the column was sourced from multiple tables,
then the normal practice is to record one of the tables in this field and a comment listing all of the other
tables in the Source Strategy field. This field is used when generating a procedure to update the
aggregate table. It is also used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a fact
table column or a dimension table column, which in turn may have been a transformation or the
combination of multiple columns.

Transformation

Transformation. [Read-only].

Join

Indicates whether the table column is used in a table join. [Normally maintained automatically but can
be optionally changed to override the default join logic used in the generated update procedure]. The
Source Table and Source Column fields will provide the dimension table's side of the join. The options
for this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the dimension table is looked up during the update
procedure build. It allows you to join the dimension manually in the Cursor mapping dialog (where the
'Where' clause is built).

Setting this field to Pre Join activates the Pre Join Source Table field and allows you to select a table
from the drop-down list.

Pre Join Source Table

Indicates the table from which the pre joined column was sourced. When the Join option is set to False,
this field becomes inactive. When the Join option is set to True or Manual, this field is set to the current
table name. When the Join option is set to Pre Join, then you can select the required table from the
drop-down list.

502

Aggregate Table Column Transformations
Each aggregate table column can have a transformation associated with it. The transformation will be
included in the generated procedure and will be executed as part of the procedure update. The
transformation must therefore be a valid SQL construct that can be included in a Select statement. For
example we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax column of
12.5%. Click the Transformation tab to enter a transformation.

Note: Transformations are only put into effect when the procedure is re-generated.

See Transformations (on page 593) for more details.

503

Join indexes are used to perform one or more of the following tasks in Teradata:

1 Replicate all or part of a single table using a new primary index

2 Join multiple tables in a pre-join table

3 Aggregates one or more columns of one or more tables

WhereScape RED supports all of these uses.

In This Chapter

Creating a Join Index .. 504

C h a p t e r 1 9

Join Indexes

504

Creating a Join Index
Drag and Drop
1 In the left pane double click on the join index group to list the join indexes in the middle pane and

set join indexes as the drop target.

2 From the Data Warehouse browse (right) pane drag a table into the middle pane.

3 The new object dialog box will appear and will identify the new object as a Join index and will
provide a default name based on the join index name.

4 Either accept this name or enter the name of the join index and click OK to proceed.

Join Index Properties

At this stage change the storage options if desired and click on OK.

If prototyping, and the join index is simple (i.e. one source table) then you can create the join index
automatically by answering Create and Load to the next question and specifying the primary index.
Otherwise proceed to the next section.

Pre-joined Join Indexes

If joining multiple tables in a pre-join table, add the columns from the other tables.

Define the join between the source tables using the 'Where' clause builder (right-click on the join index
and select Build From/Where clause).

505

If aggregation is required, proceed to the next section, otherwise remove any checks from the Sum,
Count and Group by checkboxes on each column of the join index.

Create the join index in the database by right-clicking on the join index and selecting
Create(ReCreate).

506

Aggregated Join Indexes

To build an aggregated join index, edit each column and set the Sum, Count and Group by check-boxes
as appropriate.

Create the aggregate table in the database by right-clicking on the aggregate and selecting
Create(ReCreate).

507

508

Views are normally created to manage locking in Teradata, to join tables together for presentation to
users or to provide additional methods for updating underlying tables. In our tutorials we create a view
on each model table to provide an access path to the model tables with a built in locking clause.

Views can be created from any table type.

In This Chapter

One to One Views ... 509
Model Views for Aliasing .. 512
Compound Views, Facts and Dimensions .. 515
Creating a Custom View ... 521
View Aliases ... 522

C h a p t e r 2 0

Views

509

One to One Views
A one to one view is a database view of a model table. It may be a full or partial view. It is typically used
to provide an access path to the model tables with a built in locking clause.

In many data warehouses views are built as part of the end user layer, but creating them in the data
warehouse means they are available regardless of the end user tools used.

The process for creating a view is as follows:

1 Double click on View in the left pane.

2 Browse to the data warehouse in the right pane.

3 Drag a table from the right pane into the center pane.

• The dialog box that displays defaults the object type to a view.

• Change the view name as required, and click ADD.

4 The View properties dialog displays:

510

Change the following properties, if desired:

• Tick the Distinct Data Select check-box if you want the view to return only distinct values.

• You can enter a From/Where clause, but this can be done later. The ellipses button can be used
to open the From/Where Clause editor dialog:

• The Table Locking Mode can be changed at this point. The default is LOCK ROW FOR ACCESS,

all other Teradata locking modes are available for use.

5 Click OK.

6 A dialog box displays indicating that the view has been defined. Click Create view to create the view
in Teradata.

512

Model Views for Aliasing
A model view is a database view of a model table used to create an alternative logical view of a model
table. It may have some or all columns renamed to match the aliased name of the view. Model Views
may be used to look up surrogate keys when building staging tables.

The process for creating a model view is as follows:

1 Double click on View in the left pane.

2 Browse to the data warehouse in the right pane.

3 Drag a model table from the right pane into the middle pane.

• The dialog box that displays defaults the object type to a view.

• Change the view name as required, and click Add.

4 The View property defaults dialog displays - change the Table Type to Model/Dimension View.

5 Tick the Distinct Data Select check-box if you want the Model/Dimension View to return only
different values.

6 Click OK.

7 The view column definition dialog box is displayed - set the rename values as appropriate.

8 A dialog box displays indicating that the view has been defined - click Create view to create the
view in Teradata.

View Column Re-mapping

The view column definition dialog allows for the automated re-mapping of certain column names. It
provides an easy method for changing the column names for a large number of columns when creating a
view. The various actions undertaken as a result of entries in this dialog can all be done or reversed
manually by changing the individual column properties. The various fields are described below:

513

Remove Column Prefix

If the columns in the source table are prefixed then that prefix can be removed by entering it in this
field. An example may be a date dimension which has each column prefixed with date_ (e.g. date_month,
date_year, etc.). If this field is left blank then no removal action is taken.

Add Column Prefix

If required a prefix can be added to each column name. This is particularly useful when defining a date
dimension view where you would like each column to be prefixed by the date type.

Remove Business Display Prefix

As per the column names it may be required to remove a prefix from the business display fields. If so
enter the prefix to remove in this column.

Add Business Display Prefix

The business display fields are used in the creation of the glossary. It is therefore quite useful to prefix
these display fields with a quire identifier for the view being created. It is assumed that these business
display names will be carried forward to the end user layer. Enter a value in this field to prefix the
business display name fields for each column. It is normal to include a space at the end of this field.

514

Old Column Name

Up to five individual column names can be re mapped. Enter the column name as it appears in the
source table in one of the 'old column name' fields in order to re map that column name. The business
display name is also changed to match.

New Column Name

Place a new column name alongside any existing column name you wish to re map. in the example
dialog above a column named 'calendar_date' is being renamed to 'order_date' in the view.

515

Compound Views, Facts and Dimensions
A compound view is used to join tables and views together for presentation to users. They simplify user
access, particularly if multiple model history tables need to be accessed in a single query.

The process for creating a compound view is as follows:

1 Double click on View in the left pane.

2 Browse to the data warehouse in the right pane.

3 Drag an existing one-to-one view from the right pane into the center pane. Change the view name as
required, click ADD.

4 The view property defaults dialog will appear. A 'Where' clause could be entered, but this can be
done later using the 'Where' clause builder. The table locking mode can also be changed at this
point. The default is lock for access, all other Teradata locking modes are available for use. Change
the table type to be a dimension view or fact view (as appropriate) if a star schema presentation
layer is being built.

Note: You will need to create fact and dimension views to use Analysis Services Cubes.

5 Tick the Distinct Data Select check-box if you want the view to return only distinct values.

6 Click OK and then Finish, not creating the view for now.

7 Add additional columns from other existing one-to-one views from the right pane into the center
pane.

516

Join the source objects

If columns from more than one table or view have been added, then we have to define the joins between
the source objects. This is achieved by right-clicking on the view name and selecting Build
From/Where clause from the pop up menu.

To join tables, select the tables in the left box and click either the Outer Join or Simple Join button.
Column lists for both tables will appear at the bottom of the dialog box. Select the column (or one of the
columns) that allows the two tables to be joined. If an outer join is being used, the column for the
master table must be chosen first. If there are multiple columns joining two tables then this action must
be repeated for each column. Continue to perform all joins between all tables. The example below only
has two tables with one join column so is a relatively simple case. An additional option is available to
allow either an ANSI standard join or a 'Where clause' based join. The ANSI standard join should be
chosen in most situations. See the example screen in the following section.

Simple Join

A simple join joins the two tables, and only returns rows where data is matched in both tables. So for
example if table A has 100 rows and table B has a subset of 24 rows. If all the rows in table B can be
joined to table A then 24 rows will be returned. The other 76 rows from table A will not be returned.

Outer Join

An outer join joins the two tables, and returns all rows in the master table regardless of whether or not
they are found in the second table. So if the example above was executed with table A as the master
table then 100 rows would be returned. 76 of those rows would have null values for the table B columns.
In the example screen above the table 'load_order_line' has had its column chosen and the column for

517

the table 'load_order_header' is currently being chosen. This will result in the statement as shown in the
'Where' clause edit window. The results of this select are that a row will be added containing order_line
information regardless of whether or not an order_header exists.

As the join columns are selected the 'Where' statement is built up in the large edit window on the right.
Once all joins have been made the contents of this window can be changed if the join statement is not
correct.

Once satisfied with the 'Where' statement click the OK button to proceed to the next step. As indicated
in its description this statement is the 'Where' clause that will be applied to the select statement of the
cursor to allow the joining of the various source tables. It can of course be edited in the procedure that is
generated if not correct.

You have the choice between 'Where' statement joins and ANSI standard joins.

Note: 'Where' joins are not available if using outer joins in Teradata.

The example below shows the result of an ANSI standard join which takes place in the 'From' statement.

Create the view

Once the view has been defined in the metadata we need to physically create the view in the database.
This is achieved by using the right-clicking on the view name and selecting Create (ReCreate) from the
pop up menu.

518

The output from the creation are visible in the output windows. The following example shows a
successful creation.

The contents of this window are a message to the effect that the view was created followed by a copy of
the actual database create statement.

If the view was not created then ascertain and fix the problem. A common problem is a 'Duplicate
column' where a column has been accidentally added twice. The best way of finding such a column is to
double click on the list heading Col name. This will sort the column names into alphabetic order.
Another double click on the heading will sort the columns back into their create order. Column ordering
can be changed by altering the column order value against a column's properties.

TIP: Double clicking on the heading of a column in a list sorts the list into alphabetical order based
on the column chosen.

519

Dimension View Hierarchies
The various hierarchies associated with a dimension view can be recorded in the WhereScape RED
metadata. These hierarchies are often not used in any form, except to provide documentary
completeness and for creating Analysis Services OLAP Cubes.

Adding a Dimension View Hierarchy
Any number of hierarchies can be created against a dimension view. There is no restriction on the form
of the hierarchy. To add a new hierarchy, position on the dimension view in the left pane and using the
right-click menu, select Hierarchies/Add Hierarchy. The following dialog will appear.

520

1 Enter a meaningful name for the hierarchy.

2 Enter a meaningful description for the hierarchy. This description is carried through into the
Hierarchy Description field of any OLAP Dimensions that are built from the original Dimension
object.

Note: The description text is automatically set to "Added at dimension creation for cube support" but
this can be edited to match the user's intended description.

The hierarchy is built with the highest level at the top; for example a customer dimension view may
have state at the highest level, then city, then address and finally code at the lowest level.

To enter the hierarchy elements, select them in the required order, from the left pane and click > to add
them to the right column. Once all the hierarchy elements have been added, click OK.

A hierarchy and its elements can be edited by listing the hierarchies associated with a dimension and
using the right-click menu options available in the middle pane.

521

Creating a Custom View
A custom view can be created within RED to handle views that are not strictly one to one such as where
multiple tables are joined or where a complex condition is placed on the view. There are two options for
custom views, the first where the columns are defined in RED and the 'Select' component of the view is
customized. The second option is where the view is totally custom and no columns need to be defined in
RED, although it is good practice to still define the columns for documentation purposes.

To create a Custom or 'User Defined' view proceed as follows:

1 Create a view in the normal manner either by dragging a table in or adding a new object.

2 Change the Table Type to User Defined View in the properties of the view.

522

3 The following message is displayed. Click OK.

4 Edit the new tab View Create Statement and insert the SQL Statement that will be used to create
the view. This SQL Statement must start with either 'Create' or 'Select'. If 'Create' is used then the
columns in the view are ignored and the statement will be issued to create the view. If the statement
starts with 'Select' then RED will build up a view create statement form the column names and the
supplied Select clause. A button 'Load from Columns' is available to get a sample Select statement
based on the columns in the view and any transformations.

523

View Aliases
View Aliases provide multiple deployments of the same view into different Teradata presentation layers.

The View Aliases tab enables you to define additional/replica views.

Add button

Enables you to add a View Alias.

Delete button

Enables you to delete a View Alias.

View Alias Name

The view alias name.

View Alias Description

Description of the view alias.

524

View Alias Predicate

Optional 'Where' clause to include in the alternate view definition.

Target Schema

The target schema.

525

In This Chapter

OLAP Overview .. 526
OLAP Defining the Data Source for the OLAP Cube .. 526
OLAP Defining an OLAP Cube ... 529
OLAP Inspecting and Modifying Advanced Cube Properties 534
OLAP Creating an OLAP Cube on the Analysis Services Server 535
OLAP Cube Objects .. 536
OLAP Dimension Objects ... 571
OLAP Changing OLAP Cubes ... 586
OLAP Retrofitting an OLAP Object .. 588

C h a p t e r 2 1

Analysis Services OLAP Cubes

526

OLAP Overview
A cube is a set of related measures and dimensions that is used to analyze data.

• A measure is a transactional value or measurement that a user may want to aggregate. The source
of measures are usually columns in one or more source tables. Measures are grouped into measure
groups.

• A dimension is a group of attributes that represent an area of interest related to the measures in
the cube and which are used to analyze the measures in the cube. For example, a customer
dimension might include the attributes:

• Customer Name

• Customer Gender

• Customer City

These would enable measures in the cube to be analyzed by Customer Name, Customer Gender, and
Customer City. The source of attributes are usually columns in one or more source tables. The attributes
within each dimension can be organized into hierarchies to provide paths for analysis.

A cube is then augmented with calculations, key performance indicators (generally known as KPIs),
actions, partitions, perspectives, and translations.

The information required to build and support an Analysis Services cube and its surrounding structure is
reasonably complex and diverse. In attempting to automate the building of Analysis Services cubes
WhereScape RED has simplified and restricted many of the functions available to the cube designer.
WhereScape RED includes most of the commonly used capabilities and the components that logically fit
into the methodology incorporated within WhereScape RED.

WhereScape RED broadly provides functionality to manage all of the above, except for perspectives and
translations. These can be created outside of WhereScape RED, scripted in xmla and executed from
within WhereScape RED. Features of cubes that are not supported in WhereScape RED can be added to
the cube via the Microsoft tools. These altered cubes can still be processed through the WhereScape RED
scheduler, and the cube should be documented within WhereScape RED to explain the post creation
phases required.

As a general rule, once a cube or a component of a cube is created on the Analysis Services server it
cannot be altered through WhereScape RED. The OLAP object can be dropped and recreated easily using
RED. New OLAP objects defined in RED (e.g. additional calculations or measures) can be added by
recreating the cube.

WhereScape RED supports cubes in Microsoft Sql Server Analysis Services versions 2005 and 2008.

527

OLAP Defining the Data Source for the OLAP Cube
Before we can create an OLAP cube, we first need to set up the data warehouse to be used as a source for
Analysis Services cubes.
On the Datawarehouse Properties screen, the fields in the section When Connection is an OLAP
Data Source are required.

MSAS Connection String

Connection string to be used by Microsoft Analysis Services (MSAS) to connect to the data warehouse.

Note: A connection string is typically composed of multiple property name/value pairs that are
semi-colon delimited.

Connection Provider/Driver

Name of the Connection Provider/Driver to use to connect to the data warehouse database when it is
used as the data source for OLAP cubes. Set to TDOLEDB.

528

Data Warehouse Server

Data Warehouse Server Name, which is used when the data warehouse is used as the data source for
OLAP cubes. Set this to the Teradata TDPID.

Data Warehouse Database ID

Data Warehouse Database Identifier (e.g. Oracle SID or TNS Name, Teradata TDPID) or Database Name
(e.g. as in DB2 or SQL Server), which is used when the data warehouse is used as the data source for
OLAP cubes.

529

OLAP Defining an OLAP Cube
OLAP Cubes can be created from fact views. A single cube can contain date from multiple source star
schemas, each defined with a measure group. An OLAP Cube consists of many parts namely, measure
groups, measures, calculations, actions, dimensions, dimension hierarchies, dimension attributes and
dimension attribute relationships. It is strongly recommended that drag and drop is used to create an
OLAP Cube in order that all the components are set up correctly. OLAP Cubes can utilize a hierarchical
structure in the dimensions to facilitate user queries. Therefore, each dimension present in an OLAP
Cube should have either a hierarchy of levels or attributes and relationships. The hierarchies are defined
against the underlying dimensional attributes which can be inherited from the source dimension
metadata. Individual attributes can be added to the dimension after the OLAP Cube or OLAP Dimension
metadata has been created.

Note: Analysis Services does not like name as a column name. For dim_customer it will therefore be
necessary to change the column name from name to cname for example.

Building a New OLAP Cube
To create an OLAP Cube proceed as follows:

1 Double click on the OLAP Cube object group to make the middle pane a cube drop target.

2 Select the data warehouse connection to browse in the source pane. The connection can be selected
by right-clicking the Data Warehouse connection in the Object pane and choosing Browse Source
System.

3 Drag a fact view from the source pane into the target pane.

4 Set the cube name in the Create new metadata Object dialog box and click ADD.

530

5 A dialog box will prompt for any OLAP Dimensions that do not already exist that are required for
this cube (based on the fact view metadata). Set the dimension name in the Add a new metadata
Object dialog box and click ADD. Repeat this for each dimension as required.

Note: If you wish to include Attribute Relationships in Analysis Services for this dimension, click on
the Include Attribute Relationships checkbox.

6 A dialog appears, prompting you to select the attributes to be included in the Customer OLAP
dimension.

531

The attributes available for selection are in the left column. To select an attribute, click on the
attribute in the left column and click >. This will move the attribute to the right column.

To de-select an attribute, click on the attribute in the right column and click <. This will move the
attribute to the left column.

Repeat Step 5 for each dimension as required.

7 A dialog will appear with a list of the fields that are to be added as measures. Remove any columns
that are not measures. A measure is a column that uses the sum, count, min or max of the column.
Calculations can be chosen if required at this point. A date dimension must be present along with a
hierarchy to allow the definition of these calculated members.

532

8 During cube creation the Adding Cube Measures dialog is shown. In this dialog the following
options are provided:

• Measure, provides a list of measures that can be aggregated (e.g. using Sum, Count, Min, Max or
Distinct Count). By default WhereScape RED will show all attributes in the fact view that are
defined as numeric and additive. Those attributes that should not be considered measures can
be removed using the Remove button.

• Calculated Member options will allow the user to add some predefined date based calculated
member definitions to be built against the cube. The standard calculations:

Month to date

Year to date

Moving Quarter

Moving Year

Same Month Previous Year

Previous Year to date

These will define a calculated measures based on the associated drop-down boxes. There are 2
different ways that WhereScape RED will implement these calculations which is dictated by the
Use OLAP functions checkbox:

Using OLAP Functions - will implement the calculations using MDX Expressions within the cube
using date based MDX functions. These calculations are efficiently executed by Analysis
Services.

Without using OLAP functions - will implement the calculations using an MDX Filter function
built over date dimension attributes. This option leverages the flags from the relational date
dimension and ensures that a query using the calculations in the Cube will match an equivalent
query against the star schema and is particularly useful if non-standard date periods are used.

9 The cube and dimensions will be created in WhereScape RED metadata and the cube measures will
be displayed.

Setting Cube Properties
The properties of the cube must be completed before we can create the cube in the Analysis services
database. Most of the elements in the properties screen will be defaulted, but each of the following
columns will probably need to be completed.

533

1 The Connection to the Analysis services server must be defined within the cube properties. This
connection is a connection object. If no such connection exists then a new connection of type must
be created and configured. SQL Server 2005 or 2008 Analysis Services use a connection type of
"Analysis Server 2005+". This connection name must then be chosen in the cubes properties.

2 A Cube Database Name must be selected. A new database name can be created by selecting (Define
New Cube Database...) from the drop-down list. This database name is the database that the cubes
will reside in on the Analysis services server.

3 The Data Source Connection must be defined and the three derived values shown under this
connection must be present. If there is nothing in the three fields below the data source connection
then the connection object will need to be modified.

534

OLAP Inspecting and Modifying Advanced Cube Properties
Now that the basic OLAP Cube has been defined, various properties of the OLAP Cube can be inspected
or modified:

Measure Groups
1 Display the Measure Groups by right-clicking on the cube name and selecting Display Measure

Groups.

2 Change the Measure Group properties by right-clicking on the measure group and selecting
Properties.

Measures
1 Display all of the Measures associated with a cube by right-clicking on the cube name and selecting

Display Measures.

2 Change the measure properties by right-clicking on the measure name and selecting Properties.

Calculations
1 Display all of the Calculated members defined on the cube by right-clicking on the cube name and

selecting Display Calculations.

2 Change the Calculated members by right-clicking on a calculation and selecting Properties.

KPIs
1 Display all of the KPIs defined on the cube by right-clicking on the cube name and selecting Display

KPIs.

2 Change the KPIs by right-clicking on the KPI name and selecting Properties.

Actions
1 Display all of the Actions defined on the cube by right-clicking on the cube name and selecting

Display Actions.

2 Actions can be changed by right-clicking on the Action name and selecting Properties.

Partitions
1 Display all of the Partitions defined on the Measure Groups that are associated with the cube by

right-clicking on the cube name and selecting Display Partitions.

2 Change Partitions by right-clicking on the Partition name and selecting Properties.

Dimensions
1 Display all of the OLAP Dimensions associated with the cube by right-clicking on the cube name and

selecting Display Dimensions.

2 Change the customizable OLAP Dimension properties by right-clicking on the OLAP Dimension
name and selecting Properties.

535

Measure Group Dimensions
1 Display the relationship of OLAP Dimensions to Measure Groups defined against the cube by

right-clicking on the cube name and selecting Display Measure Group Dimensions.

2 Change the customizable properties of the relationship of the OLAP Dimension to Measure Group by
right-clicking on the OLAP Dimension name and selecting Properties.

OLAP Creating an OLAP Cube on the Analysis Services Server
If all of the tasks above are completed, then it should be possible to now create the cube on the Analysis
Services server. When positioned on the OLAP Cube name, right-click and select Create (Alter) Cube.
WhereScape RED will check that key components of the cube are correct before it proceeds to issue the
create command.

The create cube menu option will perform the following tasks on the Analysis Services server:

• Create an Analysis Services database if the name specified is not already present.

• Create a Data Source with connection information back to the data warehouse based on the cube
source information in the Data Warehouse connection.

• Create a Data Source View to support the cube objects defined

• Create the dimensions used by the cube as database shared dimensions if they do not already exist.

• Create the cube if it does not exist

• Create a partition for the cube.

536

OLAP Cube Objects

OLAP Cube Properties
The properties associated with a cube are described below. These properties relate both to the cube
environment and the cube itself.
There are seven tabs in the cube properties screen.
The first is the main properties, the second the processing and partitioning options and the rest are for
documentation stored in the WhereScape RED metadata and displayed in the generated WhereScape
RED documentation. In order to see the cube properties, right-click on the cube and select Properties.

Internal Cube Name

This is the name by which the cube is known within WhereScape RED. This name is limited to 64
characters in length and may contain only alphanumeric characters and underscores.

537

Cube Publish Name

This is the name that the cube will have in the Analysis Services server. It is not constrained in its
content except by the limitations imposed by Analysis Services.

Cube Description

A description of the cube. This is used both in the WhereScape RED documentation and is also stored
against the cube in Analysis Services.

Cube Database Connection

This field allows the selection of one of the existing connections defined within WhereScape RED. The
connection must be of type 'Microsoft Analysis Server 2005+'. If no such connection exists, then a new
connection object must be created. This connection object is used to point to the Analysis Services
server.

Cube Database Name

An Analysis Services server must have databases associated with it. Each database can contain one or
more cubes, dimensions, data sources etc. Select the name of an existing database on the server from
the drop-down list. To create a new Database name, select '(Define New Cube Database)' from the
drop-down list and the dialog that follows will allow you to register the name within the WhereScape
RED metadata. Once registered, the name can then be selected as the database.

Data Source Connection

In Analysis Services the data source is the location of the data to be used to build the cube. It also
defines the path for any drill through operations. This field provides a drop-down of the existing
connections. The Data Warehouse connection must be chosen.

Data Source Provider Type

This field essentially defines what type of database the Data Warehouse is. This field is a read only field
in the properties screen. Its value is set in the properties of the data source connection.

Data Source Server

The data source server is also a read only field being sourced from the properties of the data source
connection. For SQL Server, it defines the server on which the data warehouse database runs.

Data Source Database

The data source database is also a read only field being sourced from the properties of the data source
connection. For SQL Server, it defines the database in which the data warehouse runs.

Post Create XML/A Script

This is an XML/A script that is run on the cube database when the cube is created. This script allows
Analysis Services features to be added to the cube or cube database that have been built outside of
WhereScape RED—for example security roles that has been defined for the cube can be recreated from
the script when the cube is created (or recreated).

538

Post Update XML/A Script

This is an XML/A script that is run on the cube database when the cube is updated or processed via the
scheduler. This script allows Analysis Services features to be added to the cube or cube database that
have been built outside of WhereScape RED—for example security roles that has been defined for the
cube can be recreated from the script when the cube is updated or processed.

Processing Mode

Gets or sets the index and aggregation settings for cube processing. The value indicates whether
processed data is available after all required data aggregation has been completed (Regular) or
immediately after the data has been loaded (Lazy Aggregations). This setting will be used as the default
for new measure groups and partitions created for the cube.

Processing Priority

Gets or sets the processing priority for the cube.

Partition Processing Mode

This option determines how partitions are updated when a cube is updated.

All Partitions - Sequential will update each cube partition sequentially.
All Partitions - Parallel will have all the cube partitions updated in parallel.
Measure Group Partitions - Parallel will process each measure group sequentially with all partitions
of that same measure group being updated in parallel.

Process Cube Dimensions

Will determine whether to process the OLAP Dimensions related to the cube as part of the processing of
the cube. The options are to process the enabled dimensions only, to process no dimensions, or to
process all the dimensions.
Processing of specific Dimensions with the Cube can be enabled or disabled on the Process Cube
Dimension With Cube checkbox of each Dimension's Properties screen. See OLAP Cube Dimensions.

Process Selected Cube Dimensions in Parallel

Selecting this check-box will allow for all dimensions within the cube to be updated in parallel instead of
being updated sequentially.

Storage Mode

This field allows two options; MOLAP - Multidimensional OLAP or ROLAP.- Relational OLAP. At the
cube properties level, setting this field will determine the defaults for the Storage Mode field on its
related Measure Groups and partitions.

539

Default Measure

Specifies the measure used to resolve MDX expressions if a measure is not explicitly referenced in the
expression. If no default measure is specified an arbitrary measure is used as the default measure.

Estimated Rows

Specifies the estimated number of rows in the fact views. Enter the size of the fact view if known,
otherwise leave as zero.

540

Visible

Indicates whether the cube is visible to client applications.

ROLAP stands for Relational Online Analytical Processing.

ROLAP is an alternative to the MOLAP (Multidimensional OLAP) technology. While both ROLAP and
MOLAP analytic tools are designed to allow analysis of data through the use of a multidimensional data
model, ROLAP differs significantly in that it does not require the pre-computation and storage of
information. Instead, ROLAP tools access the data in a relational database and generate SQL queries to
calculate information at the appropriate level when an end user requests it. With ROLAP, it is possible
to create additional database tables (summary tables or aggregations) which summarize the data at any
desired combination of dimensions.

While ROLAP uses a relational database source, generally the database must be carefully designed for
ROLAP use. A database which was designed for OLTP will not function well as a ROLAP database.
Therefore, ROLAP still involves creating an additional copy of the data. However, since it is a database, a
variety of technologies can be used to populate the database.

Language Mapping

The OLAP Cube Properties screen has a tab called Language Mapping.

Select the language from the drop-down list and then enter the translations for the Cube Publish Name
and the Cube Description in the chosen language.

541

See Language Settings (see "Settings - Language Options" on page 130) for more details on how to add
languages for translation.

542

OLAP Cube Measure Groups
A cube can contain multiple measure groups. In WhereScape RED each measure group can belong to a
single cube, and each measure group relates to a single star schema. The Measure Groups Cube
processing is defined on the Processing a tab of the Measure Group Properties.

The Measure Group's Properties are shown by right-clicking on the Measure Group and choosing
Properties. The Measure Group Properties associated with cubes are described below.

Measure Group Name

Specifies the name of the Measure Group in Analysis Services

Measure Group Description

Specifies the Metadata description of the Measure Group. This description is stored in Analysis Services
and is also used in the WhereScape RED auto-generated documentation.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current Measure Group to the
previous and next Measure Group respectively for the current OLAP cube. The alternative is to exit the
Measure Group and choose the next Measure Group Properties screen.

543

Source Table Type

Specifies the type of table from which the Measure Group has been built in WhereScape RED.

Source Table

Specifies the table from which the Measure Group has been built and populated in WhereScape RED.

Estimated Rows

Specifies the estimated number of rows in the source table. If it is unknown then leave this value as 0.

Storage Mode

This field allows two options; MOLAP - Multidimensional OLAP or ROLAP.- Relational OLAP. The
default value is inherited from the value set at the Cube level. Again, setting this field at the Measure
Group level will determine the default for the Storage Mode field on the related Partitions.

Ignore Unrelated Dimensions

Indicates whether dimensions that are unrelated to the Measure Group are forced to their top level when
their members are included in a query.

Measure Group Type

Specifies the type of information the Measure Group contains. In some cases this enables specific
treatment by the server and client applications.

Processing Mode

Indicates whether processed data is available after all the aggregations have been computed (Regular) or
immediately after the data has been loaded (Lazy Aggregations).

Processing Priority

Specifies the priority for processing the measure group.

544

OLAP Cube Measure Group Processing/Partitions
Partitions define separately manageable data slices of the measure group data. Partitions can be created,
processed and deleted independently within a Measure Group. Each Measure Group needs at least one
partition to be defined to allow the Measure Group to be processed.

Partitions are managed through the Processing/Partitions tab of the Measure Group's Properties
within WhereScape RED.

Process Method

The processing or updating method of a Measure Group is an area that requires careful consideration.
The default option is 'Full process' which will result in the Measure Group being rebuilt. This is in many
ways the safest option, but processing time may mean other options must be chosen. The valid options
are:

The following describes the processing methods that are available in Analysis Services for Measure
Groups:

• Default Process

Detects the process state of the measure group, and performs processing necessary to deliver a fully
processed state.

545

• Full Process

Processes an Analysis Services Measure Group regardless of state. When Process Full is executed
against a Measure Group that has already been processed, Analysis Services drops all data, and then
processes it.

• Incremental Process

Adds newly available fact data and process only to the relevant partitions. In order to use this option
you must set the 'incremental filter' field with a statement that will result in only new data being
selected. Failure to do so will result in duplicated data in the cube. In many data warehouses
transactional data undergoes changes as well as the addition of new data, and so the incremental
update option is not possible. A validation regime should be put in place to compare cube data to the
transactional data if incremental is used. This validation regime should be used to notify the
administrator in the event that duplicate data is inserted into the cube.

• Update Data

Processes data only without building aggregations or indexes. If there is data in the partitions, it will
be dropped before re-populating the partition with source data. This processing option is supported
for dimensions, cubes, measure groups, and partitions.

• Build Structure

If the cube is unprocessed, Analysis Services will process, if it is necessary, all the cube's dimensions.
After that, Analysis Services will create only cube definitions. The build structure option just builds
the cube structure without populating it. This can be useful if you have a very large cube and want to
validate the design.

Increment Filter

If an incremental processing option is chosen then a filter statement must be selected to only return
those rows that are to be added to the Measure Group. As mentioned above, care must be taken when
using incremental updates. For example, if the Measure Group is accidentally processed twice and the
filter is based on date, then duplicate data will be inserted into the Measure Group without any warning.

Partitioning

Partitioning is useful for handling large datasets where it is impractical to reprocess the entire Measure
Group. In such a case the full process option would probably be chosen but only selected partitions
would be processed. See the section on partitioning for more information. The default process will
perform a full process on the first pass followed by incremental updates on subsequent processing runs.
Care should be taken when choosing default for the cube.

Partitioning Method

Three options are provided for handling Measure Group partitions. They are:

1 One partition only

When this option is selected the partition information for the Measure Group is ignored and one
partition is created and processed for the Measure Group. This would be the normal situation unless
performance issues require an alternate strategy.

546

2 Manually managed multiple partitions

With this option the partition information stored for the Measure Group is used in the creation and
processing of the Measure Group.

3 Automatic partition handling

This option is available if the Measure Group is to be partitioned by one numeric value. The
partitioning should preferably be on something like day, month or year. (i.e. YYYY, YYYYMM or
YYYYDDD). If this option is chosen together with one of the date formats described above, then
WhereScape RED will automatically create partitions as required and process only those partitions
that are marked for processing.

Partition by Dimension

This field is only available if automatic partition handling is chosen. Select the dimension in the
Measure Group that we will partition by. This would normally be a date dimension.

Partition by Attribute

This field is only available if automatic partition handling is chosen. Select the attribute that we are to
partition by. This would normally be a year or maybe a month level. (e.g. cal_year, fin_year from the
WhereScape date dimension).

Partition by Value Type

This field is only available if automatic partition handling is chosen. Select the type of level we are
dealing with. Choose YYYY for a year partition and YYYYMM for a month partition. This format must
correspond with the column in the date dimension. WhereScape RED only supports partitioning by Year,
Quarter, month or day.

Fact Partition Lookup Clause

This field is only available if automatic partition handling is chosen. In order to know when to create a
new partition WhereScape RED executes a query against the fact view and the date dimension to acquire
each unique period. When dealing with a large fact view, such a query may take a long time to complete.
This field can be used to include the components of the 'Where' clause to restrict the amount of data
examined. For example we may enter 'dss_update_time < GETDATE()-14' to only look at fact view
records that have been inserted or updated in the last 14 days. This should still allow us to catch any
new partitions and add them. The first time a cube is converted to auto partitioning handling, a full pass
of the fact view should occur to allow inclusion of every partition. This field should therefore only be
populated once the cube has been initially built with all partitions intact.

Max Number of Auto Created Partitions

This field is only available if automatic partition handling is chosen. You can specify an upper limit for
automatically created partitions. The default is zero, or no limit. This limit may be useful if your source
system can get erroneous data. If set, then the processing of the Measure Group will fail if a new
partition will exceed the counter.

Number of Historic Partitions Updated

This field is only available if automatic partition handling is chosen. This field allows you to restrict the
partition updating to the latest nnn partitions. If for example, we were partitioning by year and we set

547

this value to 2, we would process the current and previous years only. WhereScape RED turns off
partition processing after it does a partition update, so the first pass will still update all partitions.

To Display Measure Groups

To display a list of measure groups defined against a cube, right-click on a cube and select Display
Measure Groups.

548

To Add a Measure Group

To add a measure group, display the measure groups in the middle pane and either:

• Drag over a new fact view into the target pane - this will automatically create a new measure group
in the cube. Any additional dimensions required to support analysis of the Measure Group will be
added to the cube.

• Right-click on the cube in the object pane and select Add Measure Group and fill in the Measure
Group properties.

To Delete a Measure Group

To delete a measure group, display the measure groups in the middle pane and right-click, select delete
measure group.

Displaying Measures

Measures can be displayed or added while viewing measure groups in the middle pane. Right-click on a
measure group and select the appropriate option.

Displaying Partitions

Partitions can be displayed or added while viewing measure groups in the middle pane. Right-click on a
measure group and select the appropriate option.

549

OLAP Cube Measure Group Partitions
The Measure Group Partition's properties are shown by right-clicking on the Measure Group Partition
and selecting Properties. The partition's properties associated with a measure group are described
below.

Cube Name

The name of the cube that the partition belongs to.

Data Source

The data source for the partitions. This will be inherited form the cube and cannot be changed. You
cannot have partitions with different data sources or different fact tables in WhereScape RED. If you
need to support either scenario then the partition must be created directly within Analysis Services. In
such a case it can still be managed in terms of processing through WhereScape RED.

550

Fact Table

The fact table that the data is derived from.This is inherited from the cube and cannot be changed. See
the notes above under data source.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current Measure Group
Partition to the previous and next Measure Group Partition respectively for the current Measure Group.
The alternative is to exit the Measure Group Partition and choose the next Measure Group Partition
Properties screen.

Partition Name

Where only one partition exists it is normally given the same name as the cube. If manually creating
then a unique name must be assigned for each partition. If auto partitioning is chosen then WhereScape
RED will use the cube name plus the level value to make the partition name.

Partition Description

A description of the partition for documentation purposes.

Data Slice Formula

This field defines the range of data stored in the partition. It is a very simplified version of what can be
done in Analysis Services. If a more complex partitioning algorithm is required then the partition will
need to be created in Analysis Services. The format for the formula is as follows:

The brackets must surround each name and a full stop must separate the three parts of the formula. For
example a cube that is partitioned by year on its date dimension would have the following formula for
the 2003 year. [dim_date].[cal_year].[2003]

Aggregation Prefix

By default any cube aggregation will be prefixed with the partition name. An alternate name can be
entered here. See Analysis Services for more details.

Filter Statement

Not implemented.

Storage Mode

This field allows two options; MOLAP - Multidimensional OLAP or ROLAP.- Relational OLAP. This
determines how the OLAP cube is processed. The default value is inherited from the value set at the
Measure Group level.

Partition Type

The partition can be either Local or Remote. Local means that the partition resides on the same Analysis
Services server as the cube. If Remote is chosen, then a server must be specified where the partition will
be located.

551

Remote Server

If a Remote partition is chosen, then the name of the remote Analysis Services server must be entered
here.

Processing Method

A partition is either enabled for processing or disabled. This field can be set to Always process or Never
process. If left as default and in automatic mode then WhereScape RED will disable the processing once
the partition has been aged out.

552

OLAP Cube Measures
Measures represent the numeric attributes of a fact table that are aggregated using an OLAP aggregate
function defined against each Measure. Each Measure is defined against a Measure Group, which is
defined against a cube. The properties of a measure are shown by right-clicking on a Measure and
choosing Properties. In more detail:

Cube Name

A Read Only field that indicates against which OLAP Cube the measure is defined.

Measure Name

Specifies the Analysis Services name defined for the measure.

Measure Group

Specifies against which Measure Group the Measure is defined. This is related to the fact view of which
the Measure is an attribute.

553

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current Measure to the
previous and next Measure respectively for the current OLAP Cube Measure Group. The alternative is to
exit the Measure and choose the next Measure Properties screen.

Fact Table

A read only field that indicates the fact view that is related to the Measure Group.

Source Column

Specifies from which numeric attribute of the underlying fact view the Measure is built. This is a
drop-down list populated from REDs metadata definition of the fact view associated with the Measure
Group above.

Data Type

Specifies the data type used by Analysis Services. The data type specified for this property is inherited
from the fact view attribute defined in WhereScape RED metadata but can be different (typically a larger
data type is used in the cube to cope with the larger numbers generated by aggregating the source data).

Aggregation Method

Specifies the OLAP function used to aggregate measure values. The default options are:

• Sum

• Count

• Distinct Count - only one distinct count is allowed per Measure Group and can have query
performance implications.

• Min - Minimum

• Max - Maximum

Display Format

Specifies the format used by clients when displaying the measure value.

Null Processing

Specifies the processing null values. Setting this property to Automatic means that Analysis Services
uses default behavior.

Order Number

The order in which the measures appear in the cube is dictated by their order number.

Visible

Measures are normally visible, but some measures used in calculations may be hidden. In such a case
clear this checkbox.

554

Display Folder

Cube Measures can be organized into user-defined folders to view and manage these attributes within
the Analysis Services user interface more easily. Enter the display folder name.

Note: One object can be in multiple display folders, for example:

Description

A description of the measure which is stored in the cube. This description will by default be acquired
from the source column.

To View measures

The measures can be viewed by clicking on an OLAP Cube in the left pane which will display the
measures in the middle pane.

To Add a New Measure

To add a new measure, view the measures in the middle pane, right-click in the middle pane and select
add measure. This can also be done when viewing measure groups in the middle pane. Alternatively to
create measure which is very similar to an existing measure, view the measures in the middle pane and
right-click, select Copy Measure. The same dialog box appears as for Add Measure with most of the
fields filled in. Notice that the measure name has the suffix "- Copy". Change the name in the Measure
Name field and make any other alterations and click OK.

To Delete a measure

Display the measures in the middle pane, select the measure to delete, right-click and select Delete.

555

OLAP Cube Calculations
Calculations provide the ability to define the derivation of a value at query time within a cube. The
calculation is most typically a numeric derivation based on measures, but can be defined against any
dimension. The calculation is defined in MDX (Multi-Dimensional eXpressions). The definition of a
Calculation is shown by right-clicking a Calculation and choosing Properties. The following Cube
Calculated Member Definition dialog is shown:

Cube Name

A Read Only field that indicates against which OLAP Cube the Calculation is defined.

Calculated Member Name

Specifies the Analysis Services name defined for the Calculation.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current Calculation to the
previous and next Calculation respectively for the current OLAP Cube. The alternative is to exit the
Calculation and choose the next Calculation Properties screen.

556

Description

A business description of the Calculation that is used to populate WhereScape RED documentation.

Expression

Specifies the MDX expression that defines the calculation.

Parent Hierarchy

Specifies where the calculation is displayed for use. By default and in most cases, this will be 'Measures'.
This means that the calculated member will be displayed to the end user of the cube as a measure,
otherwise known as a calculated measure. Alternatively, you can include the calculated member in a
dimension instead of in the measures. Hierarchies are descriptive categories of a dimension by which
the measures in a cube can be separated for analysis. A calculated member provides a new label in the
parent dimension you select.

Parent Member

This is not available if you select Measures as your parent hierarchy, or if you select a one-level
hierarchy. Hierarchies are divided into levels that contain members. Each member produces a heading in
the cube. While browsing a cube, users can drill down to subordinate headings. The heading for the
calculated member will be added directly below the selected Parent Member.

Associated Measure Group

Specifies against which Measure Group the Measure is defined. This is related to the fact view of which
the Measure is an attribute.

Note: SSAS 2008+ uses the property Associated Measure Group but previous versions of SSAS do not
and can result in errors when creating the cube. It is possible to set this attribute in RED to (Undefined)
for previous versions of RED, but this is not necessary for the current version of RED as this attribute
will only be used when appropriate.

Display Folder

Cube Calculations can be organized into user-defined folders to view and manage these attributes
within the Analysis Services user interface more easily. Enter the display folder name.

Note: One object can be in multiple display folders, for example:

Display Format

Specifies the format used by clients when displaying the measure value.

Visible

Specifies whether the calculation is visible to client tools.

Non Empty Behavior

Determines the non-empty behavior associated with the calculation

557

Order Number

The create order of the member in the dimension hierarchy.

To View Calculations

To view the list of calculations (sometimes called a calculated measure), right-click on an OLAP Cube in
the left pane and select Display Calculations.

To Add a Calculation
1 To add a calculation, right-click on an OLAP Cube in the left pane, select Add Calculation and then

choose between:

• Add Calculated Member

• Add Named Set

• Add Script

This can also be achieved by displaying calculations in the middle pane, right-clicking and selecting
Add Calculated Member, Add Named Set or Add Script. Fill out the dialog box with the relevant
details.

2 To create a calculation that is similar to an existing calculation, display the calculations in the
middle pane and select Copy Calculation. The same dialog box appears as for Add Calculation
with most of the fields filled in. Notice that the calculated member name has the suffix "- Copy".
Change the name in the Measure Name field and make any other alterations and click OK.

To Delete a calculation

Display the calculations in the middle pane, select the calculation to delete, right-click and select
Delete.

558

OLAP Cube Key Performance Indicators
In Analysis Services, a KPI is a collection of calculations that are associated with a measure group in a
cube that are used to evaluate business success. Typically, these calculations are a combination of
Multidimensional Expressions (MDX) expressions or calculated members. KPIs also have additional
metadata that provides information about how client applications should display the results of the KPI's
calculations. The definition of a Calculation is shown by right-clicking a Calculation and choosing
Properties. The following Cube KPI Definition dialog is shown below:

Cube Name

A Read Only field that indicates against which OLAP Cube the KPI is defined.

KPI Name

Specifies the name of the KPI defined in Analysis Services.

Description

A business description of the KPI that is used to populate WhereScape RED documentation.

559

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current KPI to the previous
and next KPI respectively for the current OLAP Cube. The alternative is to exit the KPI and choose the
next KPI Properties screen.

Display Folder

KPIs can be organized into user-defined folders to view and manage these attributes within the Analysis
Services user interface more easily. Enter the display folder name.

Note: One object can be in multiple display folders, for example:

Associated Measure Group

Specifies the Measure Group against which the KPI is defined.

Value Expression

An MDX numeric expression that returns the actual value of the KPI.

Goal Expression

An MDX numeric expression or a calculation that returns the target value of the KPI.

Status Expression

An MDX expression that represents the state of the KPI at a specified point in time.

The status MDX expression should return a normalized value between -1 and 1. Values equal to or less
than -1 will be interpreted as "bad" or "low." A value of zero (0) is interpreted as "acceptable" or
"medium." Values equal to or greater than 1 will be interpreted as "good" or "high."

An unlimited number of intermediate values can optionally be returned and can be used to display any
number of additional states, if supported by the client application.

Status Indicator

A visual element that provides a quick indication of the status for a KPI. The display of the element is
determined by the value of the MDX expression that evaluates status.

Trend Indicator

A visual element that provides a quick indication of the trend for a KPI. The display of the element is
determined by the value of the MDX expression that evaluates trend.

Trend Expression

An MDX expression that evaluates the value of the KPI over time. The trend can be any time-based
criterion that is useful in a specific business context.

The trend MDX expression enables a business user to determine whether the KPI is improving over time
or degrading over time.

560

Display Folder

The folder in which the KPI will appear when a user is browsing the cube.

Parent KPI

A reference to an existing KPI that uses the value of the child KPI as part of computation of the parent
KPI. Sometimes, a single KPI will be a computation that consists of the values for other KPIs. This
property facilitates the correct display of the child KPIs underneath the parent KPI in client
applications.

Current Time Member

An MDX expression that returns the member that identifies the temporal context of the KPI.

Weight

An MDX numeric expression that assigns a relative importance to a KPI. If the KPI is assigned to a
parent KPI, the weight is used to proportionally adjust the results of the child KPI value when
calculating the value of the parent KPI.

To View KPIs

To view the list of KPIs, right-click on an OLAP Cube in the left pane and select Display KPIs.

To Add a KPI
1 To add a calculation, right-click on an OLAP Cube in the left pane and select Add KPI. This can also

be achieved by displaying KPIs in the middle pane, right-clicking and selecting Add KPI. Fill out the
dialog box with the relevant details.

2 To create a KPI that is similar to an existing KPI, display the KPIs in the middle pane and select
Copy KPI. The same dialog box appears as for Add KPI with most of the fields filled in. Notice that
the KPI name has the suffix "- Copy". Change the name in the KPI Name field and make any other
alterations and click OK.

To Delete a KPI

Display the KPIs in the middle pane, select the KPI to delete, right-click and select Delete.

561

OLAP Cube Actions
An action provides information to a client application to allow an action to occur based on the property
of a clicked dimensional member. Actions can be of different types and they have to be created
accordingly. To view the definition of an Action, right-click on the Action and select Properties. The
following Cube Action Definition will be shown:

Cube Name

A Read Only field that indicates against which OLAP Cube the Calculation is defined.

Action Type

Actions can be of the following types:

562

• Drill through actions which return the set of rows that represents the underlying data of the
selected cells of the cube where the action occurs. When this option is chosen an additional tab is
enabled that allows drill through columns to be chosen.

• Reporting actions which return a report from Reporting Services that is associated with the
selected section of the cube where the action occurs.

• Standard actions (Action), which return the action element (URL, HTML, DataSet, RowSet, and
other elements) that is associated with the selected section of the cube where the action occurs.

The action type chosen determines which action specific fields are enabled within the dialog.

Action Name

Defines the name of the Action in the Cube.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current Action to the previous
and next Action respectively for the current OLAP Cube. The alternative is to exit the Action and choose
the next Action Properties screen.

Target Type

Select the object to which the action is attached. Generally, in client applications, the action is displayed
when end users select the target object; however, the client application determines which end-user
operation displays actions. For Target type, select from the following objects:

• Attribute members

• Cells

• Cube

• Dimension members

• Hierarchy

• Hierarchy members

• Level

• Level members

Target Object:

The cube object of the designated target type against which the action is defined.

Condition

Specify an optional Multidimensional Expressions (MDX) expression that resolves to a Boolean value. If
the value is True, the action is performed on the specified target. If the value is False, the action is not
performed.

Report Action: Server

The name of the computer running report server.

Report Action: Report Path

The path exposed by report server.

563

Format/Content Type

Select the type of action. The following table summarizes the available types.

• Data Set - Retrieves a dataset

• Proprietary - Performs an operation by using an interface other than those listed in this table.

• Row Set - Retrieves a rowset.

• Statement - Runs an OLE DB command.

• URL - Displays a page in an Internet Browser.

Expression

Specifies the parameters that are passed when the action is run. The syntax must evaluate to a string,
and you must include an expression written in MDX. MDX expressions are evaluated before the
parameters are passed.

Default

An additional true/false drop list is enabled for Drill through actions. This gets or sets the current
DrillThroughAction as the default action when multiple drill through actions are defined. This is
important for users of Excell 2007 to browse the Olap Cube because Excell will only invoke the Drill
through Action marked as the default.

Invocation

Specifies how the action is run. Interactive, the default, specifies that the action is run when a user
accesses an object. The possible settings are:

• Batch

• Interactive

• On Open

Application

Describes the application of the action.

Description

Describes the action.

Caption

Provides a caption that is displayed for the action.

Caption is MDX

If the caption is MDX, specify True, if not specify False.

To View Actions

To view the list of Actions, right-click on an OLAP Cube in the left pane and select Display Actions.

564

To Add an Action
1 To add an Action, right-click on an OLAP Cube in the left pane and select Add Action. This can also

be achieved by displaying Actions in the middle pane, right-clicking and selecting Add Action. Fill
out the dialog box with the relevant details.

2 To create an Action that is similar to an existing Action, display the Actions in the middle pane and
select Copy Action. The same dialog box appears as for Add Action with most of the fields filled in.
Notice that the Action name has the suffix "- Copy". Change the name in the Action Name field and
make any other alterations and click OK.

To Delete an Action

Display the Actions in the middle pane, select the Action to delete, right-click and select Delete.

565

OLAP Cube Dimensions
OLAP Dimensions are associated automatically with a cube when a cube is created in WhereScape RED
based on the underlying star schema. OLAP Dimensions that are associated with a cube can be
displayed, or additional OLAP Dimensions can be manually added from the list of OLAP Dimensions
defined in WhereScape RED.

Once an OLAP Dimension is associated with a cube a relationship is created with the relevant Measure
Groups within the cube - these relationships are defined automatically with WhereScape RED, and they
can also be added. The properties of an OLAP Dimension associated with a cube are shown by
right-clicking the cube Dimensions listed in the middle pane and selecting Properties from the
right-click menu. The Properties are shown below:

Internal Dimension Name

A read only field displaying the name of the OLAP Dimension in WhereScape RED.

OLAP Dimension Name

Specifies the name of the OLAP Dimension as a Dimension in Analysis Services.

566

Cube Dimension Name

Specifies the exposed name of the Dimension when associated with a cube (this can be different from
the OLAP Dimension Name).

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current OLAP Dimension to
the previous and next OLAP Dimension respectively for the current OLAP Cube. The alternative is to
exit the OLAP Dimension and choose the next OLAP Dimension Properties screen.

Dimension Description

A description of the dimension when associated with the cube.

Order Number

The order number.

Process Cube Dimension With Cube

Using this checkbox you can enable the dimension to be processed with the OLAP Cube.

Visible

Determines whether or not the dimension is visible to client applications.

All Member Aggregation Usage

Specifies how aggregations will be designed by the BIDS Storage Design Wizard if it is used to design
cube aggregations.

Hierarchy Unique Name Style

Indicates whether the dimension name will be included in the name of the hierarchies. If set to Default
then the system will apply a default behavior and will include the dimension name in the case where
there is more than one usage of the same dimension.

Member Unique Name Style

Indicates how member unique names will be formed.

Other Read only fields that are displayed in this dialog are configurable against the OLAP Dimensions'
properties and cannot be changed in this dialog, including:

567

• Source Table Type

• Source Table

• Source Table Key

• Processing Mode

• All caption

• OLAP Dimension Type

• Unknown Member Action

• Unknown Member Name

To View Cube Dimensions

To view the list of Dimensions associated with a cube, right-click on an OLAP Cube in the left pane and
select Display Dimensions.

To Add a Cube Dimension

To add an existing OLAP Dimension, right-click on an OLAP Cube in the left pane and select Add
Dimension. This can also be achieved by displaying Dimensions in the middle pane, right-clicking and
selecting Add Dimension. Fill out the dialog box with the relevant details.

To Remove a Cube Dimension

Display the Cube Dimensions in the middle pane, select the Dimension to remove, right-click and select
Remove Dimension from Cube. This action removes the association of the OLAP Dimension from the
OLAP Cube.

OLAP Cube Measure Group Dimensions
Measure group dimensions are the relationships between cube Measure Groups and OLAP Dimensions.
In WhereScape RED this equates to the relationships between fact views and dimensions in the
underlying star schema.

The Properties are shown below:

568

Internal Dimension Name

A read only field displaying the name of the OLAP Dimension in WhereScape RED.

OLAP Dimension Name

A ready only field displaying the name of the OLAP Dimension as a Dimension in Analysis Services.

Cube Dimension Name

A read only field displaying the name of the Dimension when associated with a cube (this can be
different from the OLAP Dimension Name).

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current OLAP Measure Group
Dimension to the previous and next OLAP Measure Group Dimension respectively for the current OLAP
Cube. The alternative is to exit the OLAP Measure Group Dimension and choose the next OLAP Measure
Group Dimension Properties screen.

569

Dimension Description

A description of the dimension when it is associated with the cube.

Order Number

The order number.

Update Dimension with Cube

A read only checkbox showing whether the dimension is processed when the cube is processed.

Visible

A read only field displaying the visibility of the dimension on the cube.

All Member Aggregation Usage

A read only field displaying how aggregations will be designed by the BIDS Storage Design Wizard if it is
used to design cube aggregations.

Hierarchy Unique Name Style

A read only field which indicates whether the dimension name will be included in the name of the
hierarchies.

Member Unique Name Style

A read only field which indicates how member unique names will be formed. A read only field.

Measure Group

A read only field displaying the Measure Group which is being referenced by the Measure Group
Dimension relationship.

Measure Group Column

Specifies which fact view key joins to the dimension key.

Relationship Type

Defines the relationship type for the relationship between the Dimension and Measure Group. In
WhereScape RED this option can be Regular, which means that the relationship is based on a dimension
key join, or No Relationship between the Measure Group and Dimension.

Cardinality

Indicates whether the measure group has a many to one or one to one relationship with the dimension.

Source Table Type

A read only field that displays the type of table from which the OLAP Dimension was created.

Source Table

A read only field that displays the name of the table from which the OLAP Dimension was created.

570

Source Table Key

A read only field that displays the key (typically the primary key) that relates the dimension to the fact
in the underlying star schema.

Processing Mode

A read only field that indicates whether processed data is available after all aggregations have been
computed or immediately after the data has been loaded.

All Caption

A read only field that displays the name of the (All) member. This applies to all hierarchies in the
dimension that have an (All) member.

OLAP Dimension Type

A read only field that displays the type of information contained by the dimension.

Unknown Member Action

A read only field that displays the existence of an Unknown member and whether that member is visible
or hidden.

Unknown Member Name

A read only field that displays the caption for the unknown member.

571

OLAP Dimension Objects

OLAP Dimension Overview
OLAP Dimensions are dimensions that get created in an Analysis Services database.

An OLAP Dimension is a collection of related attributes which can be used to provide information about
fact data in one or more cubes. By default attributes are visible as attribute hierarchies and can be used
to understand the fact data in a cube. Attributes can be organized into user-defined hierarchies that
provide navigational paths to assist users when browsing the data in a cube.

They are typically created and populated from a relational dimension.

One or more OLAP Dimensions are defined automatically by WhereScape RED when a fact view is
dragged over to create a cube or measure group. WhereScape RED will take the relational dimension
tables and related metadata (including hierarchies) defined in the star schemas and create OLAP
Dimensions automatically. They can also be defined manually in WhereScape RED.

The properties of an OLAP Cube dimension are shown by right-clicking on the OLAP Dimension and
choosing Properties. The following dialog is shown:

572

Internal Dimension Name

Specifies the name of the dimension in WhereScape RED.

Dimension Publish Name

Specifies the name of the dimension as created in Analysis Services.

Dimension Description

A business description of the OLAP Dimension for use in documentation - this description also gets
created in the analysis services metadata.

Default Database Connection and OLAP Database Name

The WhereScape RED connection that is an OLAP connection to an analysis services server. These fields
only need to be populated when the OLAP Dimension needs to be created in Analysis Services separately
from a cube. If these fields are blank this dimension can only be created in the same Analysis Services
server and database as the related cubes when the cubes get created.

573

Data Source Connection

Defines the WhereScape RED connection that points to the relational dimensional table(s) used to
populate the OLAP Dimension - typically the Data Warehouse connection. When the connection is
defined the following read only fields are populated with the connection information:

• Data Source Provider Type

• Data Source Server

• Data Source Database

Source Table Type

Specifies the type of table from which the OLAP Dimension was created.

Source Table

Specifies the name of the table from which the OLAP Dimension was created.

Source Table Key

Specifies the key (typically the primary key) that relates the dimension to the fact in the underlying star
schema.

Processing Group

Specifies the processing group for processing the dimension. This determines how much data is read
into memory during dimension processing at any one time.

Processing Mode

Indicates whether processed data is available after all aggregations have been computed (Regular) or
immediately after the data has been loaded (Lazy aggregations).

574

Processing Method

Indicates which processing method should be used for populating the dimension:

• Process Default - Detects the process state of an object, and performs processing necessary to
deliver unprocessed or partially processed objects to a fully processed state.

• Process Full - Processes an Analysis Services object and all the objects that it contains. When
Process Full is executed against an object that has already been processed, Analysis Services drops
all data in the object, and then processes the object. This kind of processing is required when a
structural change has been made.

• Rebuild Data - Processes data only without building aggregations or indexes.

Storage Mode

This field allows two options; MOLAP - Multidimensional OLAP or ROLAP.- Relational OLAP. This
determines how the OLAP dimension is processed.

All Caption

Specifies the name of the (All) member. This applies to all hierarchies in the dimension that have an
(All) member.

OLAP Dimension Type

Specifies the type of information contained by the dimension. Some client tools can treat the dimension
differently based on this information.

Unknown member Action

Specifies the existence of an Unknown member and whether that member is visible or hidden. Fact data
not associated with a member can be associated with the unknown member.

Unknown Member Name

Specifies the caption for the unknown member.

575

Language Mapping

The OLAP Dimension Properties screen has a tab called Language Mapping.

Select the language from the drop-down list and then enter the translations for the Dimension Publish
Name, All Caption, Dimension Description and the Unknown Member Name.

See Language Settings (see "Settings - Language Options" on page 130) for more details on how to add
languages for translation.

576

OLAP Dimension Attributes
Dimensional attributes contain information about the Dimension object. Attributes are exposed in the
cube to provide the ability to navigate and aggregate the data in the cube.
User defined hierarchies can be built over attributes to provide drill paths through the data and to aid
aggregation.

The properties of an attribute can be displayed by right-clicking an attribute in the middle pane and
choosing Properties. The following dialog is displayed:

Dimension Name

A read only field to display the dimension which the attribute is related to.

Internal Attribute Name

The name of the attribute in WhereScape RED.

Published Name

The name of the attribute created in Analysis Services.

577

Description

A business name that is stored in WhereScape RED for documentation and stored in the Analysis
Services metadata.

Estimated Count

Specifies the number of members in the attribute. This number is either the amount last counted by
Analysis Services or a user provided estimate of the member count.

Member Names Unique

Indicates whether member names are unique for this attribute.

Hierarchy Visible

Indicates whether the attribute hierarchy is visible to client applications. Even if the attribute hierarchy
is not visible it can still be used in a user defined hierarchy.

Hierarchy Enabled

Indicates whether an attribute hierarchy is enabled for this attribute. If the attribute hierarchy is not
enabled, then the attribute cannot be used in a user defined hierarchy.

Hierarchy Optimized state

Specifies the level of optimization applied to the attribute hierarchy.

Order by

Specifies the method used to order the members of the attribute.

Order by attribute

Specifies the attribute used to order the members of the attribute hierarchy

If the 'Order by' property is set to 'AttributeKey' or 'AttributeName' then 'Order by attribute' cannot be
empty. It must be populated with values from attribute relationships.

578

Type

Specifies the type of information contained by the attribute.

Usage

Specifies the usage of the attribute.

Key Column

Specifies the details of the binding to the column containing the member key.

Name Column

Specifies the details of the binding to the column containing the member name.

Value Column

Specifies the details of the binding to the column containing the member value.

Using the Value Column OLAP cube attribute setting for Excel date filtering
In the relevant OLAP Date dimension ensure the OLAP Dimension Type property is set to "Time", then
for the Key Attribute of the OLAP Date Dimension (e.g. dim_date_key) set the Value Column property to
a date data type column (e.g. calendar_date). Usually it will be useful to set the Name Value property for
the Key Attribute to a column containing a textual date format (e.g. dates presented in dd/mm/yy
format). After publishing and processing the OLAP cube use Microsoft Office Excel PivotTables to
expose date-specific filtering options for this dimension’s hierarchies instead of label filtering options.

To View Attributes

To view the list of Attributes, right-click on an OLAP Dimension in the left pane and select Display
Attributes..

To Add an Attribute
1 Display the attributes of an OLAP Dimension in the middle pane. Display the columns of the

dimension in the right pane then drag over a column from the underlying relational dimension into
the middle pane.

2 To add an Attribute, right-click on an OLAP Dimension in the left pane and select Add Attribute.
This can also be achieved by displaying Attributes in the middle pane, right-clicking and selecting
Add Attribute. Fill out the dialog box with the relevant details.

3 To create an Attribute that is similar to an existing Attribute, display the Attributes in the middle
pane and select Copy Attribute. The same dialog box appears as for Add Attribute with most of the
fields filled in. Notice that the Attribute name has the suffix "- Copy". Change the name in the
Attribute Name field and make any other alterations and click OK.

To Delete an Attribute

Display the Attributes in the middle pane, select the Attribute to delete, right-click and select Delete.

579

580

OLAP Dimension Attribute Relationships
Attribute relationships define functional dependencies between attributes. If attribute A has a related
attribute B in a hierarchical relationship, then an attribute relationship can be defined that assists
Analysis Services to aggregate data.

Note: Attribute relationships require unique members in order to function correctly—if there are
duplicate values participating in an attribute relationship then cube data can be incorrectly aggregated
and displayed.

To view the Properties of an attribute relationship right-click on an attribute relationship and select
Properties to show the dialog below:

Dimension Name

A read only field indicating the dimension associated with the attribute relationship.

Attribute

Specifies the attribute on which the attribute relationship is based.

Relationship Name

Specifies the name of the attribute relationship.

Related Attribute

Specifies the name of the related attribute.

Relationship Type

Indicates whether the relationship between attributes can change over time.

581

Cardinality

Indicates if the related attribute has a many to one or a one to one relationship with this attribute.

Visible

Indicates whether the attribute relationship is visible to the client applications.

To View Attribute Relationships

To view the list of Attribute Relationships, right-click on an OLAP Dimension in the left pane and select
Display Attribute Relationships.

To Add an Attribute Relationship
1 Attribute relationships are defined automatically when a User Defined hierarchy is inherited from an

underlying relational dimension.

2 To add an Attribute Relationship, right-click on an OLAP Dimension in the left pane and select Add
Attribute Relationship. Fill out the dialog box with the relevant details.

To Delete an Attribute Relationship

Display the Attribute Relationships in the middle pane, select the Attribute Relationship to delete,
right-click and select Delete.

582

OLAP Dimension Hierarchies
User defined hierarchies define hierarchical relationships between related dimensional attributes (e.g.
Geographical or time based attributes). These related attributes are defined as levels within the
hierarchy.

To view the properties of a user defined Hierarchy right-click on the Hierarchy and select Properties.

Dimension Name

A read only field indicating the dimension associated with the attribute relationship.

Internal Hierarchy Name

The name of the hierarchy within WhereScape RED.

Hierarchy Publish Name

The name of the hierarchy as created within Analysis Services.

Hierarchy Description

A business name that is stored in WhereScape RED for documentation and stored in the Analysis
Services metadata.

583

All Member Name

Specifies the name of the member in the All level

Allow Duplicate Names

Indicates whether the members under a common parent can have the same name.

Member Keys Unique

Indicates whether member keys are unique for this hierarchy.

Note: If you are using a version of Analysis Services earlier than service pack 2, the only value allowed
for Member Keys Unique is 'NotUnique'. If the value 'Unique' is used, Analysis Services will return an
error and the cube will not be created.

Member Names Unique

Indicates whether member names are unique for this hierarchy.

To view User Defined Hierarchies

To view the list of User Defined Hierarchies, right-click on an OLAP Dimension in the left pane and
select Display Hierarchies.

To Add a User Defined Hierarchy

To add an Attribute Relationship, right-click on an OLAP Dimension in the left pane and select Add
Hierarchy. Fill out the dialog box with the relevant details.

To Delete a User Defined Hierarchy

Display the User Defined Hierarchies in the middle pane, select the User Defined Hierarchy to delete,
right-click and select Delete.

584

OLAP Dimension User Defined Hierarchy Levels
The levels specify the drill path over a set of related attributes. The classic hierarchy levels are Year,
Month, Date in a Calendar based hierarchy in the date dimension.

To view the Properties of a user defined Hierarchy Level right-click on a user defined Hierarchy Level
and select Properties.

Dimension Name

A read only field indicating the dimension associated with the attribute relationship.

Hierarchy

The User Defined Hierarchy that contains the level.

Level Number

The number of levels from the top most hierarchy level. These level numbers must start at 1 for the top
level and provide continuous numbering to the bottom level.

Internal Level Name

The name of the Level within WhereScape RED.

585

Level Publish Name

The name of the Level as created within Analysis Services.

Level Description

A business name that is stored in WhereScape RED for documentation and stored in the Analysis
Services metadata.

Source Attribute

Specifies the source attribute on which the level is based.

Hide If

Specifies which members are hidden. This property supports ragged hierarchies contain logical gaps
between members.

To View User Defined Hierarchy Levels

To view the list of User Defined Hierarchy Levels, right-click on an OLAP Dimension in the left pane and
select Display Hierarchy Levels.

To Add a User Defined Hierarchy
1 To add a User Defined Hierarchy level, right-click on an OLAP Dimension in the left pane and select

Add Hierarchy Level. Fill out the dialog box with the relevant details.

2 Alternatively right-click on a User Defined Hierarchy in the middle pane and select Add Hierarchy
Level. Fill out the dialog box with the relevant details.

To Delete a User Defined Hierarchy Level

Display the User Defined Hierarchy Levels in the middle pane, select the User Defined Hierarchy Level to
delete, right-click and select Delete.

586

OLAP Changing OLAP Cubes
An understanding of the dependency of objects within Analysis Services is the key to figuring out what
needs to be dropped or recreated in a cube database using WhereScape RED.

Changes to the underlying relational star schema can cause cube processing to fail as the star schema is
frozen in the Data Source View (DSV) of the cube database. Minor changes such as the addition of
table columns, or altered data types (e.g. changing a char to varchar) will not break the cube, but
renaming a source table or column that is used as a source to the cube will invalidate the DSV and cause
processing to fail.

The solution to this issue is to drop and recreate the Cube database from RED to recreate the DSV or
manually update the DSV using Microsoft BIDS.

If an object needs to be dropped and recreated in RED then this is two separate actions. For example to
drop the OLAP database, right-click an OLAP cube within that database in RED and select Drop
Analysis Services Object, then using the drop-down boxes in the Drop Analysis Services Object dialog
choose the object to drop, and click Drop. This will drop the object from Analysis Services.

587

A Create action on an Analysis Services object in RED will be different depending on whether or not the
object already exists in Analysis Services:

• If the object does not already exist in Analysis Services then RED will create the object (and any
related objects e.g. OLAP database and DSV).

• If the object does already exist in Analysis Services then RED will try to detect any changes or
additional features that need to be added to the object and add or alter the existing Analysis
Services object.

Some objects need to be dropped and recreated in order to be changed (eg dimension structures), and
some only need to be recreated (eg calculations).

Changes to cube runtime objects do not require the cube database to be dropped. For example a new or
changed definition of a calculation or KPI will not require the cube to be dropped and recreated (so data
is retained). By Recreating the cube the definition of these runtime objects will be updated and available
immediately to cube users.

A brief summary of the hierarchy of objects and the remedial action is shown below:

Cube Object Change Action

Data Source This changes the source
database connection. It is
defined in the Data Warehouse
connection in RED.

OLAP database needs to be
dropped and recreated.

Data Source View
(underlying relational
star)

The DSV reflects the design of
the relational star. Therefore,
the DSV would need to be
updated if any changes are
made to tables or views that
are used to build OLAP
objects.

Changes to the underlying
relational star that affect an
existing OLAP Object requires
that the OLAP Database is
dropped and recreated to
regenerate the DSV.

OLAP Dimension The addition or deletion of
attributes or hierarchies to an
existing OLAP dimension.

The OLAP dimension plus any
OLAP cubes associated with
the dimension need to be
dropped and recreated.

OLAP Cube Measure
Group

Delete or Add a Measure
Group based on a fact that
already exists in the DSV.

Recreate the cube in RED and
reprocess.

OLAP Cube Measure
Group

Add a Measure Group based on
a fact that does not exist in the
DSV.

Recreate the OLAP cube
database and reprocess.

OLAP Cube Measures Delete or Add measures based
on columns that already exist
in the DSV.

Recreate the cube in RED and
reprocess.

588

OLAP Cube Measures Add measures that are based
on new columns that do not
exist in the DSV.

Recreate the OLAP cube
database and reprocess.

OLAP Cube
Calculations, KPIs,
Actions

Add, change or delete
definition on the cube.

Recreate the cube in RED (a
reprocess is not necessary
because just the calculation
definition is stored in the cube
- the result is calculated at
query time).

OLAP Retrofitting an OLAP Object
WhereScape RED provides the functionality for retrofitting OLAP cubes from Analysis Services.

Note: Before you can retrofit an OLAP cube, you must first retrofit any and all of the OLAP dimensions
used by the OLAP cube.

The process to retrofit an OLAP dimension is as follows:

1 Right-click on the OLAP Dimension object heading in the left pane and select New Object.

2 Enter any name for the object name and click ADD.

589

590

3 On the Properties dialog:
For the Internal dimension name enter the name that matches exactly the name of the OLAP
Dimension in Analysis Services that you want to retrofit.

For the Dimension publish name enter a name for the dimension.
For the Dimension description enter a description for the dimension.
For the Default database connection select the required Analysis Services connection.
For the OLAP database name select the database name in Analysis Services.
For the Data source connection select the relevant data source connection.

591

4 The OLAP Dimension can now be retrofitted by right-clicking the object in the left pane and
choosing Retrofit Dimension.

5 Two warning dialogs now appear. The first dialog warns that the existing information will be deleted
before being redefined from Analysis Services. Select Yes.

592

6 The second dialog warns that retrofitting a dimension will remove the links to cubes in the
Metadata. Select Yes.

7 The results of the retrofit are displayed in the results panel at the bottom of the screen. If it was
successful the new object should now have all the attributes, hierarchies and hierarchy levels (as
well as all of their properties) as set in Analysis Services.

Once all of the dimensions have been retrofitted you can retrofit the OLAP Cube.Follow steps 1-6 above
to retrofit the OLAP Cube as for the OLAP dimensions.

The final dialog is a reminder to only retrofit an OLAP cube once the dimensions used by the cube have
been retrofitted. If all relevant dimensions have been retrofitted, select Yes.

Once again, the results of the retrofit are displayed in the results panel at the bottom of the screen.

593

Standard column transformations (on page 594) can be used in WhereScape RED to perform
calculations, change data types or format data.

Re-using complex transformations can save a significant amount of time. These can be achieved two
ways in WhereScape RED:

• Teradata User Defined Functions (UDFs)

• WhereScape RED User Defined Transformations

In This Chapter

Column Transformations ... 594
Teradata User Defined Functions ... 603
Re-usable Transformations .. 606

C h a p t e r 2 2

Transformations

594

Column Transformations
Each table, view, join index or export object column can have a transformation associated with it. For all
table types, except for load tables, views and join indexes, the transformation will be included in the
generated procedure for the table. These are executed as part of the procedure update. The
transformation must therefore be a valid SQL construct that can be included in a Select statement. For
example, we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax column of
12.5%. Click the Transformation tab on the column properties to enter a transformation.

Note: Transformations added to an existing table that have an update procedure are only put into effect
when the procedure is re-generated and re-compiled.

Column transformations on load tables are more complex, due to the unique nature of load tables. See
Load Table Column Transformations (on page 598) for more details.

View and Join Index transformations are included in the Database Definition Language (DDL) that
creates the object in the Teradata database. Any changes to transformations require these object types
to be dropped and recreated.

Export object column transformations are dynamically applied for file loads. If the export object is
executed via a host script, then the script needs to be regenerated for changes to transformations to take
effect.

595

Column Transformation Properties
An example below shows the transformation property screen with a simple transformation:

The two special update keys allow you to update the column and step either forward or backward to the
next column's properties. ALT-Left Arrow and ALT-Right Arrow can also be used instead of the two
special update keys

Function SQL Text Window

The Function SQL Text Window contains the SQL used in the transformation. It can be directly
entered, built up using the Function Builder and Add buttons or a combination of both.

Function Builder

The Function Builder contains a list of standard database functions, operators, user defined functions
and all columns belonging to all source tables.

Expanding the Function Heading displays the Function Groups (Number, String, Data, Conversion,
etc) and the User Defined Function Heading. Similarly, expanding the Data Heading displays Source
Tables.

Each function group or source table can in turn be expanded to show individual Functions and Source
Columns.

596

Double clicking on a function adds the Function Model to the Function SQL Text Window. The first
variable (almost always the source column) is left highlighted in the Function SQL Text Window. This
allows additional Functions or Source Columns to be added to the correct place in the Function SQL
Text Window by double clicking on the required Function or Source Column in the Function Builder.

Target Paste Button

The Target Paste button adds the current column in the form ColumnName to the Function SQL Text
Window at the location of the cursor.

Source Paste Button

The Source Paste button adds the source table and column in the form TableName.ColumnName to the
Function SQL Text Window at the location of the cursor.

Transform Stage

Only visible on load table column transformations. See Load Table Column Transformations (on page
598) for more information.

Function Set

This drop-down list enables the user to select which set of functions are to be displayed in the tree view
when creating a transformation on a column of a table.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current column to previous
and next columns respectively in the current table. The alternative is to exit the Column Transformation
Properties, choose the next column, re-enter the Column Properties and choose the Transformation
tab.

Function Syntax

The syntax guide for the Function visible when the function is clicked. Essentially the same as the
function model loaded into the Function SQL Text Window when the function is double-clicked. Read
only.

Function Desc

The description of the Function visible when the function is clicked. Read only.

Function Model

The model (template SQL code) for a User Defined Transformations. This is only visible for User
Defined Transformations. Read only.

Localize Transformation

The Localize transformation button breaks the link between a column transformation and the User
Defined Transformation it's based on. If this button is clicked, changes to the underlying user defined
transformation cannot be automatically propagated to the column transformation. This is only visible
for User Defined Transformations.

598

Load Table Column Transformations
Overview

Data entering the data warehouse can be manipulated if required. This manipulation can occur at any
stage, but is supported via a number of methods during the Load stage. Load tables provide options to
transform data. If multiple pass transformations are required then a load table can be created from
another load table, i.e. multiple load tables can be supported in the data flow path.

The options available differ depending on the type of load but in most cases the after transformation
and post load procedure can be utilized. Specifically:

Database Link Load • During Load transformations

• After Load transformations

• Post Load procedure

ODBC Based Load • During Load transformations

• After Load transformations

• Post load procedure

File Based Load • During Load transformations

• After Load transformations

• Post load procedure

Integration Services Load • During Load transformations

• After Load transformations

Script Based Load • During Load transformations

• After Load transformations

• Post load procedure

Externally Loaded • After Load transformations

• Post Load procedure

The Transformation tab of a column's properties is used to define during and after load
transformations. It can only be one or the other for a specific column. One column can be used to build
another, so an after can be based on the results of a during, if different columns are used.

Note: The During transformations use Source Table columns. The After transformations use the Load
Table columns.

All After transformations take place in the native Teradata SQL language. The During transformations
differ in terms of which language is used. This is particularly true for file based loads. Normally the
During transformation will occur in the native SQL language of the source database.

599

For Flat file loads using SSIS, After Load transformations use the SQL syntax of the target database
but During Load transformations use SSIS expression syntax that can be referred to on the Microsoft
Developer Network website : https://msdn.microsoft.com/en-us/library/ms137547(v=sql.110).aspx.

Database Link During Load Transformations
The during load transformation allows the manipulation of column data as it enters the data
warehouse.

By default, Database link loads and ODBC based loads have During and After transformations
enabled.

When transformations are enabled, the contents of a source table/source column for each column are
used as the basis of the loading statement.

• If source table and source column are null, then a null is used.

• If data exists in the Transformation tab of a column's properties, then this transformation data is
used instead of the source table/source column combination.

600

Example

The following load table columns will generate the load sql statement if no transformation data is
present against these columns.

The SQL code from the load results is:

If the column 'description' has a transformation defined as follows:

upper(substr(description,1,1))||lower(substr(description,2,1))

then the following SQL statement will be executed.

601

602

File During Load Transformations
The loading of flat files is performed using Fastload, Multi-load or TPT. The contents of the
Transformation tab in a column's Properties are the functions and conversions supported by the
database loader.

Example

Multiload performs transformations such as:

• FORMAT 'DD-MMM-YYYY' converts from a value such as 23-Mar-1999 to a Teradata date.

• CAST(:COL AS NUMERIC(18,4)) converts the data to a numeric(18,4)

• COALESCE(LTRIM(RTRIM(:COL)),0) trims leading and trailing white characters and inserts zero if
null.

After Load Transformations
After transformations will initiate a pass of the load table after the load has occurred. They allow
manipulation of the load table columns using the database and SQL functions.

Example

The following after transformation set for the column code in the table load_product

substr(code,1,5)

would result in the following SQL statement being executed after the load:

update load_product set code = substr(code,1,5);

603

Teradata User Defined Functions
Teradata User Defined Functions (UDFs) can be built using the C programming language and compile
directly onto the Teradata server and registered via a SQL command.

This can be daunting for many data warehouse developers, who may not know C well, and may not have
access to compile UDFs on the Teradata server.

604

Teradata UDF Example
A standard example given for Teradata UDFs is building a REPLACE function similar to the Oracle
database's REPLACE function.

Here is a simplified example:

Step 1: Write c code for UDF as replace.c:

Step 2: Put c file onto the Server

Copy the c program file onto the data base server into the following location:

605

C:\program files\ncr\tdat\tdconfig\tdbs_udf\replace.c

Step 3: Register and Compile UDF via SQL:

Step 4: Use the Function

Simply use the UDF in a RED column transformation or 'Where' clause like any other SQL function.

606

Re-usable Transformations
WhereScape RED Re-usable Transformations allow a complex SQL transformation using standard
Teradata functions (including UDFs) to be built once and reused in multiple column transformations.
Functionality is included to manage and propagate changes to user defined transformations.

Creating a New Re-usable Transformation
New re-usable transformations are created from the Tools/Define Re-Usable Transformations
menu.

Creating a new re-usable transformation is a three step process:

• Specify the name of the transformation

• Enter metadata for the transformation

• Define the transformation

607

Specify the Name of the Transformation
After selecting Define Re-Usable Transformations from the Tools menu the following dialog is
displayed:

Click New Transform and enter a name for the User defined transformation:

608

Note: This is the internal WhereScape RED name for the transformation, not the name developers
reference when utilizing the transformation on column transformations.

Click OK.

Enter Re-usable Transformation Metadata
Enter the following metadata for the transformation to describe the transformation for developers.

Transform Description

A general description of the transformation.

Function Tag

This is the name the function will appear as for users to select from the function builder when building
column transformations.

Function Syntax

The syntax guide for the function. This is visible in the function builder when clicking on the User
defined function.

Function Description

The description of the function visible in the function builder when clicking on the User defined
function.

609

Define the Transformation Model
Once the transformation has been created and the metadata entered, the actual SQL code used by the
transformation can be defined. The SQL code can be entered directly or via the Function Builder on the
right side. To use the function builder, expand the tree to find the required function.

Example of Building a Transformation Model

To build a model to CAST a trimmed string in YYYYMMDD format to a timestamp, do the following:

• Click on the Model tab

• Expand Functions heading

• Expand the Conversion heading

• Double click on Cast as Type (CAST)

• Expand the String heading

• Double click on Trim (TRIM)

• Highlight data_type and type TIMESTAMP FORMAT 'YYYYMMDD'

You should see the following:

610

Now Click OK.

611

Completed Re-usable Transformation

612

Changing a Re-usable Transformation
To change a re-usable transformation:

• Select Re-usable transformations from the Tools menu.

• Choose the transformation from the Transform Name drop-down list.

• Click on the Model Tab.

• Change the SQL as required.

• Click OK.

Example of a change to the Model SQL

In the example used in Creating a New User Defined Transformation (see "Creating a New Re-usable
Transformation" on page 606), the SQL was:

CAST(TRIM(BOTH FROM string_column) AS TIMESTAMP FORMAT 'YYYYMMDD')

Change the SQL to allow the format to be specified when the transformation is used by changing
YYYYMMDD to format.

Then highlight the word format and click on the Variable button. This makes the word format a
variable than can be substituted when the User Defined Transformation is used.

Now format is green and in italics:

Click OK.

614

Applying Changes to Dependant Transformations
After changing a Re-usable Transformation, a dialog appears asking to confirm that changes should be
applied to individual columns using the transformation, where possible:

If the Re-usable Transformation doesn't have any dependant columns, then the following message is
displayed:

If the Re-usable Transformation has been used for dependant columns then this message is displayed:

When an attempt is made to update a dependant Transformation, and the transformation has been
modified in such a way as to make it impossible for the changes to the User Defined Transformation to
be applied, the error message above will include a count of the failures. The results window will detail
the columns (and tables) where the update failures have occurred:

615

Using Re-usable Transformations
User defined transformations are used exactly the same way as any standard database Function. They
can be used on any object type. See Column Transformation Properties (on page 595)

616

Export objects are used in RED to produce ascii files from a single database table or view for a
downstream feed. Some or all of the columns in a table or view can be exported.
There are three ways of performing exports.

• File export - an export where most of the processing is managed and controlled by the scheduler.

• Script-based export - an export where a Windows or a Unix/Linux script file is executed to perform
the export. Script-based exports on Windows supports both DOS Batch and PowerShell scripts for
more information (see "24.11.1.1 Windows PowerShell Scripts" on page 657).

• Integration Services export - an export processed using a Windows connection where the
processing is handled via an Integration Services Package that is generated and executed
dynamically at run time.
SSIS exports to UNIX/Linux connections and processed via the UNIX/Linux scheduler are currently
not supported.

In This Chapter

Building an Export Object .. 617
File Attributes... 621
Export Column Properties .. 626
Script based Exports ... 628

C h a p t e r 2 3

Exporting Data

617

Building an Export Object
Creating an Export:
1 Browse the Data Warehouse connection.

2 Create a drop target by double clicking on the Export object group in the left pane. The middle
pane should have a column heading of Export Objects for the leftmost column.

3 Select a table or view in the right pane and drag it into the middle pane. Drop the table or view
anywhere in the middle pane.

The following dialog appears:

4 Rename the export object if it needs to be renamed and click ADD.

618

The Properties dialog displays:

5 If exporting the object via Windows, change the Connection to Windows.

From a Windows connection, File, Script based and Integration Services export methods are
supported.

619

6 If exporting the object via Unix/Linux, change the connection to Unix.

From a Unix/Linux connection File export and Script based exports methods are supported.

620

TIP: When doing a Script based export on Windows or Unix/Linux, use the Rebuild button
after selecting the relevant script to be rebuilt on the the Script Name drop-down menu.

• Click on the File Attributes tab to fill in the fields described in the next section to set the relevant
location, name and contents of the exported data file.

• When the File Attributes fields are filled in, go back to the Properties tab, select (Build Script) from
the Script Name drop-down menu and click OK.

• Export the object after filling in the Files Attributes fields by right-clicking on the export object on
the left pane and selecting Export.

621

File Attributes
The following fields are available to define the location, name and contents of the exported data file:

• Export Type - method of exporting data from the table. The available options are dependent on the
Destination connection that can be specified via the Properties page.

• Destination Connection - destination to the file system to which data will be exported. The
destination connection can be specified on the Properties screen.

• Export File Path - the full path (absolute path) of the folder/directory where the File is to be
created on the Windows or UNIX/Linux system.

• Export File Name - name of the Export File to which the data will be exported. The variable
$SEQUENCE$ can be used to provide a unique sequence number for the export file. Also, the
data/file components YYYY, MM, HH, MI, SS can be used when enclosed with the $ character. For
example, an export file name might be customer_$YYYYMMDD$.txt which would result in a file
name like customer_20150520.txt.

• Export Routine - database specific routine to use to export the data. FastExport or TPT Data
Connector for Windows exports, or TPT Data Connector for Unix/Linux exports.

• Export Format - routine-specific format to use to export the data. Select one of the default
Teradata formats: Text, Unformatted, Delimited, Binary, Formatted, FastLoad or a special
WhereScape RED derived format: Delimited or Width Fixed Text.

• Export File Delimiter - character that separates the fields within each record of the Export File for
Delimited formats. The delimiter identifies the end of which field. Common field delimiters are tab,
comma, colon, semi-colon, pipe. To enter a special character enter the uppercase string CHAR
with the ASCII value in brackets (e.g. CHAR(9)). This is only available if the Export Format is
Delimited text.

• Optionally Enclosed by - character that brackets text fields within each record of the Export File
for Delimited formats. A common example is ". This is only available if the Export Format is
Delimited Text.

• Export Options - allows the entry of export utility options. If more than one option is required a
semi-colon should be used between options.

• Header Row in Export - if a header line is required, choose business names or column names from
this drop-down list.

• Trigger Path - the trigger file indicates that the export to the main file has completed and it is now
safe to load the file. Secondarily, the trigger file may contain control sums to validate the contents
of the main load file. This field should contain the full path name to the directory in which a trigger
file is to be generated on the destination system.

• Trigger Name - this refers to the name of the file that is to be created as a trigger file. A trigger file
typically contains check sums (row count or the sum of a numeric column). The variable
$SEQUENCE$ can be used to provide a unique sequence number for the trigger file. Also, the
data/file components YYYY, MM, HH, MI, SS can be used when enclosed with the $ character. For
example, a trigger file name might be customer_$YYYYMMDD$.txt which would result in a file
name like customer_20150520.txt.

• Trigger Delimiter - multiple fields in the trigger file need to be separated by the trigger delimiter.

622

• Trigger Parameter 1,2,3 - checksums to be put in the trigger file. One of the row count and the
sum of any numeric fields in the source data.

• Compress After Export - tick this check-box if you want to compress the export file after it has
been created.

• Compress Utility Path - directory in which the compress utility exists.

• Compress Utility Name - name of the compression utility executable.

• Compress Parameters - name of the file to be compressed (using the RED variable $EXPFILE$) and
any commands or switches required to make the compression utility work. These parameters will
depend on the compression utility used.

For Windows File or Script based Exports, you can select the between the FastExport or TPT Data
Connector export routines.

1 Example screen for a Windows Script based Export using the TPT Data Connector.

623

2 Example screen for a Unix/Linux File/Script based Export using the TPT Data Connector.

TIP: With all the relevant fields filled in, remember to go back the Properties tab and select
(Build Script) from the Script Name drop-down menu.

Right-click on the export object on the left pane and select Export.

624

File Attributes - SSIS Exports
The following fields below are available to define the location, name and definitions of the exported
data file:

Integration Services File Attributes screen:

Export Type

Method of exporting data from the table. The available options are dependent on the Destination
connection that can be specified via the Properties page.

Destination Connection

Destination to the file system to which data will be exported. The destination connection can be
specified on the Properties screen.

625

Export File Definition
Export File Path

The full path (absolute path) of the folder/directory/ where the File is to be created on the Windows or
UNIX/Linux system.

Export File Name

Name of the Export File to which the data will be exported. The variable $SEQUENCE$ can be used to
provide a unique sequence number for the export file. Also the data/file components YYYY, MM, HH,
MI, SS can be used when enclosed with the $ character. For example an export file name might be
customer_$YYYYMMDD$.txt which would result in a file name like customer_20150520.txt.

Export Format

Routine-specific format to use to export the data.

Export File Delimiter

Character that separates the fields within each record of the Export File for Delimited formats. The
delimiter identifies the end of which field. Common field delimiters are tab, comma, colon, semi-colon,
pipe. To enter a special character enter the uppercase string CHAR with the ASCII value in brackets (e.g.
CHAR(9)). This is only available if the Export Format is Delimited Text.

Optionally Enclosed by

Character that brackets text fields within each record of the Export File for Delimited formats. A
common example is ". This is only available if the Export Format is Delimited Text.

Header Row

If a header line is required, choose business names or column names from this drop-down list. This
option is not available in DB2.

SQL Server Integration Services (SSIS)
SSIS Row Count Log

When enabled, this option includes Row Count logging on SSIS exports.

626

Export Column Properties

• Table Name - Database-compliant name of the table that contains the column. [Read-only field].

• Column Name - Database-compliant name of the column. Typically, column-naming standards
exclude the use of spaces etc. A good practice is to only use alphanumerics, and the underscore
character. Changing this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

• Column Title - Name that the business uses to refer to the column, which is included in the
RED-generated documentation and can be used in the end user layer of other tools. [Does NOT
affect the physical database table]. As such it is a free form entry and any characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

• Column Description - This field contains the description for the column. It may be a description
from a business user's point of view. This field might additionally contain information on where and
how the column was acquired. For example, if the column is sourced from multiple tables or is a
composite or derived column, then this definition would normally describe the process used to

627

populate the column. This field is used in the documentation and is available via the view
ws_admin_v_dim_col. It is also stored as a comment against the column in the database.

• Column Order - Numeric value that controls the relative order of columns in the database create
statement. The lowest numbered column will appear first in the table. Although this affects the
physical table definition, no action will be taken unless the table is re-created in the database. The
columns can be re-numbered based on the existing order by choosing the Respace Order Number
pop-up menu option when positioned over any column in the table. This action will number the
columns in increments of 10, starting at 10. In addition to a simple change of the order field, the
column order can be changed by first displaying the columns in the middle pane and then using drag
and drop to move the columns around. This drag and drop process will automatically renumber the
columns as required.

• Data Type - Database-compliant data type that must be a valid for the target database. Typical
Teradata databases often have integer, numeric(), varchar(), char(), date and timestamp data types.
See the database documentation for a description of the data types available. Changing this field
alters the table's definition.

• Format - Not relevant for Export Objects

• Numeric -Not relevant for Export Objects

• Additive - Not relevant for Export Objects

• Attribute - Not relevant for Export Objects

• Source Table - Identifies the source table where the column's data comes from. This source table is
normally a load table within the data warehouse. If the column was sourced from multiple tables,
then the normal practice is to record one of the tables in this field and a comment listing all of the
other tables in the Source Strategy field. This field is used when generating a procedure to update
the dimension. It is also used in the track back diagrams and in the documentation.

• Source Column - Identifies the source column where the column's data comes from. Such a column
is normally a load table column, which in turn may have been a transformation or the combination
of multiple columns. For previous value managed columns the source column is the column in the
table whose previous value is being recorded.

• Transformation - this is a Read-only field.

628

Script based Exports
A script based export object will have a Host Script defined. During the export process, this host script is
executed and the results returned.
During the drag and drop creation of an export object from a single table or view, a script can be
generated by selecting one of the 'Script based' export options. This script can then be edited to more
fully meet any requirements.

There are a number of conventions that must be followed if these host scripts are to be used by the
WhereScape scheduler.

629

1 The first line of data in standard out must contain the resultant status of the script. Valid values
are '1' to indicate success, '-1' to indicate a Warning condition occurred but the result is considered a
success, '-2' to indicate a handled Error occurred and subsequent dependent tasks should be held, -3
to indicate an unhandled Failure and that subsequent dependent tasks should be held.

2 The second line of data in standard out must contain a resultant message of no more than 256
characters.

3 Any subsequent lines in standard out are considered informational and are recorded in the audit
trail. The normal practice is to place a minimum of information in the audit trail. All bulk
information should be output to standard error.

4 Any data output to standard error will be written to the error/detail log. Both the audit log and
detail log can be viewed from the RED tool under the scheduler window.

5 When doing Script based exports, it is easy to use the rebuild button to the right of the
Script-name field to rebuild the scripts.

Note: Script-based exports on Windows supports both DOS Batch and PowerShell scripts for more
information (see "24.11.1.1 Windows PowerShell Scripts" on page 657).

630

WhereScape RED has a Procedure object group for database stored procedures and a Script object
group for host system scripts, such as Windows batch files.

Procedures

RED generates the bulk of the procedures during a prototype build, but these procedures can be
customized. In fact it would be normal practice once the prototype phase is completed to modify these
procedures to meet specific requirements. The procedure object group refers to the concept of database
stored procedures. Specific objects may in fact be functions, procedures or packages. In this chapter the
generation, editing and compilation of procedures is covered.

Scripts

Host scripts are generated when a script based file load is chosen during a file drag and drop from a
Windows connection. Scripts can also be created manually provided the rules for their inclusion into the
scheduling process are followed. This chapter covers the generation, editing and testing of host scripts
as well as explaining the components required to allow them to work in the scheduler environment.

In This Chapter

Procedure Generation .. 632
Procedure Editing ... 638
Procedure Loading and Saving ... 641
Procedure Comparisons ... 644
Procedure Compilation .. 645
Procedure Running ... 646
Procedure Syntax .. 646
Procedure Properties .. 647
Macros .. 650
BTEQ Scripts ... 650
Script Generation ... 651
Script Editing .. 660
Script Testing ... 662
Script Syntax .. 662
Script Environment Variables .. 665
Calling a Batch File from a Script ... 671
Scheduling Scripts .. 674
Manually created scripts .. 677

C h a p t e r 2 4

Procedures and Scripts

632

Procedure Generation
WhereScape RED generates template procedures to assist in the various phases of the data warehouse
build process. A procedure is generated by selecting the (Build Procedure...) option from a drop-down
box that is used to display the update, initial build, or post load procedure in a table's properties.

For Load tables a post load procedure can be generated by selecting the option above. This post load
procedure is designed to assist in the management of file loads where a trigger file has been used.

For Stage, Model and Aggregate tables an Update or Initial Build procedure can be generated by
selecting the option above from the appropriate drop-down box.

If a new procedure is created from scratch (i.e. not auto generated) then an outline of the syntax
required by the WhereScape scheduler can be generated by selecting the Tools/create procedure
outline menu option when in the procedure editor.

Wrapper procedures

In some cases, multiple procedures will be required to update a table. In such cases, it is best to create a
top level procedure that is seen by the scheduler as the 'Update' procedure. This procedure can in turn
call other procedures.

633

Example
We may have a model table that is updated from multiple stage tables. This wrapper procedure calls two
child procedures, one for each stage table that is to update the model table. A status is reported back to
the audit trail for each stage and an overall status ascertained for the model table update.
The wrapper procedure may look as follows:

634

635

Procedure Placeholders

Procedure placeholders can help in moving procedures between environments without the necessity of
regenerating those same procedures. In <PRODUCT, the purpose of these placeholders is to
automatically substitute the corresponding strings, which is needed for a specific environment.
The following procedure placeholders described below can be found in the update_xxxx_xxxx procedure.

[TABLEOWNER] is used as a placeholder to replace the schema name defined in the connection or
target.
For targets, the [TABLEOWNER] placeholder is derived from the Target Location Database/Schema in
the connection. The target can be changed in the table's Storage screen, on the Target drop-down list.
For more information about Target Location Database/Schema in connections and table's storage
screens, see Connection to the Data Warehouse (see "Database - Data Warehouse/Metadata
Repository" on page 135) and Storage (on page 182).
When moving tables between environments, the [TABLEOWNER] placeholder is determined by the
individual connection of the target environment.

Example
During the compilation process of the procedure, [TABLEOWNER.tablename] will be replaced with
PRODUSER.tablename if the table owner is PRODUSER in the destination environment.

636

 WhereScape RED Tip: dim_date
The TABLEOWNER placeholder is especially useful in update procedures when the related table is
moved to a different schema or environment. For example, when moving dim_date to other schemas,
[TABLEOWNER] will be replaced with the schema of the table when the procedure is compiled.

637

[METABASE] is used as a placeholder for the Teradata database metadata repository to enable the
deployment between environments without regenerating the procedures.

638

Procedure Editing
WhereScape RED includes a procedure editor which allows the maintenance of the various procedures,
functions and packages within the data warehouse. The editor is invoked by double-clicking on a
procedure name in the left pane or by right-clicking on the procedure name and selecting Edit the
Procedure.

A procedure can be compiled by selecting the Compile/Compile menu option. See the section on
compiling procedures for more information.

This section will discuss some of the features of the procedure editor.

In the following sections reference is made to a selected block of text. A selected block of text is a
normal windows selection where the text in question is highlighted. Normally achieved by holding down
the left mouse button and moving the cursor.

Indenting code

The tab character inserts two spaces into the text. A shift/tab removes two spaces.

Cut, Copy, Paste and Delete

The normal Windows cut, copy, paste and delete functions are available either through the toolbar or via
the right-click pop up menu.

Indenting a block of text

A selected block of text can be indented by four spaces by depressing the tab character. Each tab will
indent by a further two spaces. A shift/tab will remove two spaces from the front of each line in the
selected block.

Commenting out a block of text

A selected block of text can be turned into a comment by using the Comment option in the right-click
pop-up menu.

The editor will place two dashes '--' at the front of each line in the selected block.

In the same way a block of text can be un commented by choosing the Uncomment option.

Note: Only lines that start with two dashes in the left most column can be uncommented.

Inserting Steps

The right-click pop-up menu has an option to insert step. This option will insert a code line of the
format 'SET v_step = 1000;'. Each subsequent insert will add 100 to the step value. The Alt/Z key can also
be used to insert a step line.

The v_step variable is used in the event of an unhandled exception. In such a case the current v_step
value is reported, and it may be possible to ascertain the code that failed based on the value of this
v_step variable.

639

Note: If a step is inserted via this method then the step numbering will be automatically reset for all
steps numbering from 100 in increments of 100 when the procedure is compiled or saved.

Inserting Audit and Detail Messages

The Alt/A key can be used to insert an extra audit message to be written to the audit log while the
procedure is running. The default message can be changed as appropriate. The inserted code is:

The Alt/D key can be used to insert an extra detail (or error) message to be written to the detail log while
the procedure is running. The default message can be changed as appropriate. The inserted code is:

Viewing other procedural code

During the editing process it is possible to pop up a window containing other procedural code. This
window allows cut and paste operations. In such a way it can be used as a work area or as a source of
code. Select the Tools/View Procedure or Template menu option to bring the viewer window up. A
dialog as follows will appear:

640

A number of drop-down lists can be chosen from. Once an item is selected the viewer loads the code and
moves to the right side of the edit window. The various options are:

• Version: A previously saved version of this procedure. The description and time are shown.

• Procedure: Some other procedure stored within the WhereScape metadata.

• Template: A template procedure as defined in the WhereScape metadata.

• Compiled procedure: One of the currently compiled procedures existing in the database.

Once an item is chosen the viewer appears on the right side of the edit window. The viewer or the main
edit window can receive the focus by clicking the mouse within the appropriate window. Code can be cut
from one window and pasted into the other. Any changes made in the viewer window cannot be saved.
An example of an active view window is as follows:

641

NOTE: Editing, deleting or compiling Locked for Edit or opened procedures/scripts
Procedures or scripts cannot be deleted if they are Locked for Edit by any user, checked out by another
user or if there is another object that has the same associated procedures or scripts.
Saving or Compiling in the procedure or script edit window cannot be performed if the procedures or
scripts become Locked for Edit by other users after the edit window was opened.
Procedures or scripts cannot be deleted or modified after the edit window has been opened, unless the
Edit Lock has been released. Edit Locks can be released by any user in the Script or Procedure Properties
screen.

To prevent updates, deletes and modifications to certain procedures or scripts, it is best to use the Check
Out functionality instead. For more information about this functionality, please see section Check Outs
and Check Ins.

Procedure Loading and Saving
Procedures are normally stored in the WhereScape RED metadata tables. When a procedure is opened
within RED then the data is retrieved from the meta tables. Likewise when the procedure is saved it
overwrites the existing data in the meta tables.

When a procedure is compiled it is also written to the database system tables. In Teradata, a compiled
procedure can be viewed via the Teradata Administrator by doing a Show Definition of the procedure
located in the meta repository database.

642

Loading data

As mentioned above, when a procedure is opened for editing the information stored in the metadata is
loaded. Additional text can be loaded into the procedure edit window by selecting the File/Insert from
File menu option which allows the browsing and inserting of a PC based file. Also, paste buffer data can
be inserted in the normal manner. In the previous 'Editing' section, the viewer window was discussed.
This window can also be a source of data via cut and paste.

Saving the Procedure

The default File/Save Procedure menu option overwrites the existing procedure in the metadata. In
addition a procedure can be saved to a Windows disk by selecting the File/Write procedure to disk
menu option. All procedures can be written to disk from the main Builder menu option Backup/Save
procedures to disk. This option allows the selection of a directory. The procedures are then written
individually into that directory. All procedures are also written to one text file as part of the
Backup/Export the metadata menu option.

Versions

Multiple versions of a procedure can be stored. Once a version is created that version may be read but
may not be updated. Only the current procedure can be edited. There are a number of ways to create a
version of a procedure. These are:

1 By setting Auto-Version before Procedure Compile under Tools/Options/Versioning. If set a
new version of a procedure will be created whenever the procedure is compiled.

2 The Procedure Editor menu option File/Save and Version will save a procedure and create a version
at the same time.

3 By selecting the Version Control/New Version menu option from the pop-up menu when
positioned on a procedure when in the main Builder window.

4 By selecting the Tools/Version All menu option.

643

When a version is created via method (2) or (3) above, the following screen will appear, to allow the
definition of the version. If an auto version is created, then the person creating the version is recorded
along with the reason for the version. (e.g. Version on compile, Version on procedure delete)

• The version name/description appears, when the versions are subsequently browsed.

• The Retain until date is set ten years in the future by default.

• The automated deletion of versions is not supported at this stage.

644

Procedure Comparisons
A procedure can be compared to either an earlier version, or to the currently running code as
compiled/stored in the database. The menu option Tools/Compare to Compiled Source allows the
comparison of the procedure being edited with the code currently compiled and running in the database.
If a viewer window is open (see the procedure editing section) then the Tools/Compare to Viewer
menu option will compare the contents of the viewer window with the current code. Therefore to
compare against an older version, we first load the viewer window with the older version and perform a
Compare to Viewer.

The comparison will highlight the differences, as shown in the example below:

In this example the line SET v_step = 100; has been removed from the current code in the edit window
and the remaining three lines have been inserted.

Once the comparison has been completed you can either remove the compare comments or accept the
compare changes. The menu option Tools/Remove Compare Comments will remove the added blue
comments and code. The menu option Tools/Accept Compare Changes will implement the changes
highlighted. For the above example the line 'SET v_step = 100;' would be added and the following three
lines deleted.

645

Procedure Compilation
From within the procedure editor a procedure can be compiled by selecting the menu option
Compile/Compile or by clicking the Compile icon. If the procedure compiles successfully a dialog box
will appear notifying of a successful compile. If the compile fails then error message comments will be
inserted into the procedure code. In the following example the error messages are in red and begin with
--E--.

Error comments will be inserted at each error point. A compile will delete any previous error comments.
Error comments can also be removed through the menu option Compile/Delete Error messages.

Note: In some instances the error comments may not be positioned on the correct line. This can occur
as the result of one or more procedure lines being wrapped. Therefore, ensure the procedure editor
window is maximized when dealing with compile errors.

646

Procedure Running
Only procedures that conform to the WhereScape scheduler syntax can be executed from within the
procedure editor. Select the Execute/Execute menu option or click the Execute icon to run the
procedure. A procedure must have been compiled in order to run.

The results of the procedure will be displayed in a dialog box. The result code and result message will be
displayed as well as any additional messages.

Procedure Syntax
The procedures managed by the WhereScape scheduler require the following standards. If a function or
procedure is being developed that is not called directly by the scheduler then it does not need to
conform with this standard. If however such a procedure or function wants to log messages to the audit
or error logs then if will need the input parameters included in its parameter list.

Parameters

The procedure must have the following parameters in the following order:

Parameter name Input or Output Data Type

p_sequence Input Integer

p_job_name Input Varchar(256)

p_task_name Input Varchar(256)

p_job_id Input Integer

p_task_id Input Integer

p_return_msg Output Varchar(256)

p_status Output Integer

The input parameters are passed to the procedure by the scheduler. If the procedure is called outside the
scheduler then the normal practice is to pass zero (0) in the sequence, job_id and task_id. A description
of the run can be passed in the job name and the task name is typically the name of the procedure.

The output parameters must be populated by the procedure on completion. The return_msg can be any
string up to 256 characters long that describes the result of the procedures execution. The status must
be one of the following values:

647

Status Meaning Description

1 Success Normal completion

-1 Warning Completion with warnings

-2 Error Hold subsequent tasks dependent on this task

-3 Fatal Error Hold all subsequent tasks

Note: Multiple SQL statements can be separated using the "end of statement" indicator. This is <EOS>
by default but can be configured in Tools/Options/Code Generation/General.

Procedure Properties
The properties screen for procedures and scripts is the same. A procedure can be renamed by changing
the name field.
If a procedure is renamed, then it will also be necessary to change the procedure name within the actual
code. The purpose and owner fields are purely informational.

648

In the example above, the Delete Lock check box is not selected. Selecting this check box prevents the
procedure from being deleted through the Delete menu option. It also prevents the procedure from
being overwritten, if a new procedure generation is requested.

Also in the example above, the procedure is currently being edited and is shown as being Locked for Edit
by "WhereScape Documentation". If procedures or scripts have already been opened for editing, they can
only subsequently be opened for viewing.
Edit locks and delete operations for procedures and scripts as well as the regeneration and drop of
procedures are not permitted if the object is currently Locked For Edit by another user.

The Release Edit Lock button to the right of the edit lock message allows the edit lock to be cleared. If
WhereScape RED, the database or the PC crashes when a procedure is open, then the check out will need
to be cleared through this screen.

The Edit Lock Reason is for information only, and can be used as another comment field if desired.

The Type drop list allows the selection of Block, Function or Procedure:

649

Selecting a type of Block will allow you to execute a SQL block against another connection.

An additional field on the Properties screen - Default Connect - then allows you to select the
connection against which the SQL block will be executed.

650

Macros
WhereScape RED can also retrofit, run, schedule and generate Teradata macros.

Template macros can be generated for moving data into simple staging tables without surrogate keys. A
macro is generated by selecting the *** Create New Macro *** option from a drop-down box that is
used to display the update procedure in a staging table's properties.

A utility is available from WhereScape to mass retrofit large numbers of existing Teradata macros into
the WhereScape RED metadata.

BTEQ Scripts
WhereScape RED can also retrofit, run, schedule and generate Teradata BTEQ scripts.

Template bteq scripts can be generated for moving data into simple staging tables without surrogate
keys. A BTEQ script is generated by selecting the *** Create New Bteq *** option from a drop-down box
that is used to display the update procedure in a staging table's properties.

651

Script Generation
WhereScape RED generates template scripts to assist in the loading of textual files from Windows. These
scripts are generated when Windows file is dragged into a load table target and one of the two 'Script
based' file load options is chosen. Typically, script loads are used when some complexity prevents the
use of the standard file based load. In such a case, the script will probably need modification.

Note: Windows script supports both DOS Batch and PowerShell scripts for more information (see
"24.11.1.1 Windows PowerShell Scripts" on page 657).

Script Generation (Windows/Teradata)
A sample Windows script for Teradata is as follows. The key components of the script are described
below:

652

653

 WhereScape RED TIP: Parameters
Parameters can also be added to scripts to facilitate deployment processes or environment changes
without the need to regenerate scripts. They can be added to scripts of Load and Export tables.
For example: add $P<ParameterName>$ to the script where P is the parameter indicator as show
below.

Before adding a Parameter to the script, create the desired parameter(s) in Tools->Parameters-> Add
Parameter.

654

The script makes use of a number of environmental variables. These variable are acquired from both the
table and connection properties. These variables are established in the environment by either RED or
the scheduler. If the script is to be executed outside of RED or scheduler control then these variables will
need to be assigned.

The first section of the script defines the variables. The second section provides a timed wait for the load
file to arrive. By default, the WAITSECS variable is set to zero, so that no wait occurs. This can be set to
a number of seconds that the script is to wait for the file to arrive.

Once the wait has completed, either through a time expiry or through the location of the file, we check
that the file is present, and if not found report back a warning. This warning can be changed to an error
by changing the first echo statement to "-2". See the syntax section for more information.

When a trigger file is specified the script looks for a trigger file, and will exit with the specified status if
the file is not found. The following code is included if a trigger file is present.

655

Such a file (trigger) contains control information about the main file to be loaded and arrives after the
main file to indicate that the main file transfer has completed and that it is okay to load.
This section loads the contents of the trigger file into the Parameters table, so that the table can be
validated. See the section on Post Load procedures for an explanation on how trigger files are used to
validate a load file.

This section calls Fastload, Multi-Load or TPT to load the file. It makes use of a temporary file to build
as a control file and then calls Fastload, Multi-Load or TPT to load the data. Note that the load is
actually in a for loop. Wild card file names can be used to load multiple files. Each file to be loaded must
have the same format.

Note that the data being loaded is appended to the database table. As part of the scheduler run the load
table is truncated if the property for truncation is set. In this way multiple files can be loaded into the
database table.

656

If this script is to be executed outside the control of the WhereScape RED scheduler then a truncate
statement may need to be performed on the database load table. This would normally be placed before
the 'for loop' and would look something like the following:

echo DELETE FROM %LOAD_DB%.%LOAD_TABLE% ALL; | bteq .Logon
%DATABASE%/%USER%,%PWD% >> %FILEAUD%

This next section handles the rename and potential looping. The first block of code renames the file and
also the trigger file if appropriate. This code is only generated if the rename fields in the file attributes
are populated.
The goto label_load statement 9 lines from the end can be used if all the files in a wild card file load are
required. Simply uncomment this goto statement and the script will load each file in the wild card.

657

24.11.1.1 Windows PowerShell Scripts
In addition to the conventional Windows scripting and other tools, WhereScape RED also supports
Windows PowerShell scripts for loading data into a WhereScape RED managed Data Warehouse, as well
as for exporting data from a WhereScape RED managed Data Warehouse.

The Windows PowerShell command line and scripting environment was introduced by Microsoft in
Windows 7. For more information about PowerShell, please refer to the Microsoft TechNet website
(https://technet.microsoft.com/en-us/library/dd742419.aspx).

Note that WhereScape RED does not automatically create the PowerShell scripts, you must write them
either directly via the WhereScape RED script editor or via a template that generates a PowerShell script.
Each method is described below:

Via the WhereScape RED Script Editor

You can manually write the PowerShell script from scratch, using the Script Editor. You need to create
a Host Script object and set the script type to PowerShell script from the Host Script Properties screen.

You can then open the blank Host Script created of type PowerShell Script to write your own script, or
you can use the sample PowerShell scripts in WhereScape RED, which can be generated by selecting
Tools > Create Template Script from the Script Editor screen.

658

The contents generated is an actual PowerShell script syntax that you can use to load data into a
WhereScape RED managed Data Warehouse. You can also modify it and use it as a starting point to
write your own PowerShell script for Load or Export objects.

Via the Stub Template

WhereScape RED also provides the Template object wsl_common_powershellscript_stub which is a
basic PowerShell script type stub template that serves as guide on the use of a template to generate a
PowerShell script.

Additional PowerShell Templates can be downloaded from the WhereScape website
(https://www.wherescape.com/support/software-downloads-documentation/templates/).

659

You can also create your own Template object and select PowerShell Script under the Type drop-down
of the Template Properties screen.

660

Similar to the WhereScape RED Script Editor method described above, you can edit the template created
to write your own script or open an existing PowerShell script to copy its contents to your template.

Note:
WhereScape RED uses the 32-bit version of PowerShell by default. To use the 64-bit version, the
following code must be added as the first line of the script. The script is relaunched and will be run in
64-bit version.

Script Editing
WhereScape RED includes a script editor which allows the maintenance of any host scripts within the
data warehouse. The editor is invoked by double-clicking on a script name in the left pane or by
right-clicking on the script name and selecting Edit the Script.

Indenting code

The tab character inserts four spaces into the text. A shift/tab removes four spaces.

Cut, Copy, Paste and Delete

The normal Windows cut, copy, paste and delete functions are available either through the toolbar or via
the right-click pop up menu.

Indenting a block of text

A selected block of text can be indented by four spaces by depressing the tab character. Each tab will
indent by a further four spaces. A shift/tab will remove four spaces from the front of each line in the
selected block.

Viewing other scripts

During the editing process it is possible to pop up a window containing other scripts. This window
allows cut and paste operations. In such a way it can be used as a work area or as a source of code. Select
the Tools/View Script or Template menu option to bring the viewer window up. A dialog will appear.

A number of drop-down lists can be chosen from. Once an item is selected the viewer loads the code and
moves to the right side of the edit window. The various options are:

• Version: A previously saved version of this script. The description and time are shown.

• Script: Some other script stored within the WhereScape metadata.

• Template: A template script as defined in the WhereScape metadata.

661

Once an item is chosen the viewer appears on the right side of the edit window. The viewer or the main
edit window can receive the focus by clicking the mouse within the appropriate window. Code can be cut
from one window and pasted into the other. Any changes made in the viewer window can not be saved.

NOTE: Editing, deleting or compiling Locked for Edit or opened procedures/scripts
Procedures or scripts cannot be deleted if they are Locked for Edit by any user, checked out by another
user or if there is another object that has the same associated procedures or scripts.
Saving or Compiling in the procedure or script edit window cannot be performed if the procedures or
scripts become Locked for Edit by other users after the edit window was opened.
Procedures or scripts cannot be deleted or modified after the edit window has been opened, unless the
Edit Lock has been released. Edit Locks can be released by any user in the Script or Procedure Properties
screen.

To prevent updates, deletes and modifications to certain procedures or scripts, it is best to use the Check
Out functionality instead. For more information about this functionality, please see section Check Outs
and Check Ins.

662

Script Testing
When a host script is scheduled, it is run in the scheduler environment. Therefore a UNIX scheduler
must be available to run a UNIX script and only a Windows scheduler can run a Windows script.

It is possible to test a script interactively.

A script is invoked via the Execute/Execute the Script menu option. The output from the script is
shown in a pop-up dialog box.

Script Syntax
There are a number of conventions that must be followed if a host script is to be used by the
WhereScape scheduler. These conventions are:

1 The first line of data in 'standard out' must contain the resultant status of the script. Valid values
are '1' to indicate success, '-1' to indicate a warning condition occurred but the result is considered a
success, '-2' to indicate a handled error occurred and subsequent dependent tasks should be held, -3
to indicate an unhandled Failure and that subsequent dependent tasks should be held.

2 The second line of data in 'standard out' must contain a resultant message of no more than 256
characters.

3 Any subsequent lines in 'standard out' are considered informational and are recorded in the audit
trail. The normal practice is to place a minimum of information in the audit trail. All bulk
information should be output to 'standard error'.

4 Any data output to 'standard error' will be written to the error/detail log. Both the audit log and
detail log can be viewed from the WhereScape RED tool under the scheduler window.

663

Example:

In the following example the first line '@echo off' prevents unwanted information from being reported
to standard out. A Multi-Load script file is built up (echo statements). The mload command is then
executed to run the load.

@echo off

echo Loading c:\temp\budget.txt >> wsl_load_budget100001.aud

echo .Logtable WslWarehouse.load_budget_e1; > wsl_load_budget100001.ctl

echo .Logon DemoTDAT/WslWarehouse,wsl; >> wsl_load_budget100001.ctl

echo DROP TABLE WslWarehouse.ET_load_budget; >> wsl_load_budget100001.ctl

echo DROP TABLE WslWarehouse.UV_load_budget; >> wsl_load_budget100001.ctl

echo DROP TABLE WslWarehouse.WT_load_budget; >> wsl_load_budget100001.ctl

echo .Begin Import Mload tables WslWarehouse.load_budget >> wsl_load_budget100001.ctl

echo Worktables WslWarehouse.WT_load_budget >> wsl_load_budget100001.ctl

echo Errortables WslWarehouse.ET_load_budget >> wsl_load_budget100001.ctl

echo WslWarehouse.UV_load_budget; >> wsl_load_budget100001.ctl

echo .Layout Transaction; >> wsl_load_budget100001.ctl

echo .Field product_code * VARCHAR(50); >> wsl_load_budget100001.ctl

echo .Field customer_code * VARCHAR(33); >> wsl_load_budget100001.ctl

echo .Field budget_quantity * VARCHAR(50); >> wsl_load_budget100001.ctl

echo .Field budget_sales_value * VARCHAR(50); >> wsl_load_budget100001.ctl

echo .Field budget_date * VARCHAR(50); >> wsl_load_budget100001.ctl

echo .DML Label Inserts; >> wsl_load_budget100001.ctl

echo INSERT INTO WslWarehouse.load_budget >> wsl_load_budget100001.ctl

echo (product_code>> wsl_load_budget100001.ctl

echo , customer_code>> wsl_load_budget100001.ctl

echo , budget_quantity>> wsl_load_budget100001.ctl

echo , budget_sales_value>> wsl_load_budget100001.ctl

echo , budget_date>> wsl_load_budget100001.ctl

echo) >> wsl_load_budget100001.ctl

echo VALUES >> wsl_load_budget100001.ctl

echo (:product_code>> wsl_load_budget100001.ctl

echo , :customer_code>> wsl_load_budget100001.ctl

echo , :budget_quantity>> wsl_load_budget100001.ctl

664

echo , :budget_sales_value>> wsl_load_budget100001.ctl

echo , :budget_date (FORMAT 'DD-MMM-YYYY') >> wsl_load_budget100001.ctl

echo); >> wsl_load_budget100001.ctl

echo .Import Infile 'c:\temp\budget.txt' >> wsl_load_budget100001.ctl

echo From 2 >> wsl_load_budget100001.ctl

echo Format Vartext '^,' >> wsl_load_budget100001.ctl

echo Layout Transaction >> wsl_load_budget100001.ctl

echo Apply Inserts; >> wsl_load_budget100001.ctl

echo .End Mload; >> wsl_load_budget100001.ctl

echo .Logoff; >> wsl_load_budget100001.ctl

mload -b < wsl_load_budget100001.ctl >> wsl_load_budget100001.aud

SET ERRLEV=%errorlevel%

IF %ERRLEV% EQU 0 GOTO LABEL_OKAY

IF %ERRLEV% LEQ 4 GOTO LABEL_WARNING

:LABEL_FAIL

echo -3

IF %ERRLEV% EQU 8 echo Load Failed. A user error occurred in the loader.

IF %ERRLEV% EQU 12 echo Load Failed. A fatal error occurred in the loader.

IF %ERRLEV% EQU 16 echo Load Failed. No message destination available from the loader.

type wsl_load_budget100001.aud >&2

:ERR_EXIT

exit

:LABEL_WARNING

echo -1

echo Load Completed Normally, with warnings from the loader.

:LABEL_OKAY

echo 1

echo Load Completed Normally.

type wsl_load_budget100001.aud

exit

665

Script Environment Variables
The following environment variables are available for all script loads and script exports, both Windows
and UNIX/Linux.

All load scripts

The following variables are available in all load scripts:

Windows variable

UNIX/Linux
variable

Description

WSL_LOAD_FULLN
AME

LOAD_FULLNAME The fully-qualified load table name.

WSL_LOAD_TABLE LOAD_TABLE The unqualified load table name.

WSL_LOAD_SCHEM
A

LOAD_SCHEMA

The schema for the load table.

Note: A trailing dot is appended for SQL Server or Oracle
due to historical usage.
A trailing dot is not appended for any other database type
due to historical usage.

However, it is better not to assume the trailing dot is or
isn't appended by using the variable like this, when it is not
empty:

OS

If no trailing dot is
wanted

If a trailing dot is
wanted

Windows !WSL_LOAD_SCHEMA
:.=!

!WSL_LOAD_SCHEMA
:.=!.

UNIX/
Linux

${LOAD_SCHEMA%.} ${LOAD_SCHEMA%.}
.

WSL_LOAD_DB LOAD_DB The name of the database for the load table.

WSL_TEMP_DB TEMP_DB Teradata: The name of the database for load temporary
tables.

PDW: The name of the staging database for the load.

Others: Not Used.

WSL_TGT_DSN TGT_DSN The ODBC data source name (DSN) for the load table's
storage connection.

WSL_TGT_SERVER TGT_SERVER The server for the load table's storage connection.

WSL_TGT_DBPORT TGT_DBPORT The database port for the load table's storage connection.

WSL_TGT_DBID TGT_DBID The Database ID property of the load table's storage

666

Windows variable

UNIX/Linux
variable

Description
connection.

For Teradata this is the Teradata Director Program ID
(TDPID).
For Oracle this is the Oracle SID or TNS Name.

WSL_TGT_USER TGT_USER The user id for the load table's storage connection.

WSL_TGT_PWD TGT_PWD The password for the load table's storage connection.

All load scripts from Database or ODBC connections

In addition to the variables in the previous table, the following variables are available in all load scripts
from Database or ODBC connections:

Windows variable

UNIX/Linux
variable

Description

WSL_SRC_DSN SRC_DSN The ODBC data source name (DSN) for the source
connection.

WSL_SRC_SERVER SRC_SERVER The server for the source connection.

WSL_SRC_DBPORT SRC_DBPORT The database port for the source connection.

WSL_SRC_DBID SRC_DBID The Database ID property of the source connection.

For Teradata this is the Teradata Director Program ID
(TDPID).
For Oracle this is the Oracle SID or TNS Name.

WSL_SRC_DB SRC_DB The name of the database for the source connection.

667

WSL_SRC_SCHEMA SRC_SCHEMA

The Source Schema property of the load.

Note: The property is fetched without modification, so
there may or may not be a trailing dot depending on how it
is configured.

However, it is better not to assume the trailing dot is or
isn't appended by using the variable like this, when it is not
empty:

 OS

If no trailing dot is
wanted

If a trailing dot is
wanted

Windows !WSL_SRC_SCHEMA:.
=!

!WSL_SRC_SCHEMA:.
=!.

UNIX/
Linux

${SRC_SCHEMA%.} ${SRC_SCHEMA%.}.

WSL_SRC_USER SRC_USER The user id for the source connection.

WSL_SRC_PWD SRC_PWD The password for the source connection.

668

All export scripts

The following variables are available in all export scripts:

Windows variable

UNIX/Linux
variable

Description

WSL_EXP_NAME EXP_NAME The export object name.

WSL_EXP_FULLNA
ME

EXP_FULLNAME The fully-qualified export table name.

WSL_EXP_TABLE EXP_TABLE

The unqualified export table name.

Note: For Windows script exports from PDW, this variable
is initialized with the fully-qualified export table name, due
to historical usage.

To enable this variable to be uniformly described and used
as the unqualified export table name, an additional
variable WSL_EXP_SIMPLENAME is created.
This allows the following command to be explicitly added
to the top of the script by the script author, to be executed
before all other processing:
if defined WSL_EXP_SIMPLENAME (SET WSL_EXP_TABLE=!WSL_EXP_SIMPLENAME!) else SET

WSL_EXP_TABLE=

After such a command is executed, the
variable WSL_EXP_TABLE will contain the unqualified
export table name.

WSL_EXP_SCHEMA EXP_SCHEMA

The schema for the export table.

Note: A trailing dot is appended for SQL Server or Oracle
due to historical usage.
A trailing dot is not appended for any other database type
due to historical usage.

However, it is better not to assume the trailing dot is or
isn't appended by using the variable like this, when it is not
empty:

 OS

If no trailing dot is
wanted

If a trailing dot is
wanted

Windows !WSL_EXP_SCHEMA:
.=!

!WSL_EXP_SCHEMA:
.=!.

UNIX/
Linux

${EXP_SCHEMA%.} ${EXP_SCHEMA%.}.

WSL_EXP_DB EXP_DB The name of the database for the export table.

WSL_TEMP_DB TEMP_DB Teradata: The name of the database for export temporary

669

Windows variable

UNIX/Linux
variable

Description
tables.

Others: Not used.

WSL_SRC_DSN SRC_DSN The ODBC data source name (DSN) for the export table's
storage connection.

WSL_SRC_SERVER SRC_SERVER The server for the export table's storage connection.

WSL_SRC_DBPORT SRC_DBPORT The database port for the export table's storage connection.

WSL_SRC_DBID SRC_DBID The Database ID property of the export table's storage
connection.

For Teradata this is the Teradata Director Program ID
(TDPID).
For Oracle this is the Oracle SID or TNS Name.

WSL_SRC_USER SRC_USER The user id for the export table's storage connection.

WSL_SRC_PWD SRC_PWD The password for the export table's storage connection.

All scripts

In addition to the specific variables in the previous tables, the following variables are available in all
scripts:

Windows variable

UNIX/Linux
variable

Description

WSL_META_DSN META_DSN The ODBC data source name (DSN) for the meta-repository
connection.

WSL_META_SERVE
R

META_SERVER The server for the meta-repository connection.

WSL_META_DBID META_DBID The Database ID property of the meta-repository
connection.

For Teradata this is the Teradata Director Program ID
(TDPID).
For Oracle this is the Oracle SID or TNS Name.

WSL_META_DB META_DB The name of the database for the meta-repository
connection.

670

Windows variable

UNIX/Linux
variable

Description

WSL_META_SCHEM
A

META_SCHEMA

The meta-repository table qualifier, with a trailing dot.

For SQL Server and DB2 this is the schema for the
meta-repository.
For Teradata and Oracle this is not actually a schema
name.

Note: A trailing dot is appended due to historical usage.

However, it is better not to assume the trailing dot is or
isn't appended by using the variable like this, when it is not
empty:

OS

If no trailing dot is
wanted

If a trailing dot is
wanted

Windows !WSL_META_SCHEMA
:.=!

!WSL_META_SCHEMA
:.=!.

UNIX/
Linux

${META_SCHEMA%.} ${META_SCHEMA%.}
.

WSL_META_USER META_USER The user id for the meta-repository connection.

WSL_META_PWD META_PWD The password for the meta-repository connection.

WSL_WORKDIR WORKDIR Windows: The work directory defined in the Windows
connection.

UNIX/Linux: The work directory defined in the UNIX/Linux
or Hadoop connection.

WSL_SEQUENCE SEQ A unique sequence number for the load or export task.

WSL_PARAMnnn PARAMnnn Any parameters that start with the load table or export
object name.

Example:

A table called load_abc has a parameter
called load_abc_server defined.
In this case, a variable
called WSL_PARAM_SERVER (Windows)
or PARAM_SERVER (UNIX/Linux) will be created.

671

Calling a Batch File from a Script
Below is an example RED host script which calls a batch file:

@ECHO OFF

SETLOCAL ENABLEDELAYEDEXPANSION

SETLOCAL ENABLEEXTENSIONS

CALL c:\temp\MyBatchFile.bat > c:\temp\MyBatchFile.log 2>&1

IF %ERRORLEVEL% EQU 0 GOTO LABEL_OKAY

ECHO -2

ECHO Batch file returned an error code of %ERRORLEVEL%

TYPE c:\temp\MyBatchFile.log

EXIT

:LABEL_OKAY

ECHO 1

ECHO Batch file completed successfully

TYPE c:\temp\MyBatchFile.log

Where "c:\temp\MyBatchFile.bat" contains this:

ECHO Hello

SET ERRORLEVEL=0

672

Create the Host Script in RED:

Edit the Script and enter the following:

673

Save the Script:

674

When the script is executed, you will see the following results:

675

Scheduling Scripts
When a host script is scheduled, it is run in the scheduler environment. Therefore a UNIX scheduler
must be available to run a UNIX script and only a Windows scheduler can run a Windows script.
It is important to set the default connection on the Properties screen for that script. Right-click on the
host script in the left pane and select Properties.

Set Default Connect to either Windows or Unix and click OK.

676

Note: If you fail to set the default connection for the host script, you will receive a return message of
Invalid Host Type when the host script is executed.

There are a number of conventions that must be followed if a host script is to be used by the
WhereScape scheduler. These conventions are:

1 The first line of data in 'standard out' must contain the resultant status of the script. Valid values
are '1' to indicate success, '-1' to indicate a warning condition occurred but the result is considered a
success, '-2' to indicate a handled error occurred and subsequent dependent tasks should be held, -3
to indicate an unhandled Failure and that subsequent dependent tasks should be held.

2 The second line of data in 'standard out' must contain a resultant message of no more than 256
characters.

3 Any subsequent lines in 'standard out' are considered informational and are recorded in the audit
trail. The normal practice is to place a minimum of information in the audit trail. All bulk
information should be output to 'standard error'.

4 Any data output to 'standard error' will be written to the error/detail log. Both the audit log and
detail log can be viewed from the WhereScape RED tool under the scheduler window.

677

Manually created scripts
Individual scripts can also be manually created in RED to perform and schedule tasks that are not
related to load tables.
The example below shows a minimal script that will run successfully.

Please note that you need to use the following codes to determine the script's results meaning. It is
important that one of these codes is the first output of the script.

Output Description

Result Number

Output Result Number:

1 Success.

-1 Warning.

-2 Error.

-3 Fatal/Unexpected Error.

678

Templates provide the ability to customize automatically generated code within RED. This feature is
most suited to users that would like to customize automatically generated code or would like to expand
RED to support non-native database platforms.

Creating templates is an advanced function that requires intimate knowledge of RED operations and
metadata structure. WhereScape recommends that you contact our consulting team to assist with this
feature. However, should you wish to use this feature independently, example templates and up-to-date
reference information is available on our website:

https://www.wherescape.com/support/software-downloads-documentation/wherescape-red/tem
plates/

Some templates may be included in your RED installation, depending on your license.

Each template is assigned a type and a target database, these properties are used to assist with filtering
when associating table operations to templates. RED supports templates for the following operations:

Operation Database Template Type

Create DDL All database types DDL

Export Script All database types Windows Script

PowerShell Script

Unix Script

Olap/XMLA Script

Load Script All database types Windows Script

PowerShell Script

Unix Script

Olap/XMLA Script

Update Procedure Custom Block

Hive Block

SQL, Teradata, Oracle and
PDW

Block

Procedure

C h a p t e r 2 5

Templates

679

Note: Script-based loads and exports on Windows supports both DOS Batch and PowerShell scripts for
more information (see "24.11.1.1 Windows PowerShell Scripts" on page 657).

Utility type templates can contain common code for use by other templates.

Templates are written in the Pebble template language, for more information on Pebble see
http://www.mitchellbosecke.com/pebble/documentation.

TIP: Detailed logs can be produced during template evaluation by typing FULLLOG in the Notes of
the relevant connection.

In This Chapter

Template Properties ... 679
Template Editor.. 681
Template Usage .. 685

680

Template Properties
The properties screen for a template is shown below.

Name, Purpose and Author fields should be completed to provide background information on the
template, these fields are purely informational.

Created and Last Update fields provide date information on the template.

The Type field informs RED what this template can be used for. This can be set to one of the following:

• Block

• DDL

• Function

• OLAP (XML/A) Script

• Procedure

• Unix Script

• Utility

• Windows Script

The Target DB sets the type of database connections for this template. The template will only be
selectable for an operation when the Target DB field matches that of the object. Target DB is restricted
based on your license.

681

• Common (applies to all databases)

• Custom

• DB2

• Greenplum

• Hive

• Netezza

• Oracle

• PDW

• SQL Server

• Tabular

• Teradata

NOTE: Hive and Custom update procedure templates only support Block update procedures so you
should create a block template for these.

Template Editor
Right-click on a template and select 'Edit Template' or 'View Template' to open the Template Editor.

682

Evaluating an API Outline Template
An API Outline Template is available to output all object properties relevant to the current object. Upon
evaluation of this template, the status of each property is generated and printed to the script or
procedure file.

NOTE: Template evaluation usually generates a script or procedure file, but the API Outline Template
generates plain text. The output of this template is intended to be viewed or copied to a text file, it
cannot be executed as a script.

To evaluate an API Outline Template:

1 Create a new template. The template can normally be of any type, but in this example, we will use
the DDL template type because viewing the evaluation of DDL templates is simple.
Set Target DB to your source connection database type. In this example, we will set the Target DB
to SQL Server because the load table we are evaluating is stored on a SQL Server connection.

683

2 Open the template in the Template Editor.

3 Click Tools > Create API Example Outline. The API Example Outline text is added to the blank
template.

684

4 Save and close the template.

5 Open the Properties dialog for the Load Table you wish to evaluate.

6 In the Storage tab, select the template you created in the Create DDL Template drop-down box.

7 Open the Override Create DDL tab. If the Override DDL field is populated with a custom DDL
statement, copy and paste this statement to a text file for backup purposes.

8 Click the Derive DDL button. A warning dialog box displays informing you that the association of
the DDL template with this table will be saved to the metadata, click OK.

685

9 The results of the API Outline Template are printed to the Override DDL text box. Cut or copy this
text to a text editor and save as a text file for reference purposes.

10 Click Cancel in the Load Table properties dialog.

NOTE: Ensure the Load Table properties are returned to their previous state. The default value for
Storage>Create DDL Template is None and the Overide Create DDL>Override DDL field is left blank
to use the automatically generated DDL statement or ensure your custom DDL statement remains.

686

Template Usage
If a template exists of the correct Type and Target DB, templates can be specified and evaluated as
follows:

Operation Location to Specify the Template Notes

Create DDL Table Properties>Storage>Create
DDL Template

DDL will be evaluated for the object at
runtime if a template is specified in the
Storage tab.

Alternatively, clicking the Derive DDL
button in the Override Create DDL tab
will generate Override DDL based on
the specified template.
IMPORTANT: If Override DDL is
specified, the Override DDL will be used
at runtime.

Export Script Export Object Properties>File
Attributes>Script Template

Load Script Load Table Properties>Source>
Script Template

Update Procedure When building the Update
Procedure, specify the Template
field on the Update Build
Options>Processing tab.

If a Block template is specified, a SQL
block will be generated.

If a Procedure template is specified an
update procedure will be generated.

To check which Operations are supported by Templates on your Target DB, see Templates (on page 678).

687

Windows PowerShell Templates
PowerShell Template (wsl_common_powershellscript_stub):

You can use the basic PowerShell stub template available in WhereScape RED that serves as guide on the
use of a template to generate a PowerShell script.

Additional PowerShell Templates can be downloaded from the WhereScape website
(https://www.wherescape.com/support/software-downloads-documentation/templates/).

Notes:
The PowerShell stub template (wsl_common_powershellscript_stub) is listed under the Template objects
pane, along with the other templates available in WhereScape RED. If this stub template is not visible
after installing/upgrading WhereScape RED, use the WhereScape RED Setup Administrator to Validate
the Metadata Repository. For more information, please refer to the WhereScape RED Installation Guide.

688

The scheduler is accessible by clicking the Scheduler button on the toolbar. It is also
available as a stand alone utility. In this way operators can be given access to the scheduler without
gaining full access to the data warehouse.

The scheduler runs under Windows (as a system service). It processes pre-defined jobs, recording the
success, failure or otherwise of the job.

Audit trail

Specific information relating to the tasks in the job are recorded to the audit trail. Generally only
summary information is written to this audit trail. The contents of the audit trail are maintained even
after a job is deleted.

Error trail

Detail or error information is written to the error trail. The contents of the error trail are deleted when
the job is deleted.

Administration Views

It is possible to view the status of a job without using the WhereScape RED product. Three views are
provided to assist in this undertaking. They are ws_admin_v_audit, ws_admin_v_error and
ws_admin_v_sched. Queries can be issued using these views to see the results or status of a job.

In This Chapter

Scheduler Options .. 689
Scheduler States ... 695
Scheduling a Job ... 698
Working with Jobs .. 703
Stand Alone Scheduler Maintenance ... 752
SQL to return Scheduler Status .. 755
Reset Columns in Job and Task View ... 756
Stopping a Linux/UNIX Scheduler from within RED .. 756

C h a p t e r 2 6

Scheduler

689

Scheduler Options
An example of the Scheduler screen is shown below.

Toolbar/Jobs menu

Quick access to some job categories are in the toolbar. The complete options are listed under the Jobs
menu and while most are self-explanatory they are described below:

Object Description

All jobs All jobs are listed in the middle pane

Scheduled jobs In the middle pane lists those jobs that are waiting to run or are on hold.

Last 24 hours Lists the jobs that have run or started to run during the last 24 hours.

Prior 24 hours Lists the jobs that ran during the previous 24 hours.

This weeks Jobs Lists the jobs that have run or are scheduled to run during the current
week

Last weeks Jobs Lists the jobs that ran during the last week.

My Jobs Lists the jobs you have scheduled or have run.

690

Object Description

Job Name Filter Lists the jobs whose names match the filter supplied. This filter only
works as an appended filter to the main filter selected under Jobs. ie first
enter a filter for Job Name Filter or select a filter from the drop-down
list; and then choose your main filter under Jobs - eg All Jobs, Scheduled
Jobs etc.

Recent audit trail

Today's audit trail

Provides listings from the audit trail. The information is useful when a
job fails to start or enters some other unknown state. Generally the audit
trail entries for a job can be found by drilling down into the job itself.

Scheduler status Lists all schedulers and displays their current status. The status is
updated every few minutes, and a right menu option allows the polling
of a scheduler for status, and the termination of a scheduler.

Top pane

The top pane shows the details of the jobs. Information covers:

Column Description

Job name The name given to the job when created.

Status The status of the job. Refer to the following section for the various
status values.

Sequence This is a unique number assigned to each job iteration and job. If you
enter a new job it will acquire a new sequence number. In normal daily
processing when no new jobs have been created sequence numbers will
be sequential.

Start and Finish times As the names suggest, the start and finish dates and times for the job.

Elapsed time The time that elapses from start to finish of a job.

Ok These are success messages written to the audit trail.

Inf Informational messages written to the audit trail about the the running
of the job.

Det Lines written to the detail or error logs

Warn The number of warnings written to the audit trail.

Err The number of error messages written to the audit trail.

Who The initials of the person who scheduled the job.

Additional fields can be added via the Tools -> Select Job Report Fields option

691

Middle pane

The middle pane shows the tasks related to a selected job. Task information available includes:

Column Description

Task The object name

Action The action to be done to the object

Status Status of the task

Sequence This is a unique number assigned to each job iteration and job. If you
enter a new job it will acquire a new sequence number. In normal daily
processing when no new jobs have been created sequence numbers will
be sequential.

Start and Finish
times

As the names suggest, the start and finish dates and times for the task

Elapsed time The time that elapses from start to finish of a task.

Info Informational messages written to the audit trail about the the running
of the job.

Detail Lines written to the detail or error logs

Warning The number of warnings written to the audit trail.

Result Result of the task

Additional fields can be added via the Tools -> Select Task Report Fields option

Bottom pane

The bottom pane shows the audit trail of a selected task/job. Audit trail information includes:

Column Description

Task The object name

Status The status of the message

Sequence This is a unique number assigned to each job iteration and job. If you
enter a new job it will acquire a new sequence number. In normal daily
processing when no new jobs have been created sequence numbers will
be sequential.

Timestamp Time of message output

Message The message

DB Message Message from database

692

Column Description

Job Job relating to this message

Auto
Auto Refresh

Use auto refresh to automatically refresh all jobs.

Set Refresh Options

Use this setting to control the maximum number of rows that are displayed via the Auto Refresh option
as well as the display refresh interval.

When clicking the Set Refresh Options, the settings dialog allows adding a display limit. The display of
jobs when on auto refresh will stop at the selected number of rows, so when set to 100, the refresh will
stop after first 100 rows (jobs) are returned.

If 0 is selected in the Specify the Limit of Entries to Display, then all rows (jobs) will be displayed.

693

Tools

Select Job Report Fields
The Select Job Report Fields menu option in the scheduler pane enables users to select some extra
fields such as Scheduler, Threads and Frequency fields into the job report.

1 To make these fields available, click Tools->Select Job Report Fields from the top pane.

694

2 Select the fields you want to add to your job report from the menu and drag them to where you want
to place them on the report.

NOTE: The "Frequency" field is only populated for scheduled jobs. If selected, it will return blank
results for running or completed jobs.

695

Scheduler States
A scheduled job can have the following states:

• Hold

• Waiting

• Blocked

• Pending

• Running

• Failed

• Failed - Aborted

• Completed

State Description

Hold The job is on hold. It can be edited and its state changed in order to
release the job.

Waiting

The job is waiting to start, or waiting for its scheduled time to arrive, or
waiting for a scheduler to become available.

Blocked The job is blocked as a previous instance of the same job is still
running.

Pending This is the first stage of a running job. The scheduler has identified the
job as ready to start and has allocated a thread, or sub task to process
the job. A job is in this state until the thread or sub tasks begins
processing. If a job stays in this state then the scheduler thread has
failed for some reason. The logs can be checked on either the Windows
server on which the scheduler is running.

Running The job is currently running. Double-click on the job name in the right
pane to drill down into the specific tasks.

Failed A failed job is one that had a problem. It can be restarted from the
point of failure and is considered to be running unless subsequently
aborted.

Failed - Aborted The job has been aborted after having failed. Once in this state a job
cannot be restarted. The job exists then only as a log of what occurred
and is no longer regarded as a job.

Completed The job has successfully completed, possibly with warnings. Once in
this state, a job cannot be restarted. The job exists then only as a log of
what occurred and is no longer regarded as a job.

696

Note: When a job fails and drilling down does not show any errors against the tasks, right-click on the
job and View Audit Trail. The job may have failed because of an error in the JOB level.

697

A scheduled task can have the following states:

• Waiting or Blank

• Held

• Running

• Failed

• Completed

• Error Completion

• Bad Return Status

State Description

Held The task has been held due to a prior dependency failure. The problem
must be rectified and the job restarted.

Waiting (Blank)

Tasks that are waiting to run either due to a shortage of threads, or
prior dependencies normally have a blank status.

Running The task is currently running.

Failed The task has had a fatal error. Any dependencies on this task will be
held. Double click on the task to see more detail error information or
review the audit and error/detail log for the job.

Completed The task has completed successfully.

Error Completion The task has completed with a handled Error. Any dependent tasks will
be held, and the job must be restarted when the problem is rectified.

Bad Return Status The task has returned an unknown status. This normally occurs with
script files that produce unexpected information. The rule for scripts is
that the first line returned must be a status of either 1, -1, -2, or -3.
The second line is a message detailing the result. If the first line does
not contain one of these four values, then this status will be returned
and dependent tasks held. Run the script manually to view the output
or check the logs.

698

Scheduling a Job
To schedule a job

Firstly access the scheduler by clicking the Scheduler button on the toolbar.

Select File | New Job from the menu strip at the top of the screen, or click the New Job button on the
toolbar.

The following Job Definition dialog is displayed.

699

See Creating a Job (on page 706) for more details on how to create a job.

Once the job has been created, click on the All Jobs button on the toolbar. The newly created job will
now be displayed in the scheduler window.

To create a job within a job

It is possible to schedule one job from another job. There are however some limitations and rules that
must be understood when doing this.

1 A job that is called from another job is only ever allocated one thread. All tasks within the called job
will therefore run sequentially.

2 A job can only have one running iteration. Therefore, a called job will be blocked if that job is
already running independently or as part of another job.

3 Any job dependencies for the called job are ignored. The parent's job dependencies are the only ones
that are used.

4 A called job essentially runs as a separate job, so that if it fails both it and the parent job will show in
a failed state. Once the problem is fixed the parent job should be restarted which will restart the
called job.

700

To create a job dependency

It is possible to make a job dependent on another job, using the the Dependent On field in the Job
Definition dialog.

701

Click on the Add Parent Job button.

In the dialog that follows, select the Parent Job from the drop-down list. In our case we will choose the
job Shared Dimensions Daily Refresh.

702

The Maximum Time to Look Back for the Parent Job Completion field prevents older iterations of
the parent job as being identified as a completion. In our example, we are starting both jobs at 3am, so
we don't need to look too far back to ensure that the dimension refresh has run. We have therefore set
the look back minutes to 60 to allow for any delays in starting this job.

The Maximum Time to Wait for the Parent Job to Complete specifies how long to await a successful
completion of the parent job. In our example we know that the dimension refresh only takes a few
minutes, but we should allow for the occasional slow network or resource drains making the dimension
refresh take longer; so we have set the maximum wait to 20 minutes. This means that our job will wait
20 minutes from its own scheduled start time for the parent job to complete.

The checkbox to fail if the parent job does not complete in time will prevent this job from running if the
parent job (dimension refresh) does not complete successfully. As we do not wish for the transactional
data in our fact deliveries to be flagged with ‘Unknown’ dimensional item(s), we can leave this checkbox
checked to ensure that this job does not run.

Click Add.

NOTE: Clearing the checkbox to fail if the parent fails will simply ensure that this job waits for the
completion of the dimension refresh and, irrespective of the dimensions refresh’s success or failure,
starts.

Click OK to link this data job to the parent dimensional job. In this way, the job Enterprise Reporting
Daily Refresh cannot run until the parent job Shared Dimensions Daily Refresh has completed
successfully; thus the facts will have the latest dimensional keys associated with them.

703

Working with Jobs
When positioned on a Job in the scheduler window, the right-click pop-up menu provides a number of
options for working with the job. Some of the options are discussed in more detail in the chapters that
follow, however a brief overview of the menu options follows:

704

The View Tasks menu option enables you to view the tasks of a job.

The View Audit Trail option enables you to view the audit trail of a job.

The View Detail Log option enables you to view a detail log of a job.

The Export to CSV File option enables you to export a job to a CSV file.

The Documentation option enables you to create documentation for a job.

The Edit Job option enables you to edit a job. See Editing a Job (on page 718)

The Edit Tasks option enables you to edit the tasks of a job. See Editing Tasks (see "Editing Tasks in a
Job" on page 722)

The Edit Dependencies option enables you to edit the task dependencies of a job. See Editing
Dependencies (see "Editing Task Dependencies" on page 729)

The Insert Copy of Job option enables you to insert a copy of a job. See Inserting a Copy of a Job (on
page 736)

The Delete Job option enables you to delete a job. See Deleting a Job (on page 737)

The Multiple Log Delete option enables you to delete multiple logs of a job. See Deleting Job Logs (on
page 739)

The Start the Job option enables you to start a job. See Starting a Job (on page 741)

The Halt the Job option enables you to halt a job. See Halting a Job (on page 742)

The Abort the Job option enables you to abort a job. See Aborting a Job (on page 743)

The Restart the Job option enables you to restart a job. See Restarting a Job (on page 744)

706

Creating a Job
To create a job

Click on the Scheduler tab to open the scheduler window.

Click on the New Job button to create a new job.

A Job Definition dialog is displayed.

707

Complete the fields and click OK. The main fields are described in the following table:

Field Description

Job Name The Scheduler defaults to the next job number in the sequence. You
can alter this to any alphanumeric.

Note: Only alphanumerics, spaces and the underscore are supported in
the name.

Description A description of the job

708

Field Description

Frequency When the job runs. The options available in the drop-down list are:

• Once Only - job is deleted on completion

• Once and Hold - runs and puts another copy of the job on hold

• Hold - puts the job on hold for manual release

• Daily - runs the job daily

• Custom - enables custom definition

• Weekly - runs the job weekly

• Monthly - runs the job monthly

• Annually - runs the job annually

Start Date and Start
Time

• The date and time for the job to start.

Max Threads The maximum number of threads allocated to run the job, e.g. if some
tasks can run in parallel then if more than one thread is allocated then
they will run in parallel.

Scheduler It is possible to have multiple schedulers running. Select the desired
scheduler from this drop-down. The valid options are:

Windows Preferred, Windows Only, or the name of a specific scheduler
can be entered (e.g. WIN0002)

Dependent On A job can be dependent on the successful completion of one or more
other jobs. Click the Add Parent Job button to select a job that this job
will be dependent on. The maximum time to look back for parent job
completion field prevents older iterations of the parent job as being
identified as a completion. The maximum time to wait specifies how
long to await a successful completion of the parent job. The action if
that wait expires can also be set.

See the Dependency example in Scheduling a Job (on page 698)

Logs Retained Specify the number of logs to retain for the job. By default all logs are
retained. This field can be used to reduce the build up of scheduler logs
by specifying a number of logs to retain.

Okay command and
Failure command

These are Windows shell commands depending on which scheduler is
used. They are executed if the condition is met. Typically, these
commands would mail or page on success or failure.

Notes:

1. The RED scheduler does not check return codes from called
commands, scripts and programs.

2. It is recommended that all output from commands, scripts and
programs is redirected to a log file. For example, add this to the end of
any SUCCESS/FAILURE commands:

>> c:\scheduler\success_failure_prod.log 2>&1

709

The following fields are available if a frequency of Custom is chosen:

Field Description

Interval between jobs
(Minutes)

Specify the number of minutes between iterations of the job. For
example to run a job every 30 minutes set this value to 30. If a job is to
run only once but on selected days set this value to 1440 (daily)

Start at or after
HHMM

The time that the job may run from. To run anytime set to 0000.

Do not start after
HHMM

If multiple iterations are being done then this is the time after which a
new iteration will not be started. For example if a job is running every
10 minutes it will continue until this time is reached. To run till the
end of day set to 2400.

Active on the days Select each day of the week that the custom job is to be active on.

710

Once the job itself has been defined, tasks then need to be added to the job. The Define tasks window
is shown below.

The screen has two main areas. The right pane shows the tasks to be run for this job and the left pane
lists all the objects.

To add a task

Double click on an object to add it to the left pane. Normally objects such as load or fact tables are
scheduled rather than procedures.

To set the action on a task

Each task can have a specific action that is to be performed on its object.

The default action for load tables is process. This means that when the task is actioned it will drop any
indexes that are due to be dropped, or have pre-drop set, then load the table and perform any post-load
procedures or transformations and then re-create any dropped indexes.

The default action for all other tables is the same as above, except it will execute the update procedure
rather than loading the table.

711

You can change the action on a task by right-clicking on the task in the right pane. The menu options
are shown below.

The following task actions are available:

Action Description

Drop Drop table, view, join index or index.

Create Create table, view, join index or index.

Truncate Delete all rows from the table.

712

Action Description

Initial Build Drop All Indexes then Custom then Build All Indexes.

Drop All Indexes Drop all indexes on the table.

Pre Drop Indexes Drop all indexes on the table marked as "Pre Drop".

Load Load the table (Load tables only).

Custom Run the custom procedure on the table.

Update Run the update procedure on the table.

Execute Execute the procedure or host scripts.

Process Pre Drop Indexes then Update and then Build Indexes.

Process and Statistics Process then Default Stats as defined on Table Properties/
Statistics/Process and statistics method (DB2 only).

Build Indexes Build the indexes on the table marked as "Pre Drop".

Build All Indexes Build all indexes on the table.

Stats Refreshes predefined statistics on a table or index:

COLLECT STATISTICS ON DatabaseName.TableName;

COLLECT STATISTICS ON DatabaseName.TableName INDEX
IndexName;

Quick Stats Refreshes predefined statistics on an index using sampling:

COLLECT STATISTICS USING SAMPLE ON
DatabaseName.TableName INDEX IndexName;

Analyze Refreshes predefined statistics on a table or index:

COLLECT STATISTICS ON DatabaseName.TableName;

COLLECT STATISTICS ON DatabaseName.TableName INDEX
IndexName;

Quick Analyze Refreshes predefined statistics on an index using sampling:

COLLECT STATISTICS USING SAMPLE ON
DatabaseName.TableName INDEX IndexName;

Note: Not all actions are available on all object types.

713

To set the state of a task

Each task can be set to a state:

The following states are available:

State Description

Enable Job Task is enabled.

Disable Job Task is disabled.

714

Disable Once Job Task is disabled once and reverts to enabled next time the Job
is released by the Scheduler.

To create dependencies between tasks

It is possible to create dependencies between tasks in the list by selecting one or more tasks and
right-clicking to bring up the dependency options.

The following task dependency options are available from the menu:

715

Task Option Description

Group Selected Tasks Groups two or more selected tasks to have the same order value,
allowing them to run in parallel if the maximum threads setting
allows.

Ungroup Selected Tasks Un-group selected tasks.

Sync with Item Above Changes a selected task to have the same order value as the task
above it, allowing them to run in parallel if the maximum threads
setting allows.

Sync with Item Below Changes a selected task to have the same order value as the task
below it, allowing them to run in parallel if the maximum threads
setting allows.

Decrease the Order Changes a selected task to an order number one less than its
current value. The task will now run immediately before it would
have previously.

Increase the Order Changes a selected task to an order number one more than its
current value. The task will now run immediately after it would
have previously.

To order or group the tasks

The Order column shows the order in which the tasks are to be run, e.g. 20.20 If the two numbers are
the same as another task then those tasks can run in parallel. If the two numbers are different then
those tasks run sequentially. This is an initial definition of dependencies. These dependencies can be
altered specifically once the job has been created.

Tasks can be moved up or down by selecting the task and clicking the Move Up or Move Down

 buttons.

716

To re-space the order of the tasks; to group or un-group object types, use the buttons at the bottom of
the Define tasks dialog.

• Respace Order

This button will respace the order numbers. The existing dependency structure and groupings are
retained. The purpose of this button is simply to allow room between tasks to fit new tasks. So for
example if we have two tasks that have an order of 20.19.5 and 20.20.6 and we want to add a task
between these two tasks we can click the Respace Order button to open up a gap between the two
tasks.

• Group Object Types

This option will put all objects of the same type into groups. For example all load tables will be able
to run in parallel, all dimensions etc.

• Ungroup All

This button will remove all groupings and make all tasks sequential. New groupings can be made by
selecting a range of sequentially listed tasks in the left pane and using the right-click menu option
Group Selected Tasks. Tasks that are grouped have the same first two numbers in the order and can
execute at the same time if the job has multiple threads.

Upon completion of adding tasks, click OK.

718

Editing a Job
Once jobs have been created they can be edited.

Note: A job can only be edited when it is not in a running state and only if the job is a scheduled job.
Completed jobs remain in the list but only logs remain.

To edit a job

Select the job from the scheduler middle pane. Right-click on the job and select Edit Job from the
drop-down list.

719

The Job Definition will be displayed.

Edit the fields as required and click OK. The main fields are described in the following table:

Field Description

Job Name The Scheduler defaults to the next job number in the sequence. You
can alter this to any alphanumeric.

Note: Only alphanumerics, spaces and the underscore are supported in
the name.

Description A description of the job

720

Field Description

Frequency When the job runs. The options available in the drop-down list are:

• Once Only - job is deleted on completion

• Once and Hold - runs and puts another copy of the job on hold

• Hold - puts the job on hold for manual release

• Daily - runs the job daily

• Custom - enables custom definition

• Weekly - runs the job weekly

• Monthly - runs the job monthly

• Annually - runs the job annually

Start Date and Start
Time

• The date and time for the job to start.

Max Threads The maximum number of threads allocated to run the job, e.g. if some
tasks can run in parallel then if more than one thread is allocated then
they will run in parallel.

Scheduler It is possible to have multiple schedulers running. Select the desired
scheduler from this drop-down. The valid options are:

Windows Preferred, Windows Only, or the name of a specific scheduler
can be entered (e.g. WIN0002)

Dependent On A job can be dependent on the successful completion of one or more
other jobs. Click the Add Parent Job button to select a job that this job
will be dependent on. The maximum time to look back for parent job
completion field prevents older iterations of the parent job as being
identified as a completion. The maximum time to wait specifies how
long to await a successful completion of the parent job. The action if
that wait expires can also be set.

See the Job Dependency example in Scheduling a Job (on page 698)

Logs Retained Specify the number of logs to retain for the job. By default all logs are
retained. This field can be used to reduce the build up of scheduler logs
by specifying a number of logs to retain.

Okay command and
Failure command

These are Windows shell commands depending on which scheduler is
used. They are executed if the condition is met. Typically, these
commands would mail or page on success or failure.

Notes:

1. The RED scheduler does not check return codes from called
commands, scripts and programs.

2. It is recommended that all output from commands, scripts and
programs is redirected to a log file. For example, add this to the end of
any SUCCESS/FAILURE commands:

>> c:\scheduler\success_failure_prod.log 2>&1

721

The following fields are available if a frequency of Custom is chosen:

Field Description

Interval between jobs
(Minutes)

Specify the number of minutes between iterations of the job. For
example to run a job every 30 minutes set this value to 30. If a job is to
run only once but on selected days set this value to 1440 (daily)

Start at or after
HHMM

The time that the job may run from. To run anytime set to 0000.

Do not start after
HHMM

If multiple iterations are being done then this is the time after which a
new iteration will not be started. For example if a job is running every
10 minutes it will continue until this time is reached. To run till the
end of day set to 2400.

Active on the days Select each day of the week that the custom job is to be active on.

722

Editing Tasks in a Job
Once jobs have been created, you can edit their tasks.

Note: A job can only be edited when it is not in a running state and only if the job is a scheduled job.
Completed jobs remain in the list but only logs remain.

JOB TASK LIMIT - There is maximum number of 999 tasks that can be added to a job.

To edit the tasks of a job

Select the job from the scheduler middle pane. Right-click on the job and select Edit Tasks from the
drop-down list.

723

The Define tasks window is shown below.

The screen has two main areas. The right pane shows the tasks to be run for this job and the left pane
lists all the objects.

To add a task

Double click on an object to add it to the left pane. Normally objects such as load or fact tables are
scheduled rather than procedures.

To set the action on a task

Each task can have a specific action that is to be performed on its object.

The default action for load tables is process. This means that when the task is actioned it will drop any
indexes that are due to be dropped, or have pre-drop set, then load the table and perform any post-load
procedures or transformations and then re-create any dropped indexes.

The default action for all other tables is the same as above, except it will execute the update procedure
rather than loading the table.

724

You can change the action on a task by right-clicking on the task in the right pane. The menu options
are shown below.

The following task actions are available:

Action Description

Drop Drop table, view, join index or index.

Create Create table, view, join index or index.

Truncate Delete all rows from the table.

725

Action Description

Initial Build Drop All Indexes then Custom then Build All Indexes.

Drop All Indexes Drop all indexes on the table.

Pre Drop Indexes Drop all indexes on the table marked as "Pre Drop".

Load Load the table (Load tables only).

Custom Run the custom procedure on the table.

Update Run the update procedure on the table.

Execute Execute the procedure or host scripts.

Process Pre Drop Indexes then Update and then Build Indexes.

Process and Statistics Process then Default Stats as defined on Table Properties/
Statistics/Process and statistics method (DB2 only).

Build Indexes Build the indexes on the table marked as "Pre Drop".

Build All Indexes Build all indexes on the table.

Stats Refreshes predefined statistics on a table or index:

COLLECT STATISTICS ON DatabaseName.TableName;

COLLECT STATISTICS ON DatabaseName.TableName INDEX
IndexName;

Quick Stats Refreshes predefined statistics on an index using sampling:

COLLECT STATISTICS USING SAMPLE ON
DatabaseName.TableName INDEX IndexName;

Analyze Refreshes predefined statistics on a table or index:

COLLECT STATISTICS ON DatabaseName.TableName;

COLLECT STATISTICS ON DatabaseName.TableName INDEX
IndexName;

Quick Analyze Refreshes predefined statistics on an index using sampling:

COLLECT STATISTICS USING SAMPLE ON
DatabaseName.TableName INDEX IndexName;

Note: Not all actions are available on all object types.

726

To create dependencies between tasks

It is possible to create dependencies between tasks in the list by selecting one or more tasks and
right-clicking to bring up the dependency options.

The following task dependency options are available from the menu:

Task Option Description

Group Selected Tasks Groups two or more selected tasks to have the same order value,
allowing them to run in parallel if the maximum threads setting
allows.

727

Task Option Description

Ungroup Selected Tasks Un-group selected tasks.

Sync with Item Above Changes a selected task to have the same order value as the task
above it, allowing them to run in parallel if the maximum threads
setting allows.

Sync with Item Below Changes a selected task to have the same order value as the task
below it, allowing them to run in parallel if the maximum threads
setting allows.

Decrease the Order Changes a selected task to an order number one less than its
current value. The task will now run immediately before it would
have previously.

Increase the Order Changes a selected task to an order number one more than its
current value. The task will now run immediately after it would
have previously.

To order or group the tasks

The Order column shows the order in which the tasks are to be run, e.g. 20.20 If the two numbers are
the same as another task then those tasks can run in parallel. If the two numbers are different then
those tasks run sequentially. This is an initial definition of dependencies. These dependencies can be
altered specifically once the job has been created.
Tasks can be moved up or down by selecting the task and clicking the Move Up or Move Down buttons.
To respace the order of the tasks; to group or ungroup object types, use the buttons at the bottom of the
Define tasks dialog.

728

• Respace Order

This button will respace the order numbers. The existing dependency structure and groupings are
retained. The purpose of this button is simply to allow room between tasks to fit new tasks. So for
example if we have two tasks that have an order of 20.19.5 and 20.20.6 and we want to add a task
between these two tasks we can click the Respace Order button to open up a gap between the two
tasks.

• Group Object Types

This option will put all objects of the same type into groups. For example all load tables will be able
to run in parallel, all dimensions etc.

• Ungroup All

This button will remove all groupings and make all tasks sequential. New groupings can be made by
selecting a range of sequentially listed tasks in the left pane and using the right-click menu option
Group Selected Tasks. Tasks that are grouped have the same first two numbers in the order and can
execute at the same time if the job has multiple threads.

Upon completion of editing tasks, click OK.

729

Editing Task Dependencies
Once jobs have been created they can be edited.

Note: A job can only be edited when it is not in a running state and only if the job is a scheduled job.
Completed jobs remain in the list but only logs remain.

To edit task dependencies

Select the job from the scheduler middle pane. Right-click on the job and select Edit Dependencies
from the drop-down list.

730

The Dependencies dialog will be displayed, showing the dependencies between the tasks of the job. The
list consists of Parent Tasks on the left and Child Tasks on the right. A child task is thus dependent on
its parent task in that it cannot run until its parent has run.

Edit the dependencies and close the dialog.

731

To add a task dependency

To add a task dependency, right-click anywhere in the Dependencies pane and select Add Dependency.

Select the Parent and Child tasks from the drop-down lists to create the dependency and click OK.

732

To modify a task dependency

To modify a task dependency, right-click on the dependency in the Dependencies pane and select
Modify Dependency.

Change the Parent and Child tasks to modify the dependency and click OK.

733

To delete a task dependency

To delete a task dependency, right-click on the dependency in the Dependencies pane and select Delete
Dependency.

The dependency will be deleted without warning.

734

Show Dependencies Diagram
Select the Show Dependency Diagram option from the right-click menu of any job to see all job
dependencies displayed as a Diagram from RED's Diagram view tab.

735

Job Dependency Diagram view

736

Inserting a Copy of a Job
To insert a copy of a job

A copy of a job can be inserted by right-clicking on the job and choosing Insert Copy of Job.

The new job will immediately be visible and the Status will be On Hold.

737

Deleting a Job
To delete a job

A job can be deleted by right-clicking on a job in the scheduler window and choosing Delete Job.

738

A warning message will be displayed; click Yes to delete.

739

Deleting Job Logs
To delete multiple job logs

Multiple job logs can be deleted by right-clicking on a job in the scheduler window and choosing
Multiple Log Delete.

The Delete Multiple Job Logs dialog will be displayed. Select or enter the appropriate options to delete
the range of job logs required.

740

A warning message will be displayed. Click Yes to delete.

741

Starting a Job
To start a job

Multiple job logs can be deleted by right-clicking on a job in the scheduler window and choosing
Multiple Log Delete.

742

Halting a Job
To halt a job

A job can be halted by right-clicking on a job in the scheduler window and choosing Halt the Job.

743

Aborting a Job
To abort a job

A job can be aborted by right-clicking on the job in the scheduler window and choosing Abort Job.

Once in this state, a job cannot be restarted. The job now exists only as a log of what occurred and is no
longer regarded as a job.

Effects of aborting a job

Load and update processes are not stopped for all objects in Teradata repositories.

744

Restarting a Job
To restart a job

A job can be restarted by right-clicking on a job in the scheduler window and choosing Restart the Job.

Before restarting a job, it is possible to edit the status of the job tasks so that only certain tasks will be
run again or be skipped over.

745

To run a task again

View the job tasks by double-clicking on the failed job. The tasks will be displayed in the bottom pane.

To rerun a task, right-click on the completed task and select Change to On Hold.

Click OK on the message dialog.

746

Double-click on the job again to display the tasks. You will see that the selected task now has a status of
Hold and will thus be rerun when you restart the job.

To skip over a task

View the job tasks by double-clicking on the failed job. The tasks will be displayed in the bottom pane.

To skip over a task, right-click on the task and select Change to Completed.

747

748

Click OK on the message dialog.

Double-click on the job again to display the tasks. You will see that the selected task now has a status of
Completed and will thus be skipped when you restart the job.

749

Creating an Application from a Job
To Create an Application from a Job
1 Right-click on the job in the scheduler window and select Create Application.

750

2 Edit the application as required.

751

3 Edit the objects to add or replace as required.

Note: Creating an application from a job will save the objects in the job and the job, but not the
associated objects.

4 Click OK when finished.

5 A dialog will display, confirming the creation of the application files. Click OK.

752

Stand Alone Scheduler Maintenance
WhereScape RED includes a stand alone scheduler maintenance screen. This screen provides all the
scheduler control functionality found in the main RED utility, but with no access to the main metadata
repository.

Scheduler maintenance logon

The logon screen differs in that the user name and password do not have to be that of a valid metadata
repository. This user name/password combination can be any valid database user.

Scheduler maintenance grants

Statement Reason

grant select on ws_dbc_connect to dsssched; Repository access

grant select on ws_meta to dsssched; Repository access

grant select on ws_meta_tables to dsssched; Repository access

grant select on ws_meta_names to dsssched; Repository access

grant select on ws_obj_type to dsssched; Repository access

grant select on ws_obj_object to dsssched; Object access (job create)

grant select on ws_obj_pro_map to dsssched; Object access (job create)

grant select on ws_obj_project to dsssched; Object access (job create)

753

Statement Reason

grant select on ws_obj_group to dsssched; Object access (job create)

grant select on ws_pro_gro_map to dsssched; Object access (job create)

grant select on ws_wrk_audit_log to dsssched; Scheduler status

grant select,insert,update on ws_user_adm to
dsssched;

Repository access

grant select,delete on ws_wrk_error_log to
dsssched;

Scheduler status, and job deletion

grant select,update on ws_wrk_scheduler to
dsssched;

Scheduler status, poll

grant select,insert,update,delete on
ws_wrk_dependency to dsssched;

Job creation, maintenance

grant select,insert,update,delete on
ws_wrk_job_ctrl to dsssched;

Job creation, maintenance

grant select,insert,delete on ws_wrk_job_log to
dsssched;

Job maintenance

grant select,update,delete on ws_wrk_job_run to
dsssched;

Job maintenance

grant select,insert,update,delete on
ws_wrk_dependency to dsssched;

Job maintenance

grant select,insert,update,delete on
ws_wrk_job_dependency to dsssched;

Job maintenance

grant select,delete on ws_wrk_job_thread to
dsssched;

Job maintenance

grant select,insert on ws_wrk_sequence to
dsssched;

Job creation

grant select,insert,update,delete on
ws_wrk_task_ctrl to dsssched;

Task maintenance

grant select,update,delete on ws_wrk_task_run
to dsssched;

Task maintenance

grant select,insert,delete on ws_wrk_task_log to
dsssched;

Task maintenance

grant select,insert,update on dss_parameter to
dsssched;

Task maintenance

754

Statement Reason

grant select on ws_pro_header to dsssched; Right-click used by option in
parameters listing

grant select on ws_pro_line to dsssched; Right-click used by option in
parameters listing

grant select on ws_scr_header to dsssched; Right-click used by option in
parameters listing

grant select on ws_scr_line to dsssched; Right-click used by option in
parameters listing

grant select on ws_load_tab to dsssched; Right-click used by option in
parameters listing

grant select on ws_load_col to dsssched; Right-click used by option in
parameters listing

grant select on ws_stage_tab to dsssched; Right-click used by option in
parameters listing

grant select on ws_stage_col to dsssched; Right-click used by option in
parameters listing

grant select on ws_dim_tab to dsssched; Right-click used by option in
parameters listing

grant select on ws_dim_col to dsssched; Right-click used by option in
parameters listing

grant select on ws_agg_tab to dsssched; Right-click used by option in
parameters listing

grant select on ws_agg_col to dsssched; Right-click used by option in
parameters listing

A sample script to grant these privileges is shipped with WhereScape RED. This script is called
'grant_sched_access.sql' and can be found in the WhereScape program directory.

The scheduler maintenance utility does not require a WhereScape license key. The WhereScape RED
software can be installed onto a PC, and this utility utilized without having to use the WhereScape
'Setup Administrator' utility.

755

SQL to return Scheduler Status
This SQL returns the scheduler status:

SELECT CASE

WHEN ws_stop_date IS NOT NULL

THEN 'STOPPED'

WHEN ((DATEDIFF(mi,ws_active_date,GETDATE()) -
CONVERT(INTEGER,DATEDIFF(mi,ws_active_date,GETDATE())/60)*60) > 15)

OR (CONVERT(INTEGER,DATEDIFF(mi,ws_active_date,GETDATE())/60)>0)

THEN 'NOT ACTIVE'

WHEN (((DATEDIFF(mi,ws_active_date,GETDATE()) -
CONVERT(INTEGER,DATEDIFF(mi,ws_active_date,GETDATE())/60)*60)>((ws_interval/60)+10)

OR CONVERT(INTEGER,DATEDIFF(mi,ws_active_date,GETDATE())/60)>0)

AND ws_poll_flag=1)

THEN 'NOT ACTIVE'

ELSE 'Running'

END

FROM dbo.ws_wrk_scheduler

WHERE ws_name = 'YourSchedulerName'

The procedure sets the status in the metadata.

756

Reset Columns in Job and Task View
Job and Task Report headings can be reset by selecting the View/Reset Display Headings menu option
from the scheduler window. The short-cut keys are Alt+V-R.

A dialog will ask you to confirm the request.

If you selected Yes to reset the display settings, then a dialog will confirm once the reset has occurred.

757

Stopping a Linux/UNIX Scheduler from within RED
To stop a Linux/UNIX Scheduler from within RED, follow the steps below:

1 Edit the crontab and comment out the ws_sched_check_nnn.sh entry. This will stop the scheduler
restarting within the next 20 minutes.

Note: There may be several different versions of the scheduler files for a given database and
platform (UNIX or Linux). For example, there may be different folders in
...\WhereScape\Teradata\Linux\: Version_550 and Version_600. The highest version number script
less than or equal to the version of RED in use should always be used.

758

2 Start RED and click on the Scheduler tab.

3 Click on Scheduler in the toolbar and then select Scheduler Status.

4 Right-click on the displayed UNIX/Linux scheduler entry and choose Shutdown Scheduler.

Sometime within the next poll interval of the scheduler, the scheduler will gracefully stop.

759

Indexes may exist on any table defined in RED. By default, RED will auto-generate a number of indexes
during the drag and drop process and when building procedures.

These indexes can be altered or deleted. New indexes can be created as desired.

NOTE: The maintenance of the indexes is performed as part of the normal scheduler processing.

In the left pane, right-click on a table to:

• Display indexes

• Add indexes

In This Chapter

Index Definition .. 760

C h a p t e r 2 7

Indexes

760

Index Definition
By right-clicking on a table in the left pane and selecting Display Indexes the middle pane will display
the indexes for that table. Alternatively, you can double-click on the Index object type in the left pane to
display all indexes in the repository or a specific group or project.

In the middle pane, right-click on an index and the following options are available:

• Properties

• Create Index

• Drop Index

• Delete Metadata and Drop Index

• Create via Scheduler

• Projects

761

Properties

The properties screen (see example below) can be selected via the right-click menu when positioned on
an index name in the middle pane. The Update Buttons: Update <- and Update -> are used to move to
the previous and next index respectively. The Update Buttons are not available when browsing all
indexes in a group, project or repository.

The fields are described below:

Field Description

Index name Typically, the table short name followed by:

• _idx_0 indicating primary key

• _idx_x where x = any letter a to z indicating business keys

• _idx_PR indicating primary index

Index description Free flow description of the index

762

Field Description

Rebuild frequency When the index is rebuilt by the scheduler. Select an option from the
drop-down list:

• Never (default)

• Daily

• End Month

• Start Month

• Saturday

• Sunday

• Monday

• Tuesday

• Wednesday

• Thursday

• Friday

Active checkbox • When selected means the index is in use.

• When not selected means the index is not managed by the
scheduler.

• The active checkbox on a primary index may not be turned off as
all tables in Teradata require a primary index.

Artificial Key When checked indicates that this is the surrogate (artificial) key
generated by the system.

Business Key Denotes a business key.

Unique Specifies that the index is a unique index

Note: If both unique and artificial are set it is assumed to be a
primary key constraint and it is added as such.

Primary Index Specifies that the index is a Primary Index

Drop before Update The index is dropped before the update procedure runs on the table
and is reinstated after the update is completed.

The Drop before update checkbox on a primary index may not be
turned on as all tables in Teradata require a primary index.

Hash Index Defines the index as a Teradata hash index. This limits the
hash-ordering to one column, rather than all columns of the index (the
default).

Index columns Shows the columns in the order that will be applied to the index. The
order can be changed using the up/down buttons on the left. For a
primary index without any indexed columns, the table is created as
NOT PRIMARY INDEX table. See example below.

763

Field Description

Table columns Shows all columns in the table that can be indexed. These table
columns can be added or removed by highlighting the column and
checking the appropriate button.

Indexes are normally managed by the scheduler as part of the normal processing of a table.

764

Below is an example of a NO PRIMARY INDEX index definition:

765

WhereScape RED includes the ability to document the data warehouse, based on the information stored
against the metadata for all the tables and columns in the data warehouse.

The documentation will only be meaningful if information is stored in the meta data. The business
definition and a description should be stored against all columns that will be visible to end users.

The following sections describe how to generate (see "Creating Documentation" on page 766) and read
(see "Reading the Documentation" on page 770) the documentation.

In This Chapter

Creating Documentation .. 766
Batch Documentation Creation.. 769
Reading the Documentation .. 770
Diagrams .. 771

C h a p t e r 2 8

Documentation and Diagrams

766

Creating Documentation
Create documentation

To create the documentation for the components of the data warehouse, select Doc from the builder
menu bar, then Create Documentation.

If the repository has projects or groups in use, then the following dialog will appear to allow the
selection of a specific group or project. The default is all objects in the repository.

A file dialog will appear next. Select a file path (directory) under which to save the HTML files that will
be produced.

A style sheet called mainstyle.css is created if it does not exist. If this style sheet exists then it is not
overwritten. The style sheet can therefore be modified to match an existing intranet standard.

767

The next screen allows for the inclusion of a banner and user defined links. It also provides some build
options:

The Sizes checkbox instructs the documentation generator to examine the size of all tables and indexes
in the database. This process may be slow in some situations, so should normally only be used for final
documentation.

The sorted checkbox sorts the columns within the tables into alphabetical order. By default, the columns
are in the order that they appear within the tables.

Creating a header

If you check the banner frame option then a banner (heading) will be created at the top of each page in
the documentation. You will be prompted for height of the banner frame in pixels (default is 60), an
image file (jpg or gif) and any banner text. It is recommended that any image be relatively small (60
pixels high or approximately 1/2 an inch) as it will appear on every page.

Adding Links

Custom information can be linked into the generated documentation.

768

This means that every time the documentation is regenerated, custom information will be included. In
this way the complete documentation for the data warehouse can be viewed in one location.

If you select the add Links option, then you will be prompted to include personalized links from index
pages. These links must be to previously created HTML files.

Index pages (linkage points) are available at three points:

• index - initial page

• techindex - technical documentation initial page

• indexuser - user documentation initial page

Multiple links can be added to each index page by using the More option.

Adding glossary elements

As part of the user documentation a glossary is produced defining all the business terms and column
names used in the data warehouse. This glossary is primarily based off the columns in the model tables.
Additional information can, however, be added via the 'Ws_Api_Glossary' procedure defined in the
procedures chapter. This procedure allows the manual inclusion of glossary elements that will be stored
in the metadata repository and added to the glossary whenever the documentation is recreated.

769

Batch Documentation Creation
WhereScape RED includes the ability to document the data warehouse based on the information stored
against the metadata for all the tables and columns in the data warehouse. In a larger environment, it
may be a good idea to generate documentation in batch mode.

The following syntax chart illustrates the options available:

med.exe /BD { /U UserName { /P Password } } /C OdbcSource /M MetaDatabase { /N FullName } /D Directory { /G
GroupName | ProjectName } /S NumHops

Note: {} indicates an optional parameter and | indicates alternative values.

Parameter Descriptions

The following parameters are available:

Parameter Specify Value? Mandatory? Description

BD No Yes Indicates batch documentation mode.

U Yes Sometimes *1 Username parameter.

P Yes Sometimes *1 Password parameter.

C Yes Yes ODBC data source parameter.

M Yes Yes Metadata database parameter.

N Yes No Full user name parameter, only for logging
purposes.

D Yes Yes Directory name where documentation is
created.

G Yes No Group or Project name if specified. All
Objects if not included.

S Yes Yes Number of processes/hops in the source
diagrams.

Note: User Name and Password are not required when using a trusted connection or operating system
authentication.

770

Example

The following example connects to a Teradata repository using the WslWarehouse ODBC data source, a
username of Jack, a password of fly1nG, a metadata database of ProdMeta and generates documentation
into the C:\Temp\my_doco directory with 4 hops in diagrams:

med.exe /BD /UJack /P fly1nG /C "WslWarehouse" /M "ProdMeta" /D "C:\Temp\my_doco" /S "4"

Reading the Documentation
To read the documentation you have created, select Doc from the builder menu bar, then Read
Documentation. This will launch a browser and display the contents of index.html. Alternatively you
can access the HTML pages directly from their saved location.

771

Diagrams

Types of Diagrams
Six types of diagrams are provided to give visual representation of what has been created. These are:

• The Schema Diagram (on page 773)

• The Source Diagram (on page 775)

• The Joins Diagram (on page 779)

• The Links Diagram (on page 780)

• The Impact Diagram (on page 781)

• The Dependency Diagram (on page 783)

1 To display the Diagram Selection dialog, click on the diagrammatic view button

772

2 Choose the object to diagram by optionally choosing the Type to limit the selection list; and then
selecting the Object. The diagram type buttons on the right will then become active and you can
choose the type of diagram to display.

773

Schema Diagram
A star schema diagram can be displayed for a fact_table, aggregate table, fact view or OLAP cube. It
shows the central table with the outlying dimensions.

An example of a Schema diagram in Standard Diagram format is displayed below.

774

An example of a Schema diagram in Detail Diagram format is displayed below.

Note: A star schema diagram for a fact view will display only the selected fact view and related
dimension views.

The star schema diagrams are produced in Standard Diagram format as part of the user and technical
documentation when you select Doc > Create Documentation from the main builder window.

775

Source Diagram
A source tracking diagram can be displayed for any table. It shows connections back from the chosen
table to the source tables from which information was derived. Hovering the cursor over a line shows
additional information. For lines going into load tables, the source of the data will be displayed; while
for other lines in the diagram, the procedure used to move data between two tables is displayed.

An example of a Source diagram in Standard Diagram format is displayed below.

776

An example of a Source diagram in Detail Diagram format is displayed below.

The Source diagrams are produced in Standard Diagram format as part of the technical documentation
when you select Doc > Create Documentation from the main builder window.

Creating a Job from a Source Tracking Diagram

Once a source tracking diagram has been created for a table, a scheduler job can be generated from the
diagram. This job will be called Process_to_table_name, where table_name is the name of the table the
track back diagram was run for.

To create a Job, select Create Job from the Tools menu after the diagram is displayed:

777

The Job Definition is then displayed:

Make any changes here that are required and click OK.

778

For the diagram above, a job is created with the following tasks:

Note: It is also possible to display the source tracking diagram by right-clicking on a table and choosing
Impact/Track Back Diagram:

779

Joins Diagram
A data join track back diagram can be displayed for any table. It shows connections back from the
chosen table to the source tables from which information was derived and includes dimension table
joins. Hovering the cursor over a line shows additional information. For lines going into load tables, the
source of the data will be displayed; while for other lines in the diagram, the procedure used to move
data between two tables is displayed.

An example of a Joins diagram in Standard Diagram format is displayed below.

780

Links Diagram
A linked tables diagram can be displayed for any table. It shows relationships between tables, looking
out from the chosen table a selected number of hops. The number of hops is determined by table
relationships and source and target relationships.

An example of a linked tables diagram in Standard Diagram format is displayed below.

Notes:

1. A linked table diagram for a model object will display only related model objects, aggregate objects
and views of type "Model View".

2. A linked table diagram for an aggregate object will display only related model objects, aggregate
objects and views of type "Model View".

3. A linked table diagram for a view of type "Model View" will display only related model objects,
aggregate objects and views of type "Model View".

4. A linked table diagram for a view of type "View" will display only related views of type "View".

781

Impact Diagram
A track forward impact diagram can be displayed for any table. It shows connections forward from the
chosen table to the subsequent tables built with columns from this table.

A track back impact diagram can be displayed for any table. It shows connections backwards from the
chosen table to the previous tables.

An example of an Impact diagram in Standard Diagram format is displayed below.

Note: It is also possible to display the track back / forward diagram by right-clicking on a table and
choosing Impact > Track Back Diagram or Impact > Track Forward Diagram:

783

Dependency Diagram
A job dependency diagram can be displayed for any job defined in the WhereScape RED scheduler. It
shows the parent and child relationships between tasks within a job.

An example of a Dependency diagram in Standard Diagram format is displayed below.

784

Editing a Job's Dependencies from a Job Dependency diagram

Once a Job Dependency diagram has been created for a job, its dependencies can be edited from the
diagram. To do this, select Launch Dependency Editor from the Tools menu:

785

The dialog that follows allows you to edit the dependencies within a job:

786

Working with Diagrams
Diagram Display

Once displayed there are two modes for diagram display; standard and detailed. To move between
displays, select File > Detail Diagram / Standard Diagram (Toggle)

or use the toggle button.

Diagram Save

A diagram can be saved either as a meta file or as a jpeg image. If saved as a meta file, it can be
subsequently reloaded and re-edited. A jpeg cannot be reloaded into WhereScape RED.

The diagram can be saved by selecting File > Save As ...

Note: By default the diagram is saved as a meta file.

787

Diagram Load

If a diagram has been saved as a meta file, it can be reloaded. To reload a saved meta file, switch to
diagrammatic view and select the menu option File > Load Diagram. A dialog box will allow you to
choose a windows meta file (*.wmf). If the meta file had previously been saved in WhereScape RED, then
the diagram will be loaded.

Diagram Print

A diagram can be printed by selecting File > Print ...

788

Diagram Refresh

Once a diagram has been displayed, it can be refreshed by choosing Tools > Refresh Diagram, or by
pressing F5.

789

Creating a Job from a Diagram
A job can be created from a Source diagram or a Joins diagram.

To Create a Job from a Diagram
1 Once the diagram is displayed, select Tools/Create Job.

790

2 Edit the job as required and click OK.

791

Creating an Application from a Diagram
An application can be created from a Source diagram or a Joins diagram.

To Create an Application from a Diagram
1 Once the diagram is displayed, select Tools/Create Application.

792

2 Edit the application as required and then click OK.

3 A dialog will display, confirming the creation of the application files. Click OK.

793

Note: Creating an application from a diagram will save the objects in the diagram and the associated
objects, including indexes.

794

Creating a Project from a Diagram
A project can be created from a Source diagram or a Joins diagram.

To Create a Project from a Diagram
1 Once the diagram is displayed, select Tools/Create Project.

2 Select an existing group or create a new group.

3 Select to Create new Project.

795

4 Enter the name of the new project and click OK.

5 Click OK.

The objects in the diagram will be moved into the selected project. If the Include Associated
Objects checkbox is selected, this will include all associated procedures, scripts and indexes. The
checkbox is selected by default.

796

WhereScape RED includes reports for analyzing columns, tables, procedures, indexes,objects and jobs.

When these reports are run, the results are displayed in a separate tab in the bottom pane of the RED
screen.

The following sections describe the purpose, parameters and results for each report.

In This Chapter

Dimension-Fact Matrix .. 797
OLAP Dimension-Cube Matrix ... 798
Model Views for a Specified Model .. 800
Column Reports .. 801
Table Reports ... 809
Procedure Reports .. 816
Index Reports ... 819
Object Reports .. 820
Job Reports ... 827
Operational Reports ... 831

C h a p t e r 2 9

Reports

797

Dimension-Fact Matrix
This report shows dimension tables used by each fact and aggregate table in the metadata as a matrix.

Objects Included

The following WhereScape RED object types are included in this report:

• Dimension Tables

• Fact Tables

• Aggregate Tables

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of refreshed objects in the metadata repository with the
following columns:

• Dimensions (the dimension name)

• Fact/Aggregate Table 1

• Fact/Aggregate Table 2

• ...

• Fact/Aggregate Table n

The cells in the crosstab have a 1 to indicate the dimension is used by the fact or aggregate table and
blank otherwise. The result set is not sortable.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

798

OLAP Dimension-Cube Matrix
This report shows the relationships between cube measure groups and OLAP dimensions in the
metadata as a matrix.

Objects Included

The following WhereScape RED object types are included in this report:

• OLAP Dimensions

• OLAP Measure Groups

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of refreshed objects in the metadata repository with the
following columns:

• Dimensions (the dimension name)

• Measure Group 1

• Measure Group 2

• ...

• Measure Group n

The cells in the crosstab have a value to indicate the relationship else 'No Relationship' if no
relationship exists between the Measure Group and the OLAP Dimension. The result set is not sortable.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

800

Model Views for a Specified Model
This report shows model views built on a specified model table.

Objects Included

The following WhereScape RED object types are included in this report:

• Model Views

Parameters

This report has one parameter:

• Model table name

Results

The results of this report are displayed as a list of objects in the metadata repository with the following
columns:

• Model Name (the name of the Model table)

• Model View Names

The result set is sortable by clicking on the appropriate column heading.

Report Example

801

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

Column Reports
There are five reports for analyzing Columns:

• Columns Without Comments

• All Column Transformations

• Re-Usable Column Transformations

• Column Track-Back

• Column Track-Forward

Columns without Comments
This report shows user facing table objects columns in the metadata that don't have descriptions.

Objects Included

The following WhereScape RED object types are included in this report:

• Model Tables

• Views

• Aggregate Tables

• Join Indexes

• Hubs, Satellites and Links

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects and columns in the metadata missing
comments with the following columns:

802

• Table name (the name of the model table)

• Column Name

• Table type

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

All Column Transformations
This report shows all columns that have a column transformation on them and the details of the
transformation.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

• Stage Tables

• Model Tables

• Aggregate Tables

• Join Indexes

• Views

• Exports

• Hubs, Satellites and Links

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository with the following
columns:

803

• Table name (the name of the table)

• Column name

• Transformation

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

804

Re-Usable Column Transformations
This report shows all reusable transformations as defined via tools/Reusable transformations.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of Re-Usable transformations with the following columns
:

• Template Name

• Description

The result set is not sortable.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

805

Column Track-Back
This report shows the lineage of a specified column in a specified table, including any transformations.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

• Stage Tables

• Model Tables

• Aggregate Tables

• Join Indexes

• Views

• Exports

• Hubs, Satellites and Links

Parameters

This report has two parameters:

• Groups

• Projects

• Table

• Column

806

Results

If you left the Exclude Intermediate Steps checkbox unchecked, then the results screen will be as
follows, showing the line of origins for the selected tables:

If however, you selected Exclude Intermediate Steps, then the results screen will be as follows,
showing only the original source table for the selected tables:

The results of this report are displayed as a list of source tables and columns, the order of the result set
determining the immediate lineage. The report includes the following columns:

807

• Tables (the name of a selected table)

• Columns (the name of a selected column)

• Source Tables

• Source Columns

The result set is NOT sortable, as the order of the result set determines the immediate lineage.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

Column Track-Forward
This report lists the columns derived from the selected objects.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

• Stage Tables

• Dimension Tables and Views

• Fact Tables

• Aggregate Tables

• Exports

• Hubs, Satellites and Links

Parameters
• Groups

• Projects

• Table

• Column

808

Results

If you left the Exclude Intermediate Steps checkbox unchecked, then the results screen will be as
follows, showing the impacted tables for the selected tables:

If however, you selected Exclude Intermediate Steps, then the results screen will be as follows,
showing only the final impacted table for the selected tables:

The results of this report are displayed as a list of impacted tables and columns, the order of the result
set determining the immediate impact. The report includes the following columns:

• Tables (the names of selected tables)

• Columns (the names of selected columns)

• Impact Tables

• Impact Columns

The result set is NOT sortable, as the order of the result set determines the immediate lineage.

809

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

Table Reports
There are four reports for analyzing Tables:

• Tables Without Comments

• Load Tables by Connection

• Export Objects by Connection

• External Source Table/Files

Tables without Comments
This report shows user facing table objects in the metadata that don't have descriptions.

Objects Included

The following WhereScape RED object types are included in this report:

• Model Tables

• Views

• Aggregate Tables

• Join Indexes

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata missing comments with the
following columns:

810

• Table name (the name of the model table)

• Table type

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

Load Tables by Connection
This report shows load tables in the metadata repository with their Connection and Source schema or
database.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository with the following
columns:

• Load table (the name of the load table)

• Connection

• Source schema (the name the database or schema the load table is source from - blank for files)

The result set is sortable by clicking on the appropriate column heading.

811

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

812

Export Objects by Connection
This report shows export tables in the metadata repository with their Connection and Source schema or
database.

Objects Included

The following WhereScape RED object types are included in this report:

• Export Tables

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository with the following
columns:

• Export table (the name of the export table)

• Connection

• Script Name

• File Path

• File Name

• Export Format

• Export Routine

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

813

Records that failed a Dimension Join
This report shows the dimension business key(s) that could not be found in a specified dimension when
a specified staging table was last updated. This report will show null values, blank values and business
keys not found in the dimension.

Objects Included

The following WhereScape RED object types are included in this report:

• Stage Tables

Parameters

This report requires two parameters to be specified:

• Stage Table Name (the staging table to be checked)

• Dimension Table Name (the dimension table of the dimension key in the staging table selected first)

Results

The report contains a list of values not found in the dimension and a count for each value. Each column
is sortable by clicking on the appropriate column heading.

814

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

External Source Tables/files
This report shows external sources for load tables in the metadata repository.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository with the following
columns:

815

• Source name (the name of the object's source)

• Object name (the name of the object)

• Type (the type of object the source is: Table or File)

• Connection

• Other information (for tables, the source schema/database.source table; for files, the file name)

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

816

Procedure Reports
There are two reports for analyzing Procedures:

• Modified Procedures

• Custom Procedures

Modified Procedures
This report shows modified procedures in the metadata repository with their creation and modification
dates.

Objects Included

The following WhereScape RED object types are included in this report:

• Procedures

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of modified procedures in the metadata repository with
the following columns:

• Name (the name of the object)

• Dated Created

• Date Modified (last modification date)

The result set is sortable by clicking on the appropriate column heading.

Report Example

817

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

Custom Procedures
This report shows custom procedures in the metadata repository with their creation and modification
dates.

Note: Custom procedures are procedures attached to any table object as a Custom Procedure.

Objects Included

The following WhereScape RED object types are included in this report:

• Procedures

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of custom procedures in the metadata repository with
the following columns:

• Name (the name of the object)

• Table Name (the table object the procedure is attached to)

• Dated Created

• Date Modified (last modification date)

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

819

Index Reports
There is one report for analyzing Indexes:

• Modified Indexes

Modified Indexes
This report shows indexes in the metadata repository with their creation and modification dates.

Objects Included

The following WhereScape RED object types are included in this report:

• Indexes

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of indexes in the metadata repository with the following
columns:

• Name (the name of the index)

• Dated Created

• Date Modified (last modification date)

The result set is sortable by clicking on the appropriate column heading.

Report Example

820

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

Object Reports
There is four reports for analyzing Objects:

• Objects-Project Matrix

• Modified Objects (excluding indexes)

• Objects Checked-out

• Loaded or Imported Objects

Objects-Projects Matrix
This report shows all objects that exist in one or more projects (other than All Objects) and the
project(s) they exist in.

Objects Included

All object types are included in this report.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository that are in one or
more projects (other than All Objects) with the following columns as a grid:

• Objects (the name of the object)

• Project Name 1 (heading is the name of the first project, value is a 1 to indicate the object is in this
project, blank otherwise)

• Project Name 2 (heading is the name of the second project, value is a 1 to indicate the object is in this
project, blank otherwise)

• ...

• Project Name n (heading is the name of the nth project, value is a 1 to indicate the object is in this
project, blank otherwise)

The result set is sortable by clicking on the appropriate column heading.

821

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

822

Modified Objects (excluding indexes)
This report shows objects in the metadata repository with their creation and modification dates and
indicates if they have been modified.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

• Stage Tables

• Model Tables

• Aggregate Tables

• Join Indexes

• Views

• Exports

• Procedures

• Host Scripts

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository with the following
columns:

• Name (the name of the object)

• Object Type

• Dated Created

• Date Modified (last modification date)

• Modified (a star for modified objects, blank for objects that have not been modified)

The result set is sortable by clicking on the appropriate column heading.

823

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

824

Objects Checked-out
This report lists all objects currently checked out.

Objects Included

All object types and data warehouse tables can be included in this report.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed with the following columns:

• Object Name (The name of the object)

• Object Type (The type of the object, e.g. Fact, Dimension, etc)

• Checked until (The date the object will be automatically checked back in)

• Checked by (The name of the WhereScape RED user who checked out the object)

• Reason (The reason provided for checking out the object)

• Contact (The contact details provided when the object was checked out)

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

825

Loaded or Imported Objects
This report shows objects in the metadata repository that have been refreshed or imported from another
repository.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

• Stage Tables

• Model Tables

• Aggregate Tables

• Join Indexes

• Views

• Cubes

• Exports

• Procedures

• Host Scripts

Note: Indexes are not included.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of refreshed objects in the metadata repository with the
following columns:

• Object Name

• Date (of last refresh or import)

• Description (the kind of import or refresh)

• Detail (not currently used)

The result set is sortable by clicking on the appropriate column heading.

826

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

827

Job Reports
There are three reports for analyzing Jobs:

• Object-Job Matrix

• Jobs with an Object

• Tasks of a Job

Object-Job Matrix
This report shows all jobs and objects as well as the object actions. Table and Cube objects not in any
jobs also appears with No Job as their job.

Objects Included

All object types are included in this report.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of jobs with the following columns:

• Table Name (the name of the table or cube)

• Action

• Job Name (the name of the job)

• Job Status

• Job Last Run

• Job Next Run

828

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

829

Jobs with an Object
This report shows all jobs a specified object appears in and its action.

Objects Included

All object types are included in this report.

Parameters

This report has one parameter:

• Object Name

Results

The results of this report are displayed as a list of jobs with the following columns:

• Jobs including object_name

• Action

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

830

Tasks of a Job
This report shows all tasks for a selected job including dependencies.

Objects Included

All object types are included in this report.

Parameters

This report has one parameter:

• Job Name

Results

The results of this report are displayed as a list of task dependencies with the following columns:

• Task name (the table, Index, procedure or script name)

• Action

• Order (the order number as shown in the edit tasks dialog in the scheduler)

• Depends On (the task(s) and order number this task depends on)

Report Example

831

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

Operational Reports
There are three Operational Reports:

• Object Performance History

• Job Performance History

• Task Performance History

Object Performance History
This report shows the audit trail for a selected object from the scheduler logs.

Objects Included

All object types are included in this report.

Parameters

This report has one parameter:

• Object Name

Results

The results of this report are displayed as a list of audit log entries with the following columns:

832

• Sta (the type of audit log entry)

• Time (the date and time the audit log entry was written)

• Seq (the job sequence of the job writing the audit log entry)

• Message (the message in the Audit log)

• Task (the object name)

• Job (the name of the job that ran the task)

833

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

834

Job Performance History
This report shows the performance (duration) of a specified job over time.

Objects Included

All object types are included in this report.

Parameters

This report has one parameter:

• Job Name

Results

The results of this report are displayed as a list of job instances with the following columns:

• Job name (the name of the job)

• Start time (the date and time the job started)

• Elapsed hh:mi (the duration of the job)

Report Example

835

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

Task Performance History
This report shows the performance (duration) of a specified task within a specified job over time.

Objects Included

All object types are included in this report.

Parameters

This report has two parameters:

• Job Name

• Task Name (including action)

Results

The results of this report are displayed as a list of task instances for the selected job with the following
columns:

836

• Task name (the table, Index, procedure or script name)

• Action

• Start time (the date and time the task started)

• Elapsed hh:mi (the duration of the task)

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

837

When these Validate processes are run, the results are displayed in the middle pane of the RED screen;
the results of the other reports are displayed in a separate tab in the bottom pane of the RED screen.

In This Chapter

Validate Meta-data ... 838
Validate Workflow Data ... 838
Validate Table Create Status .. 838
Validate Load Table Status ... 839
Validate Procedure Status .. 839
List Meta-data Tables not in the Database .. 839
List Database Tables not in the Meta-data .. 841
List Tables with no related Procedures or Scripts .. 843
List Procedures not related to a Table.. 844
Compare Meta-data Repository to another ... 846
Compare Meta-data Indexes to Database .. 849
Teradata: View of Model Validate .. 851
List Duplicate Business Key Columns .. 853
Query Data Warehouse Objects.. 854

C h a p t e r 3 0

Validate

838

Validate Meta-data
This process validates the Meta data. If problems are encountered, the results are displayed in the
middle pane.

Use the right-click option against each identified issue to apply a repair.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

Validate Workflow Data
This process validates the Workflow data. If problems are encountered, the results are displayed in the
middle pane.

Use the right-click option against each identified issue to apply a repair.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft Excel

Validate Table Create Status
This process validates a table structure in the meta data against the table in the database.

• Select one or more tables and click the Validate Selected button or click the Validate All button to
validate all the tables.

1 If a table is found to be different then it can be altered by using the right-click menu option when
positioned over the table name.

2 If the update date and the modified in database date imply a change that is not apparent then these
dates can be re-synced in the same way.

Sync Column order with database

Right click on the result set and select Sync Column order with database to reorder the metadata
columns to match the column order in the database table.

Sending Results to Microsoft Excel

839

Right click on the result set and click Output to File to send the results of this report to Microsoft Excel.

Validate Load Table Status
This process compares a load table in the meta data with the table in the source system. It compares the
columns and column data types.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

Validate Procedure Status
This process compares a procedure in the meta data with the compiled version of the same procedure
stored within the database. The subsequent display will report either a match or a difference.

If a procedure is found to differ then you can use the procedure editor to examine the exact differences
by selecting the Tools/Compare to user_source option.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

List Meta-data Tables not in the Database
This report shows database table objects in the metadata that don't exist in the data warehouse
database.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

• Stage Tables

• Model Tables

• Aggregate Tables

• Join Indexes

• Views

• Retro Copies (but not Retro Definitions)

Parameters

There are no parameters for this report.

841

Results

The results of this report are displayed as a list of objects in the metadata not in the data warehouse
database.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

List Database Tables not in the Meta-data
This report shows database table objects that exists in the Teradata database but not in the metadata.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

• Stage Tables

• Model Tables

• Aggregate Tables

• Join Indexes

• Views

• Retro Copies (but not Retro Definitions)

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the Teradata database not in the metadata.

842

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

843

List Tables with no related Procedures or Scripts
This report shows all table objects (certain types of objects only - see below) in the metadata repository
that don't have an associated update procedure.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables (script based loads only)

• Stage Tables

• Model Tables

• Aggregate Tables

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of table objects in the metadata repository with the
following columns:

• Table name

The result set is sortable by clicking on the appropriate column heading.

Report Example

844

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

List Procedures not related to a Table
This report shows all procedures and host scripts in the metadata repository that aren't associated with
a table object.

Objects Included

The following WhereScape RED object types are included in this report:

• Procedures

• Host Scripts

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of code objects in the metadata repository with the
following columns:

• Procedure/Script name

The result set is sortable by clicking on the appropriate column heading.

Report Example

845

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

846

Compare Meta-data Repository to another
This report compares the current metadata repository to a remote repository.

Objects Included

All object types are included in this report.

Parameters

This report requires connection information for the remote repository to be entered. Specifically:

• Odbc Connect (the odbc source for the other repository)

• User Name (user name for the remote repository)

• Password (password for the remote repository)

• Meta Repository (database/user the remote repository metadata is stored in)

Four additional parameters may be specified:

847

• Optional filter on Local Groups

• Optional filter on Local Projects

• Do detail report

• Only validate procedures that have been modified

Results

The results of this report are displayed as a list of differences with the following columns:

• Object Name

• Comments (Summary difference between current and selected repository)

The result set is sortable by clicking on the appropriate column heading.

848

Report Example

 Checking result details:
• Right-click on the object name with validation errors.

• Select Detail.
• This will rerun the report just for the selected object and will display more details about the errors in

the Comments, Local and/or Remote Column(s).

 Sending Results to Microsoft Excel
• Right-click on the result set and click Output to File to send the results of this report to Microsoft

Excel.

849

Compare Meta-data Indexes to Database
This report shows database indexes existing in the Teradata database that don't exist in metadata.

Objects Included

The following WhereScape RED object types are included in this report:

• Indexes

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of indexes in the Teradata database not in the metadata
with the following columns:

• Index Name (the name of the index)

• Table Name

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

851

Teradata: View of Model Validate
This report shows any views built on model tables that do not have the same columns or column
properties.

Objects Included

The following WhereScape RED object types are included in this report:

• Views

Parameters

This report has two alternate parameters:

• View Name OR

• Project/Group/All Objects

Results

The results of this report are displayed as a list of differing view columns with the following columns:

• View Name

• Model Name (the name of the model table the view is based on)

• Column Name (the column where a difference exists)

• Validates (further details of the difference)

The result set is sortable by clicking on the appropriate column heading.

Report Example

852

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

853

List Duplicate Business Key Columns
This report shows any columns that are the business (natural) key of more than one table.

Objects Included

The following WhereScape RED object types are included in this report:

• Stage Tables

• Model Tables

• Aggregate Tables

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of table columns with the following columns:

• Table name

• Column name

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

854

Query Data Warehouse Objects
This report allows SQL queries to be run as the user singed into the repository.

Objects Included

All object types and data warehouse tables can be included in this report.

Parameters

This report has one parameter:

• The SQL Query

Results

The results of this report are displayed with the following columns:

• First SQL column SELECTed

• Second SQL column SELECTed

• ...

• nth SQL column SELECTed

The result set is sortable by clicking on the appropriate column heading.

855

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to Microsoft
Excel.

856

This chapter covers the promotion of metadata objects between environments. Various methods exist
for getting new or changed metadata from one repository into another repository.

It is of course possible and in fact desirable to have multiple metadata repositories. At the very least we
would normally have a development and a production environment.

In some situations it may also be desirable to have multiple child development repositories with one
master repository where all elements are brought together. WhereScape RED supports this type of
structure but does not include source control or co-ordination of the repositories. It is up to the data
warehouse manager to manually ensure that the various objects are kept in sync and coordinated.

As with any software system there are issues around how code is moved from a development
environment into a testing or production environment.

This promotion of objects can be achieved via a number of different methods. Each is discussed below.
In summary they are:

1 Updating a repository with an application or application patch.

2 Importing objects from another repository.

3 Restoring a full metadata set into a repository

In This Chapter

Applications ... 857
Importing Object Metadata .. 865
Importing Language Files ... 867
Data Warehouse Testing .. 868

C h a p t e r 3 1

Promoting Between Environments

857

Applications
The definition of an application is discussed in the following section on applications and the loading
and updating of applications is discussed at some length in the Installation and Administration
Guide. Only the concepts of the use of applications will be covered here.

An application is defined for our purposes as a group of objects. An application is a method of loading
objects into a metadata repository. It can be used to upgrade or provide patches to an existing metadata
repository. As such an application can be used to distribute and remotely maintain a specific data
warehousing solution.

An application consists of a series of Windows' files, which can be distributed to remote sites.

A list of the applications that have been applied to the metadata repository can be acquired via the
Tools/List Loaded Deployment Applications menu option.

An application is created through the Tools/Build Deployment Application menu option. This
application can then update a metadata repository through the Setup/Administration utility. In this
manner the application model can be used to update a metadata repository in an ordered and controlled
fashion. Loading an application inserts various objects into the chosen metadata repository. An
application is best defined as a set of objects that are shipped to allow inclusion of those objects in a
remote repository.

Note: An application can only be loaded into a metadata repository running on the same database type
as that of the application creator. (e.g. A Teradata application can only be loaded into a Teradata
metadata repository, etc).

858

Application Creation

Creating an Application
An application is created by selecting the Tools/Build Deployment Application menu option.
The following dialog box is displayed. Once the application is defined and the objects selected, the
application files are generated when the OK button is clicked.
If procedures are compiled as part of the subsequent application load, the compiles occur in the order
they are listed in the application. This way if there are procedure dependencies, ensure their ordering in
the application object list is correct.
There are three tabs in the Build Deployment Application screen.
The first tab defines the application, the second lists the objects to add or replace in the destination
repository and the third tab lists the objects to delete in the destination repository.

Define an Application distribution

859

Output Directory
The directory to which the application files will be written. By default this will be the WhereScape
program directory.

• To browse for the required folder, click on the Browse... button.

• The Make New Folder button allows you to create a new folder in the currently selected directory.

Application Identifier

The application identifier is a four character code used to uniquely identify the application. This
identifier is used in the naming of the files that are created to contain the application data.

Application Version

The version is a character string that provides a version number for reference purposes. This version
number is displayed when applications are being loaded, and is used in the naming of the files that are
created to contain the application data. As such it must contain characters that are valid in a Windows
file name.

Application Name

860

The name by which the application is known. This name is displayed during the choosing of an
application to load and is recorded in the metadata of the repository into which an application is loaded.
It is not used apart from documentation purposes.

861

Description

This description is displayed during the choosing of an application to load. It is not used at any other
point apart from documentation purposes.

Application Files

When an application is created the following files are built, where XXXX is the application identifier and
NNNNN is the application version.

File Purpose

App_data_XXXX_NNNNN.wst This file contains the scripts and data required to rebuild the
objects in the new metadata repository.

App_id_XXXX_NNNNN.wst This control file identifies the application and its version.

App_obj_XXXX_NNNNN.wst This file contains control information and each object in the
application.

App_con_XXXX_NNNNN.wst A list of all the connections either in the application or used by
objects in the application.

App_map_XXXX_NNNNN.wst A list of all the project and group mappings for the objects in
the application.

Previous Application

Click on the Browse button next to Previous application to choose a previously built application to use
as a list of objects to include in the new application. After using a previous application as a starting
point for this application, additional objects can be added or removed from the application.

Pre Application Load SQL

This box allows the entry of a SQL Statement that will be executed before the application is loaded. For
example we may wish to drop the date dimension before loading the application because we have
changed the primary key constraint. In such a case we would enter 'drop table dim_date' in this field to
have the table dropped before the application is loaded.

Post Application Load SQL

This box allows the entry of a SQL Statement that will be executed after the application is loaded. For
example we could execute a function to populate a table.

862

Objects to Add/Replace
Objects can be moved from the left object tree by double clicking on an object name or by using the >
button. This tab allows you to select the objects to add or replace in the destination repository.

NOTE: Maximum number of objects in an application

5000 objects (including jobs)
2000 source views of views
1000 jobs

863

Objects to Delete
Objects can be moved from the left object tree by double clicking on an object name or by using the >
button. This tab allows you to select the objects to delete in the destination repository.

NOTE: To set the objects available for selection, choose from the Available drop-down list. The options
are Archived Objects, Current Objects and All Objects. The default is Archived Objects.

864

Application Loading
Note: Applications can only be loaded into the same relational database type from which they where
created. (e.g. a Teradata application can only be loaded into a Teradata database).

Applications are loaded via the Setup Administrator utility. The normal process for implementing an
application would be as follows:

1 Run the Setup Administrator utility.

2 Change the application directory to the application's location.

3 Turn on logging in the Setup Administrator utility using Tools/Start logging.

4 Load the application via the Setup Administrator utility.

5 Choose the level of metadata application. There are several levels, from load metadata only through
to load metadata and apply changes to all tables.

6 Resolve any connections and tablespaces to those present in the target environment.

7 Create/Re-create/Alter database tables, if selected in (5).

8 Compile database procedures, if selected in (5).

9 Turn off logging.

10 Review the output in the Setup Administrator utility.

11 Review the log file.

Note: Some database operations, such as converting an existing non-partitioned table to a partitioned
table, cannot be done using a deployment application. In these cases some manual intervention may be
required to update the target databases to match the new metadata.

Refer to the Setup Administrator manual for more information about loading an application.

Creating and Loading Applications from the Command Line
It is possible to create and load applications from the command line by running a bat file.
For more detailed instructions, please see section 12.2 Creating and Loading Applications from the
Command Line in the RED Installation Guide.

865

Importing Object Metadata
Any group of objects can be imported into the current metadata repository from another repository. If
an object already exists in the target repository then it is either skipped or replaced depending on the
type of import undertaken. If an object is to be replaced as part of an import, a version of the object is
created prior to its replacement.

To import an object or group of objects select the Tools/Import Metadata Objects menu option. A
dialog as below will appear. The two options are IMPORT or REFRESH. An import will not replace an
existing object of the same name. A refresh will version and replace any existing object of the same
name.

Enter the connection, and a database user name and password that has access to the source metadata
repository. Finally, enter the user name of the metadata repository you want to import from. In most
situations the 'user name' and 'meta repository' would be the same. However, if you only have read
access to a meta repository then it may be necessary to login to the database under a different user name
from that of the repository you are trying to import from.

You are not permitted to select the current meta repository in the Meta Repository field, but are
permitted to login using the existing repository username. Once a successful logon is completed the
contents of the source repository are loaded and the following dialog appears.

866

Select an object by double-clicking on it or by selecting and using the > button. If an object such as a
table is chosen then any related scripts, procedures and indexes are also selected. They can be removed
if required. A target project can be selected.

Once all required objects are selected the import will commence when the OK button is clicked.

On completion a dialog box will appear notifying of the number of each type of object imported, and
skipped.

Note: The repository from which you are importing should be the same metadata version as the target
repository.

867

Importing Language Files
Note: Applications can only be loaded into the same relational database type from which they where
created. (For Example a Teradata application can only be loaded into a Teradata database).

Language Files are loaded via the Setup Administrator utility. The normal process for implementing a
Language file would be as follows:

1 Run the Setup Administrator utility.

2 Go to the Languages menu item in the top command bar and select Load Languages.

3 Right-click on the Language file to be loaded and select Install Language.

4 Select the ODBC data source and Log on to the target meta repository.

5 Select the language to be updated.

6 Review the output in the Setup Administrator utility.

Refer to the Setup Administrator manual for more information about loading a Language File.

868

Data Warehouse Testing
Note: Applications can only be loaded into the same relational database type from which they where
created. (For example, a Teradata application can only be loaded into a Teradata database).

Testing applications are loaded via the Setup Administrator utility. Refer to the Setup Administrator
manual for more information on how to load an application.

A testing application set consists of a Procedure and an XML script and provides the ability to define a
series of tests against data warehouse objects; either comparing them to an expected value or to the
results of a query.

Once the application set has been loaded, the Procedure and the XML script will be visible in the left
pane.

869

The XML script contains the test definitions. Each test is a new XML node in the comparison query. The
procedure simply runs the test and determines whether the tests are passed or not. This is most likely to
be run as a scheduled job within WhereScape RED. To create a job

870

1 Click the Scheduler Button.

2 Choose File and then New Job.

3 Enter the definition of the job.

871

4 To select the test procedure as a task, open the Procedure object heading in the left pane. Choose
dss_test and the > button. Click OK.

5 To run the job, click on the All Jobs button and then right-click on the job and select Start the Job.

872

This chapter covers the moving, saving and reloading of metadata repository objects. The backup
section describes the methods for backing up the metadata repository. It can also be backed up via
normal database backup procedures. The restore section covers the metadata restoration functions
available.

Various methods exist for getting new or changed metadata from one repository into another repository.
These methods are covered in the applications, and managing multiple repositories' sections.

In This Chapter

Backup using DB Routines ... 873
Restoring DB Backups .. 875
Unloading Metadata ... 876
Loading an Unload .. 878

C h a p t e r 3 2

Backing Up and Restoring Metadata

873

Backup using DB Routines
The backup of the metadata repository can be undertaken as a separate exercise from the general backup
of the data warehouse. The metadata backup does not backup any of the actual data warehouse tables. It
only saves the table definitions, index definitions, procedures etc., so is not normally large.

The backup includes any tables that begin with "dss_". In this way key metadata tables such as
dss_parameter, dss_source_system and dss_fact_table are included in the backup. These tables are
required if the restored metadata is to function correctly.

It is recommended that the metadata is backed up at least daily when possible using the main
WhereScape RED tool.

Windows Backups

Two main methods of Windows backup exist within WhereScape RED. The first is a database
independent backup which is designed purely for moving the meta repository, and should not be used
for regular backups. The other method is the database specific backup. See the following sections for the
appropriate database.

Teradata Windows Backups

A Teradata Arcmain based backup can be taken from the WhereScape RED tool by selecting the
Backup/Export the metadata (Teradata Arc) menu option. This option assumes that the Teradata
Client on the PC is the same version as that of the Teradata database where the RED meta repository is
stored. The backup may not work if the versions differ.

When executed this menu option attempts to locate the Teradata Arc utility. This utility is normally
called 'arcmain'. If RED cannot locate this utility or it has not been loaded onto the PC then the export
does not proceed and an error message will be displayed.

A pop-up window asks for a file name for the export. A directory should be chosen and a name entered.
When the Save button is clicked, the export will start. The following files are created (where 'file' is the
name of the chosen file). A dialog box appears to show the results of the backup.

File name Purpose

wsl_arc_out.bat Windows command file containing the arc command.

wsl_arc_out.log Log file of the arcmain session.

wsl_arc_out.ctl Control file for the arcmain session. Contains an entry for each meta table
to be exported.

wsl_arc_in.bld Template for building the Windows command file used to restore the
metadata.

wsl_arc_in.cmd Template for building the arcmain control file used to restore the
metadata.

wsl_arc.dbl Empty file for Teradata.

874

File name Purpose

wsl_arc.drp Command file for dropping all metadata tables. (Used in the restore prior
to a reload).

wsl_arc.pro A file containing each procedure stored in the metadata.

wsl_arc.seq Empty file for Teradata.

RED0001 -> REDnnnn Teradata Arcmain files, one for each RED metadata table being backed up.

If problems are encountered with the backup it may be possible to manually run the generated .bat
script file to ascertain what has gone wrong.

WhereScape Unload and Load

The remaining Windows backup option is the WhereScape generic unload and load options. These menu
options can be used when the metadata must be sent back to support to help resolve a problem. These
options have the advantage that they are database, and database version independent, so can be used to
backup the metadata regardless of the version of the database client running on the PC. It is possible to
Load the metadata from a different database. For example, the meta data from a Teradata unload can be
loaded into an Oracle or SQL Server database. There is, however, additional work in order to successfully
move the metadata in this fashion. If such a move is required please contact WhereScape support.

875

Restoring DB Backups
WhereScape RED metadata can be restored from a prior backup. The restore takes place through the
WhereScape RED tool.

Note: If transferring the export files via ftp, ensure that the REDxxxx files are transferred in binary
mode and that the other files are transferred in ASCII mode.

Teradata Windows Restore

Select the menu option Backup/Restore Metadata (from Teradata Arc) to begin the restore process.

A dialog box will appear. The word RESTORE needs to be entered along with the username and password
where the metadata is to be restored to. The username does not have to be that of the current metadata
repository, but it must be a valid repository. The metabase is the database where the meta repository
exists.

Once the OK button is clicked a new dialog box will appear asking for a selection of the export files.
Browse to the directory where the export is located and select the wsl_arc_in.bld file. Once the
wsl_arc_in.bld file is selected the import will begin. A dialog box will appear to show the results of the
import.

876

Unloading Metadata
WhereScape RED provides a generic unload utility for backing up the metadata. The advantage of this
backup is that it is database, and database version independent. It can be used to backup the metadata
regardless of the version of the database client running on the PC. It is possible to transport the
metadata from one database platform to another using unload and load. For example, the metadata
from a SQL Server unload can be loaded into an Oracle database.

After performing a cross platform unload and load:

• Transformations must be altered manually to use the correct syntax for the new database.

• Generated procedures regenerated.

• Modified and custom procedures must be changed to use the procedure language of the new
database platform.

Performing an Unload

An unload can be performed within the WhereScape RED tool by selecting the Backup/Unload the
metadata to disk menu option.

A popup window asks for confirmation to proceed with the unload. Click Yes.

877

An additional pop-up window asks for a file name for the export. A directory should be chosen and a
name entered. Click Save.

Enter a comment for the unload and click OK.

Finally, click Yes or No on the include version history dialog:

878

This either includes or excludes version history metadata in the unload.

The unload starts, and indicates progress with a progress bar.

Loading an Unload
WhereScape RED metadata can be restored from a prior unload.

Performing a Load

An unload of a metadata repository can be loaded over the top of an existing repository. This action
replaces the existing repository in its entirety. To load an unload, select the menu option Backup/Load
the Metadata from disk to begin the load process.

A popup window asked for confirmation a load is intended. Click Yes.

879

A dialog box appears. The word RESTORE needs to be entered. The odbc connection needs to be chosen,
along with the username and password where the metadata is to be restored to. The username does not
have to be that of the current metadata repository, but it must be a valid repository. Click OK.

The next dialog box ask for the folder for the metadata to be loaded from. Browse to the contents of the
directory where the unload is located and click Select Folder.

880

Confirm the load will overwrite the existing repository by clicking Yes:

A pop-up window asks if a restore log is required. Click Yes for a log, or No otherwise.

881

If a cross platform load is being performed, the following dialog is displayed. Click Yes.

The metadata load now runs. Once the load has completed, start WhereScape Administrator and
validate the metadata repository that has just been loaded.

882

This chapter provides information on how to change and manipulate the data warehouse once it has
been established.

New source columns or changes to the source systems from which the data warehouse is built will
require modifications to both the metadata and the data warehouse tables and procedures.

In This Chapter

Validating Tables .. 883
Validating Source (Load) Tables ... 885
Validating Procedures .. 886
Altering Tables ... 887
Validating Indexes .. 889
Recompiling Procedures ... 889

C h a p t e r 3 3

Altering Metadata

883

Validating Tables
The metadata as stored and maintained by RED does not necessarily reflect the actual tables and
procedures in use in the data warehouse. For example, if a new column is added to the metadata for a
table then that change is not automatically made in the actual physical table residing in the data
warehouse. Likewise if a column is deleted from the metadata then that column may still exist in the
physical database table.

This situation may be particularly apparent after an application patch or upgrade. The menu option
Validate/Validate Table Create Status , and the right-click menu options in either the left or middle
panes all provide a means of comparing the metadata to the physical tables in the database. A table,
range of tables or all tables can be chosen. Each chosen table is a table in the metadata and it is
compared against the physical database table if it exists.

The following example is the output from a validation.

In this example we see five different scenarios.

1 The metadata for table load_customer matches the physical table in the database.

2 The metadata for the table model_forecast does not match the physical table. The metadata has an
additional column called 'product_line'. This column was not found in the physical table. The table
can be altered if desired. See the next section on Altering Tables.

3 The physical database table model_customer has an additional column not found in the metadata.
The column is 'address'. The table can be altered if desired. See the next section on Altering Tables.

4 The table stage_customer has the same columns in both the metadata and the physical table, but
the column order is different. This is probably not an issue for most tables, but may be a problem for

884

some type of load tables, where the column order is important. This could be the result of a previous
alter of the table. The table must be re-created if the order is important.

5 The table load_state is defined in the metadata but has not been physically created in the database.
The table can be created in the normal manner.

Using outdated metadata in drag and drop

When dragging from a data warehouse table to create another data warehouse table (e.g. model_table to
create view_table) a check is made to ensure that the metadata matches the database table. If the two
are found to be out of sync the following message will appear:

If a subsequent validate of the table in question shows that it validates, this message will mean that the
dates are somehow out of sync. This can occur for example after an import where the metadata has been
replaced, but the underlying table still matches the metadata. Another common occurrence is where a
new column is added and then deleted. To prevent the message from re-occurring in such a situation,
proceed as follows.

Use the right-click menu to select Alter Table when positioned on the table name in the validate results
screen (event though the table validates OK). The metadata update time will be set back to that of the
last database table create.

885

Validating Source (Load) Tables
Changes to the source systems from which the data warehouse is built can be detected to a limited
degree. The menu option Validate/Validate Load Table Status allows a comparison between load
tables and the source tables from which they were built. This comparison is not available for flat file or
script based loads. A load table or group of load tables are selected and the results are displayed in the
middle pane. An example screen from a load table validate is as follows:

The table load_forecast is a Windows file load and as such cannot be validated.

The table load_customer shows additional columns in the source table. Such a scenario will not cause
problems for the continued operation of the data warehouse. It simply means that more columns are
present in the source table than have been loaded into the data warehouse. This may have been the
result of an initial partial selection or as a result of new columns. Further investigation of the source
table would be required to ascertain if there was new information available.

The table load_state reflects a problem for the continued operation of the data warehouse. The source
table does not have a column that was previously identified as having come from that table. This will
probably cause the load of that table to fail. This scenario would also require an investigation into the
source table. The resolution may be to delete the column. The potential impact on later tables (stage
and model) and procedures in the data warehouse can be ascertained by using the right-click menu
when positioned over a load table name.

886

Validating Procedures
The menu option Validate/Validate Procedure Status compares procedures as stored in the metadata
with those compiled and running in the data warehouse. This option provides a listing in the middle
pane of each selected procedure and its status. The status will be Validates OK, Not compiled, or
Compare failed.

Where a procedure is marked as Not compiled this means that the procedure exists in the metadata but
has not been compiled into the database.

Where a procedure fails to compare the Procedure, the Editor must be used to find the actual
differences. Start the editor by double clicking on the procedure name in the left pane. Use the
Tools/Compare to User Source menu option to display the differences between the procedure in the
metadata and that compiled in the database.

887

Altering Tables
The previous section covered the process of validating a table as defined in the metadata with the
physical table as defined in the database. If a table is found to be different it is possible to alter the table.

Note: Care should be taken when altering large data warehouse tables. A number of factors such as the
time required to perform the alter, access to the table and the optimum storage of the table come into
play.

To alter a table first validate the table through the Validate/Validate Table Create Status menu
option, or the right-click menu option from the object name. Then in the middle pane (the validation
listing) select the table that has not validated. Position on the table name and using the right mouse,
select the Alter Table pop-up menu option. A screen similar to the one below will appear advising of
the planned changes.

In this example, the dim_product table is to be altered. The new column 'State' will be added to the
table. Comments at the top of the screen, show the reason(s) for the alteration and the actual alter
command(s) follow.

888

The alter table window is an edit window. The command to be executed can be changed or additional
commands entered. The command may also be cut to be executed in some other environment or at some
later stage.

Clicking the Alter Table button will proceed to alter the table. In effect, it will execute any command in
the window.

889

Validating Indexes
Index validate is not available on Teradata.

Recompiling Procedures
Procedures can be invalidated as a result of changes to underlying tables, or child procedures. A
procedure can be recompiled through the procedure editor or via the menu option Tools/Compile
Procedures. This menu option will load the following dialog box:

As each procedure is compiled, it is displayed in the middle pane of the builder window. If a procedure
fails to compile, a failure message is displayed along side the procedure name. Procedures that fail to
compile will need to be investigated through the procedure editor, as no specific error information is
provided by this bulk compiler.

Compile Selected

A selected group of procedures may be compiled. Selection is done via standard Windows multi
selection using the shift and CTRL keys. By selecting projects or groups, it is possible to compile all
procedures associated with the projects or groups. Click on the Compile Selected button to
compile/re-compile the selected procedures.

Compile All

Click on the Compile All button to compile/re-compile all procedures in the metadata repository.

Compile Missing

The Compile Missing button compiles all procedures in the metadata repository that do not exist in the
metadata database in Teradata.

891

In This Chapter

Introduction to Callable Routines .. 892
Ws_Api_Glossary .. 900
Ws_Connect_Replace .. 902
Ws_Job_Abort ... 904
Ws_Job_Clear_Archive .. 906
Ws_Job_Clear_Logs ... 908
Ws_Job_Clear_Logs_By_Date... 911
Ws_Job_Create .. 914
Ws_Job_CreateWait .. 918
Ws_Job_Dependency ... 922
Ws_Job_Release .. 925
Ws_Job_Restart ... 928
Ws_Job_Schedule .. 931
Ws_Job_Status .. 934
Ws_Load_Change .. 939
Ws_Maintain_Indexes ... 943
Ws_Version_Clear ... 946
WsParameterRead .. 949
WsParameterReadF .. 950
WsParameterReadG .. 952
WsParameterWrite ... 954
WsWrkAudit ... 955
WsWrkAuditBulk .. 957
WsWrkError .. 961
WsWrkErrorBulk... 963
WsWrkTask ... 967

C h a p t e r 3 4

Callable Routines

892

Introduction to Callable Routines

Callable Routines API
WhereScape RED callable routines provide an Application Program Interface (API) to the WhereScape
RED metadata using the following SQL-invoked routines:

 Routine Name Description

 Ws_Api_Glossary (on page
900)

Adds an entry to the documentation glossary.

 Ws_Connect_Replace (on
page 902)

Replaces the contents of a connection with details from
another connection.

 Ws_Job_Abort (on page 904) Aborts a job if it is in a running state.

 Ws_Job_Clear_Archive (on
page 906)

Purges archived job logs that are older than the specified age
in days.

 Ws_Job_Clear_Logs (on page
908)

Archives job logs when the maximum number of current logs
to retain is exceeded.

 Ws_Job_Clear_Logs_By_Date
(on page 911)

Archives job logs that are older than the specified age in days.

 Ws_Job_Create (on page 914) Creates a job based on an existing job and optionally starts it
immediately.

 Ws_Job_CreateWait (on page
918)

Creates a job based on an existing job and schedules it to start
later.

 Ws_Job_Dependency (on
page 922)

Adds or removes a child-to-parent dependency between two
jobs to control the child job.

 Ws_Job_Release (on page
925)

Starts a job if it is a holding or waiting state.

 Ws_Job_Restart (on page
928)

Starts a job if it is in a failed state.

 Ws_Job_Schedule (on page
931)

Schedules a job if it is in a holding or waiting state.

 Ws_Job_Status (on page 934) Returns the current status of a job.

 Ws_Load_Change (on page
939)

Changes the Connection or Schema of a load table.

 Ws_Maintain_Indexes (on
page 943)

Drops and/or builds database indexes that are defines in the
WhereScape RED metadata.

893

 Routine Name Description

 Ws_Version_Clear (on page
946)

Purges metadata versions for all objects that do not meet the
specified retention criteria.

 WsParameterRead (on page
949)

Returns the value and comment (for most RDBMS) of a
WhereScape RED metadata Parameter.

 WsParameterReadF (on page
950)

Returns the value of a WhereScape RED metadata Parameter.
[SQL Server only]

 WsParameterReadG (on
page 952)

Returns the value of a "global" WhereScape RED metadata
Parameter that relates to a load table.

 WsParameterWrite (on page
954)

Updates the value and comment of a WhereScape RED
metadata Parameter or creates it.

 WsWrkAudit (on page 955) Records a message in the Audit Log.

 WsWrkAuditBulk (on page
957)

Records multiple messages in the Audit Log.

 WsWrkError (on page 961) Records a message in the Error/Detail Log.

 WsWrkErrorBulk (on page
963)

Records multiple messages in the Error/Detail Log.

 WsWrkTask (on page 967) Updates row counts for a task in the Task Log.

894

Callable Routines per RDBMS
Each WhereScape RED Callable Routine exists in the database as either a Stored Procedure or a
User-defined Function that can be invoked from SQL. A Callable Procedure is invoked by a SQL
call/execute statement and a Callable Function is invoked in a SQL SELECT statement or a value
expression. The Callable Routines are typically implemented as procedures in most database systems
due to RDBMS limitations of user-defined functions when the WhereScape RED API was originally
developed.

 Routine Name Teradata

 Ws_Api_Glossary (on page
900)

Procedure

 Ws_Connect_Replace (on
page 902)

Procedure

 Ws_Job_Abort (on page 904) Procedure

 Ws_Job_Clear_Archive (on
page 906)

Procedure

 Ws_Job_Clear_Logs (on page
908)

Procedure

 Ws_Job_Clear_Logs_By_Date
(on page 911)

Procedure

 Ws_Job_Create (on page 914) Procedure

 Ws_Job_CreateWait (on page
918)

Procedure

 Ws_Job_Dependency (on
page 922)

Procedure

 Ws_Job_Release (on page
925)

Procedure

 Ws_Job_Restart (on page
928)

Procedure

 Ws_Job_Schedule (on page
931)

Procedure

 Ws_Job_Status (on page 934) Procedure

 Ws_Load_Change (on page
939)

Procedure

 Ws_Maintain_Indexes (on
page 943)

Procedure

895

 Routine Name Teradata

 Ws_Version_Clear (on page
946)

Procedure

WsParameterRead (on page
949)

Procedure

 WsParameterReadF (on page
950)

Procedure

 WsParameterReadG (on
page 952)

Procedure

 WsParameterWrite (on page
954)

Procedure

 WsWrkAudit (on page 955) Procedure

 WsWrkAuditBulk (on page
957)

Procedure

 WsWrkError (on page 961) Procedure

 WsWrkErrorBulk (on page
963)

Procedure

 WsWrkTask (on page 967) Procedure

896

Callable Routines Names Qualifier
The WhereScape RED Callable Routines can be invoked using the unqualified routine name for SQL
Server and Oracle. However, for Teradata and DB2 it is necessary to qualify the routine name with the
owner/schema of the WhereScape RED metadata repository. All RED-generated procedures in a
Teradata or DB2 repository that invoke a WhereScape RED Callable Routine do so by qualifying the
routine name with [METABASE] e.g. [METABASE].routine_name. When RED creates/compiles a
procedure in a Teradata or DB2 database it automatically replaces the [METABASE] "token" with the
repository owner/schema.

When you edit a RED-generated procedure or create your own custom procedure in Teradata or DB2 you
can qualify each callable routine name by either hard-coding the owner/schema or by using the
[METABASE] "token" that RED will replace when the procedure is created/compiled in the database.
The Teradata and DB2 examples in this chapter use the [METABASE] "token" but if you invoke a
WhereScape RED Callable Routine interactively or from outside a RED-compiled procedure/function
then the actual owner/schema must be specified because RED won’t have the chance to replace the
"token".

Callable Routines Common Input
The following input parameters are common to most of the WhereScape RED Callable Routines, which
are primarily used for integration with the WhereScape RED Scheduler.

 Input Parameter Name Description

Job Instance Identifier p_sequence Unique identifier of the running job (i.e. the
running instance of a held or scheduled job) that
executed the routine.

When invoked from a WhereScape RED
Scheduler the routine will be passed the
parameter argument.

When invoked manually or externally to the
WhereScape RED Scheduler, then any integer
value can be used.

897

 Input Parameter Name Description

Job Name p_job_name Name of the running job that executed the
routine.

When invoked from a WhereScape RED
Scheduler the routine will be passed the
parameter argument.

When invoked manually or externally to the
WhereScape RED Scheduler, then any name can
be used.

Task Name p_task_name Name of the running task (of a running job)
that executed the routine.

When invoked from a WhereScape RED
Scheduler the routine will be passed the
parameter argument.

When invoked manually or externally to the
WhereScape RED Scheduler, then any name can
be used.

Job Identifier p_job_id Unique identifier of the held or scheduled job
that the running job is a specific instance of.

When invoked from a WhereScape RED
Scheduler the routine will be passed the
parameter argument.

When invoked manually or externally to the
WhereScape RED Scheduler, it is recommended
to use 0 (zero).

Task Identifier

p_task_id Unique identifier of the running task (of a
running job) that executed the routine.

When invoked from a WhereScape RED
Scheduler the routine will be passed the
parameter argument.

When invoked manually or externally to the
WhereScape RED Scheduler, it is recommended
to use 0 (zero).

Note: Typically, the parameter names of the WhereScape RED Callable Routines use a p_ prefix as
indicated but in some routines a v_ prefix is used instead. In addition, for SQL Server all parameter
names are also prefixed by @. The RDBMS-specific parameter names are included in the subsequent
details of each Callable Routine.

898

Callable Routines Invocation
This chapter includes examples of each WhereScape RED Callable Routine to illustrate how to invoke
the routine for each RDBMS, along with the necessary variable declarations. Typically, the routines are
executed from a Stored Procedure so the routine-specific examples illustrate that scenario and use
parameters/arguments that are passed by position (as in a RED-generated procedure). However, it can
be useful to execute a Callable Routine using other methods such as the following.

Alternative Invocation Methods
Invocation via ODBC

The following examples illustrate how to invoke a WhereScape RED Callable Routine via an ODBC
connection (using a tool such as WhereScape SQL Admin), which uses both input and output
parameters. The examples work for a SQL Server RED repository but for another RDBMS, the routine
name may need to be qualified with the appropriate owner/schema. Refer to the detailed description of
the Ws_Connect_Replace routine for an explanation of the parameters/arguments.

The following invocations via ODBC are equivalent and the only difference is the formatting as the first
command uses a single line while the second command is formatted across multiple lines:

-- OBDC Example 1 (single line).

{ CALL Ws_Connect_Replace(0,'Test Job Name', 'Test Task Name', 0, 0, 'REPLACE', 'Connection1', 'Connection2', ?,
?, ?) };

-- OBDC Example 2 (same command formatted using multiple lines).

{ CALL Ws_Connect_Replace

 (0

 , 'Test Job Name'

 , 'Test Task Name'

 , 0

 , 0

 , 'REPLACE'

 , 'Connection1'

 , 'Connection2'

 , ?

 , ?

 , ?

)

899

};

The result of the Ws_Connect_Replace invocation can be confirmed by checking the target connection.
In addition, a log entry is created using the specified job and task names that can be viewed via the Logs
– Recent Audit Trail Logs menu item of the WhereScape RED Scheduler.

Invocation via the Command-Line

Each WhereScape RED Callable Routine can also be invoked from the command-line, using an
RDBMS-specific tool such as:

 RDBMS SQL Command-Line-Interface (CLI) Tool

Teradata Basic Teradata Query (BTEQ) i.e. bteq.

These tools can be used to invoke a WhereScape RED Callable Routine by connecting to the database,
executing SQL statements, and disconnecting from the database. Refer to the RDBMS-specific
documentation for details of how to connect and execute SQL via the relevant CLI tool as well as details
of tool’s return codes.

Typically, the CLI command will include options to specify the database, connection credentials, and the
SQL to execute. Multiple SQL statements can typically be executed by terminating/delimiting each
statement using a semi-colon (;). In most cases, the SQL needs to be quoted (typically double-quoted)
when specified on the command-line and if the SQL statements include embedded quotes (such as
single-quotes around literals) then they may need to be "escaped" depending on the CLI tool and the
platform. Most of the tools also allow the SQL commands to be read from a file instead of from
standard input.

900

Ws_Api_Glossary
Synopsis

Adds an entry to the documentation glossary.

Description

Adds the specified entry to the documentation glossary, which is included in documentation that is
subsequently generated by WhereScape RED.

Input

Input Description

Object Name Item that appears in the left column of the glossary, which normally
represents the business name of a column in a dimension or fact table
(although it can be used for other purposes).

Glossary Term Item that appears under the analysis area heading of the glossary, which
normally represents a dimension ot fact table name (although it can be
used for other purposes).

Glossary Description Description of the term being defined.

Action Either ADD or DELETE the specified glossary entry.

Output

Output Description

Result Text A message to indicate whether or not the glossary term was successfully
added/deleted.

Teradata Parameters: Ws_Api_Glossary

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_object_name VARCHAR(64) IN

p_term VARCHAR(256) IN

p_comments VARCHAR(4000) IN

p_option VARCHAR(64) IN

901

Parameter Name Datatype Mode

p_result VARCHAR(256) OUT

Teradata Examples: Ws_Api_Glossary

DECLARE v_result_txt varchar(256);

CALL [METABASE].Ws_Api_Glossary

('Data Warehouse'

, 'Overview'

, 'A repository of business information'

, 'ADD'

, v_result_txt

);

902

Ws_Connect_Replace
Synopsis

Replaces the contents of a connection with the details from another connection.

Description

Copies the details of the specified Source connection to the specified Target connection.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Action REPLACE the details of the specified Target connection.

Source Connection The name of the Source connection whose details will be copied.

Target Connection The name of the Target connection whose details will be changed.

Output

Output Description

Return Code Output Return Code:

S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number Output Result Number:

1 Success.

-2 Error.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Connect_Replace

Callable Routine Type: PROCEDURE.

903

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_action VARCHAR(64) IN

p_source VARCHAR(64) IN

p_target VARCHAR(64) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Connect_Replace

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Connect_Replace

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 'REPLACE', 'Connection1', 'Connection2'

, v_return_code

904

, v_return_msg

, v_result_num

);

905

Ws_Job_Abort
Synopsis

Aborts a job if it is in a running state.

Description

Aborts the specified job if it is in a running state, which changes it to a failed state, fails all running
tasks, and holds all waiting tasks.

Input

Input Description

Abort Job Name The name of the job to be aborted. The specified name must exactly
match the job name as displayed by the WhereScape RED Scheduler.
The specified job must be in a running or failed state in order to be
aborted.

Job Instance
Identifier

Unique identifier of the running job (that may be in a failed state).

Abort Job Message
Text

Custom message text to be recorded in the WhereScape RED Audit Log
for the aborted job and the WhereScape RED Task Log for each aborted
task.

Teradata Parameters: Ws_Job_Abort

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_job_name VARCHAR(64) IN

p_job_sequence INTEGER IN

p_job_msg VARCHAR(256) IN

Teradata Examples: Ws_Job_Abort

CALL [METABASE].Ws_Job_Abort

('Daily Run'

906

, 1234

, 'Job aborted via manual execution of Ws_Job_Abort.'

);

Ws_Job_Clear_Archive
Synopsis

Purges archived job logs that are older than the specified age in days.

Description

Deletes job-related logs that were previously archived (into the WX_WRK_AUDIT_ARCHIVE and
WX_WRK_ERROR_ARCHIVE tables via a RED Scheduler and/or RED callable routines such as
Ws_Job_Clear_Logs and Ws_Job_Clear_Logs_By_Date) depending on their age in days.

When the maximum age of the archived logs to retain is exceeded all the older logs are deleted. For
example, if 90 days are retained then all the archived logs that are older than 90 days are deleted. If a
maximum age of 0 days is specified then all the archived logs are deleted. Alternatively, the TRUNCATE
option can be used to remove all the archived logs, which overrides all other criteria.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Maximum Days to
Retain

The maximum age (in days) of the archived logs to retain. If 90 days are
retained then all the archived logs that are older than 90 days are
purged/deleted. If 0 days are retained then all the archived logs are
purged/deleted.

Job Name to Purge The name of the job whose archived logs are to be purged. Wild cards
are supported. Specifying % will match ALL jobs.

Options The TRUNCATE option can be used to remove ALL the archived logs,
which overrides all other criteria i.e. irrespective of the days to retain or
job name.

907

Output

Output Description

Return Code Output Return Code:

S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Clear_Archive

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_day_count INTEGER IN

p_job VARCHAR(64) IN

p_options VARCHAR(256) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Clear_Archive

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

908

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Job_Clear_Archive

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 90, 'Daily Run', ''

, v_return_code

, v_return_msg

, v_result_num

);

Ws_Job_Clear_Logs
Synopsis

Archives job logs when the maximum number of current logs to retain is exceeded.

Description

Moves job-related logs from the current log tables (such as WS_WRK_AUDIT_LOG and
WS_WRK_ERROR_LOG) to the corresponding archive log tables (such as WX_WRK_AUDIT_ARCHIVE and
WX_WRK_ERROR_ARCHIVE) depending on the number of logs to retain.

When the maximum number of current logs to retain is exceeded the oldest logs are archived for the
specified job(s) to reduce the number of current logs to the specified retention limit. For example, if 10
is specified then only the latest 10 logs are retained. If a retained count of 0 is specified then all the
current logs are archived for the specified job(s).

Note: Equivalent functionality is available via a WhereScape RED Scheduler and the "Logs Retained"
property of a job.

909

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Job Name(s) to
Archive

The name of the job(s) whose current logs are to be archived. Wild
cards are supported. Specifying % will match ALL jobs.

Maximum Logs to
Retain

The maximum number of logs to retain. When the maximum is
exceeded the oldest logs are archived to reduce the number of current
logs to the specified retention limit.

Output

Output Description

Return Code Output Return Code:

S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Clear_Logs

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

910

Parameter Name Datatype Mode

p_job_to_clean VARCHAR(64) IN

p_log_keep INTEGER IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Clear_Logs

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Job_Clear_Logs

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 'Daily Run', 10

, v_return_code

, v_return_msg

, v_result_num

);

911

Ws_Job_Clear_Logs_By_Date
Synopsis

Archives job logs that are older than the specified age in days.

Description

Moves job-related logs from the current log tables (such as WS_WRK_AUDIT_LOG and
WS_WRK_ERROR_LOG) to the corresponding archive log tables (such as WX_WRK_AUDIT_ARCHIVE and
WX_WRK_ERROR_ARCHIVE) depending on their age in days.

When the maximum age of the current logs to retain is exceeded all the older logs are archived for the
specified job(s). For example, if 90 days are retained then all the current logs that are older than 90 days
are archived.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Job Name(s) to
Archive

The name of the job(s) whose current logs are to be archived. Wild
cards are supported. Specifying % will match ALL jobs.

Maximum Days to
Retain

The maximum age (in days) of the current logs to retain. If 90 days are
retained, then all the current logs that are older than 90 days are
archived.

Output

Output Description

Return Code Output Return Code:

S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

912

Teradata Parameters: Ws_Job_Clear_Logs_By_Date

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_job_to_clean VARCHAR(64) IN

p_day_count INTEGER IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Clear_Logs_By_Date

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Job_Clear_Logs_By_Date

913

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 'Daily Run', 90

, v_return_code

, v_return_msg

, v_result_num

);

914

Ws_Job_Create
Synopsis

Creates a job based on an existing job and optionally starts it immediately.

Description

Creates a job from the specified existing job, if it is in either a holding or waiting state. The new job can
be started immediately. Typically, this routine is used to create & start a job from within another job.
Only jobs that are in a holding or waiting state can be used as a template for the new job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Template Job Name The name of the job to be used as a template for the new job. The
specified name must exactly match the job name as displayed by the
WhereScape RED Scheduler. The specified job must be in a holding or
waiting state in order to be used as a template.

New Job Name The name of the job to be created. The new job name cannot already
exist.

Job Description A description of the new job. When not specified the setting of the
Template job is copied.

New Job Status The initial status/frequency of the new job:

HOLD - The status of the new job will show as 'On Hold'. The job will
not run until it is subsequently released.

ONCE - The new job will start immediately and upon successful
completion the new job will be deleted.

ONCE+HOLD - The new job will start immediately and upon successful
completion the status will show as 'On Hold'.

Thread Count The number of threads for the new job. When not specified the setting
of the Template job is copied.

Scheduler
Preference

A scheduler type or a specific scheduler name that is allowed to run the
job. When not specified the setting of the Template job is copied.

Note: Some jobs/tasks can only run in a specific environment such as
Windows or UNIX/Linux

Maximum Logs to
Retain

The maximum number of logs to retain. When not specified the setting
of the Template job is copied.

915

Input Description

Success Command A command-line action to execute upon successful completion of the
new job. When not specified the setting of the Template job is copied.
The command must be executable within the context of the scheduler
that runs the job so it must be a valid Windows/UNIX/Linux command
that is appropriate to the scheduler environment.

Failure Command A command-line action to execute upon failure of the new job. When
not specified the setting of the Template job is copied. The command
must be executable within the context of the scheduler that runs the job
so it must be a valid Windows/UNIX/Linux command that is appropriate
to the scheduler environment.

Output

Output Description

Return Code Output Return Code:

S Success.

N No action because the Template Job is not in a holding or
waiting state.

P No action because the New Job name already exists.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-1 Template Job is not in a holding/waiting state or the New
Job name already
exists.

-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Create

Callable Routine Type: PROCEDURE.

916

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_template_job VARCHAR(64) IN

p_new_job VARCHAR(64) IN

p_description VARCHAR(256) IN

p_state VARCHAR(10) IN

p_threads INTEGER IN

p_scheduler VARCHAR(8) IN

p_logs INTEGER IN

p_okay VARCHAR(256) IN

p_fail VARCHAR(256) IN

p_att1 VARCHAR(4000) IN

p_att2 VARCHAR(4000) IN

p_att3 VARCHAR(4000) IN

p_att4 VARCHAR(4000) IN

p_att5 VARCHAR(4000) IN

p_att6 VARCHAR(4000) IN

p_att7 VARCHAR(4000) IN

p_att8 VARCHAR(4000) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Create

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

917

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Job_Create

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 'Daily Run', 'New Daily Run', 'This is the New Daily Run job.', 'ONCE'

, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL

, v_return_code

, v_return_msg

, v_result_num

);

918

Ws_Job_CreateWait
Synopsis

Creates a job based on an existing job and schedules it to start later.

Description

Creates a job from the specified existing job, if it is in either a holding or waiting state. The new job is
scheduled to start later at the specified release time. Typically, this routine is used to create & schedule
a job from within another job. Only jobs that are in a holding or waiting state can be used as a template
for the new job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Template Job Name The name of the job to be used as a template for the new job. The
specified name must exactly match the job name as displayed by the
WhereScape RED Scheduler. The specified job must be in a holding or
waiting state in order to be used as a template.

New Job Name The name of the job to be created. The new job name cannot already
exist.

Job Description A description of the new job. When not specified the setting of the
Template job is copied.

New Job Status The initial status/frequency of the new job:

HOLD - The status of the new job will show as 'On Hold'. The job will
not run until it is subsequently released.

ONCE - The new job will start immediately and upon successful
completion the new job will be deleted.

ONCE+HOLD - The new job will start immediately and upon successful
completion the status will show as 'On Hold'.

Scheduled Release
Date/Time

The date/time when the new job is scheduled to be run.

Thread Count The number of threads for the new job. When not specified the setting
of the Template job is copied.

919

Input Description

Scheduler
Preference

A scheduler type or a specific scheduler name that is allowed to run the
job. When not specified the setting of the Template job is copied.

Note: Some jobs/tasks can only run in a specific environment such as
Windows or UNIX/Linux

Maximum Logs to
Retain

The maximum number of logs to retain. When not specified the setting
of the Template job is copied.

Success Command A command-line action to execute upon successful completion of the
new job. When not specified the setting of the Template job is copied.
The command must be executable within the context of the scheduler
that runs the job so it must be a valid Windows/UNIX/Linux command
that is appropriate to the scheduler environment.

Failure Command A command-line action to execute upon failure of the new job. When
not specified the setting of the Template job is copied. The command
must be executable within the context of the scheduler that runs the job
so it must be a valid Windows/UNIX/Linux command that is appropriate
to the scheduler environment.

Output

Output Description

Return Code Output Return Code:

S Success.

N No action because the Template Job is not in a holding or
waiting state.

P No action because the New Job name already exists.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-1 Template Job is not in a holding/waiting state or the New
Job name already
exists.

-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

920

Teradata Parameters: Ws_Job_CreateWait

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_template_job VARCHAR(64) IN

p_new_job VARCHAR(64) IN

p_description VARCHAR(256) IN

p_state VARCHAR(10) IN

p_release_time TIMESTAMP IN

p_threads INTEGER IN

p_scheduler VARCHAR(8) IN

p_logs INTEGER IN

p_okay VARCHAR(256) IN

p_fail VARCHAR(256) IN

p_att1 VARCHAR(4000) IN

p_att2 VARCHAR(4000) IN

p_att3 VARCHAR(4000) IN

p_att4 VARCHAR(4000) IN

p_att5 VARCHAR(4000) IN

p_att6 VARCHAR(4000) IN

p_att7 VARCHAR(4000) IN

p_att8 VARCHAR(4000) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

921

Teradata Examples: Ws_Job_CreateWait

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Job_CreateWait

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 'Daily Run', 'New Daily Run', 'This is the New Daily Run job.', 'ONCE'

, (CURRENT_TIMESTAMP + INTERVAL '1' MONTH)

, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL

, v_return_code

, v_return_msg

, v_result_num

);

922

Ws_Job_Dependency
Synopsis

Adds or removes a child-to-parent dependency between two jobs to control the child job.

Description

Adds or removes a child-to-parent dependency between two jobs to control the child job. The dependent
child job can be defined to fail (if necessary) when the parent job does not complete successfully in the
required timeframe. The acceptable timeframe can be defined in terms of the maximum minutes in the
past to look back and the maximum minutes in the future to wait for successful completion of the parent
job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Action Either ADD or DELETE the job dependency.

Parent Job Name The name of Parent Job that the Child Job will depend on.

Child Job Name The name of the Child Job that will be dependent on the Parent Job.

Parent Success
Required

Indicates whether or not the Child Job will fail when the Parent Job does
not complete successfully in the required time frame.

Maximum Look Back
Minutes

The Maximum minutes in the past to look back for successful
completion of the Parent Job.

Maximum Wait
Minutes

The Maximum minutes in the future to wait for successful completion of
the Parent Job.

Output

Output Description

Return Code Output Return Code:

S Success.

W Warning. Dependency already exists (ADD action) or does
not exist (DELETE action).

E Error.

F Fatal/Unexpected Error.

923

Output Description

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-1 Warning. Dependency already exists (ADD action) or does
not exist (DELETE action).

-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Dependency

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_action VARCHAR(10) IN

p_parent VARCHAR(64) IN

p_child VARCHAR(64) IN

p_required VARCHAR(1) IN

p_look_back INTEGER IN

p_max_wait INTEGER IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

924

Teradata Examples: Ws_Job_Dependency

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Job_Dependency

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 'ADD', 'Daily Run', 'Daily Run Part2', 'Y', 60, 60

, v_return_code

, v_return_msg

, v_result_num

);

925

Ws_Job_Release
Synopsis

Starts a job if it is in a holding or waiting state.

Description

Releases the specified job if it is in a holding or waiting state, which sets the start time to the current
time so that it starts immediately. Typically, this routine is used to start a job from within another job or
via a third-party scheduler (rather than a WhereScape RED Scheduler).

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Release Job Name The name of the job to be started/released. The specified name must
exactly match the job name as displayed by the WhereScape RED
Scheduler. The specified job must be in a holding or waiting state in
order to be released.

Output

Output Description

Return Code Output Return Code:

S Success.

N No action because the Template Job is not in a holding or
waiting state.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

926

Output Description

Result Number

Output Result Number:

1 Success.

-1 No action because the job is not in a holding or waiting
state.

-2 Error.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Release

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_release_job VARCHAR(64) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Release

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

927

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Job_Release

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 'Daily Run'

, v_return_code

, v_return_msg

, v_result_num

);

928

Ws_Job_Restart
Synopsis

Starts a job if it is in a failed state.

Description

Releases the specified job if it is in a failed state, which sets the start time to the current time so that it
starts immediately. This routine can be executed as part of a database start-up sequence to restart each
failed job that may have stopped due to an earlier database shutdown.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Restart Job Name The name of the job to be restarted/released. The specified name must
exactly match the job name, as displayed by the WhereScape RED
Scheduler. The specified job must be in a failed state in order to be
restarted.

Output

Output Description

Return Code Output Return Code:

S Success.

N No action because the job is not in a failed state.

R No action because the job is currently running.

U No action because the job is in an unusual state due to an
error (result number -2). The job is classified as running but it is
NOT actually running or failed so it cannot be restarted. This may
occur if the scheduler has failed and the job is in a pending state.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

929

Output Description

Result Number

Output Result Number:

1 Success.

-1 No action because the job is not in a failed state or it is
currently running.

-2 Error.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Restart

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_restart_job VARCHAR(64) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Restart

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

930

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Job_Restart

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 'Daily Run'

, v_return_code

, v_return_msg

, v_result_num

);

931

Ws_Job_Schedule
Synopsis

Schedules a job if it is in a holding or waiting state.

Description

Schedules the specified job if it is in a holding or waiting state, which will start at the specified time.
Typically, this routine is used to schedule a job from within another job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Schedule Job Name The name of the job to be scheduled. The specified name must exactly
match the job name as displayed by the WhereScape RED Scheduler.
The specified job must be in a holding or waiting state in order to be
scheduled.

Scheduled Release
Time

The date/time that the job is to be scheduled to be released/started.

Output

Output Description

Return Code Output Return Code:

S Success.

N No action because the job is not in a holding or waiting
state.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

932

Output Description

Result Number

Output Result Number:

1 Success.

-1 No action because the job is not in a holding or waiting
state.

-2 Error.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Schedule

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_release_job VARCHAR(64) IN

p_release_time TIMESTAMP IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Schedule

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

933

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Job_Schedule

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 'Daily Run', CURRENT_TIMESTAMP + INTERVAL '1' DAY

, v_return_code

, v_return_msg

, v_result_num

);

934

Ws_Job_Status
Synopsis

Returns the current status of a job.

Description

Returns the current status of the specified job as recorded by a WhereScape RED Scheduler. Typically,
this routine is used by a third-party scheduler or a user-defined procedure/script to check on a job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Job Sequence The unique integer identifier of the job to return the status of. This input
is optional but when it is specified, the started within and started after
inputs should not be specified.

Job Name The name of the job to return the status of. The specified name must
exactly match the job name as displayed by the WhereScape RED
Scheduler.

Started Within Last
Minutes

The maximum minutes [0-148599] (up to ~103.1 days) in the past to look
back for the job to have started. This input is optional but when it is
specified, the job name must be specified and the job sequence and started
after inputs should not be specified. Note: If multiple instances of the job
have started in the specified time frame then the last job to start is
returned (i.e. the job with the highest sequence number).

Started After Time The date/time after which to look for the job to have started. This input is
optional but when it is specified, the job name must be specified and the
job sequence and started within inputs should not be specified. Note: If
multiple instances of the job have started in the specified time frame then
the last job to start is returned (i.e. the job with the highest sequence
number).

935

Output

Output Description

Return Code Output Return Code:

S - Success.

N - The job exists but it was NOT started within the specified time
frame.

E - Error.

F - Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 - Success.

-1 - The job exists but it was NOT started within the specified time
frame.

-2 - Error.

-3 - Fatal/Unexpected Error.

0 - see note below.

Simplified Job
Status Code

Simplified Job Status Code:

N - Not Running.

R - Running.

F - Failed.

C - Completed.

0 - see note below.

936

Output Description

Standard Job Status
Code

Standard Job Status Code:

H - On Hold. The job is on hold. A held job can be edited and/or started.

W - Waiting. The job is waiting to start (it is either waiting for the
scheduled time to arrive or is waiting for an available scheduler).

B - Blocked. The job is blocked because a previous instance of the same
job is still running.

P - Pending. This is the initial interim status of an "about to start
running" job. The scheduler has identified that the job is ready to start
and is preparing to run it. A job should only be pending for a brief period
so if it remains pending for a prolonged period then an unexpected error
has occurred.

R - Running. The job is currently running.

F - Failed. The job failed due to an error.

C - Completed. The job completed successfully (but it may have
warnings). A completed job cannot be restarted.

G - Failed - Aborted. The job failed and was subsequently aborted. An
aborted job cannot be restarted.

E - Error Completion.

0 - see note below.

937

Output Description

Enhanced Job
Status Number

Enhanced Job Status Number that returns an integer rather than the
standard alphabetic code. The running and completed statuses are
enhanced to distinguish errors or warnings.

1 - On Hold. The job is on hold. A held job can be edited and/or started.

2 - Waiting. The job is waiting to start (it is either waiting for the
scheduled time to arrive or is waiting for an available scheduler).

3 - Blocked. The job is blocked because a previous instance of the same
job is still running.

4 - Pending. This is the initial interim status of an "about to start
running" job. The scheduler has identified that the job is ready to start
and is preparing to run it. A job should only be pending for a brief period
so if it remains pending for a prolonged period then an unexpected error
has occurred.

5 - Running. The job is currently running and no tasks have failed or
produced warnings.

6 - Running with Errors. The job is currently running but some tasks
have failed. The job will ultimately fail when all the tasks that are NOT
dependent on the failed tasks have finished.

7 - Running with Warnings. The job is currently running and some
tasks have produced warnings.

8 - Failed. The job failed due to an error.

9 - Completed. The job completed without warnings. A completed job
cannot be restarted.

10 - Completed with Warnings. The job completed with warnings. A
completed job cannot be restarted.

11 - Failed - Aborted. The job failed and it was subsequently aborted.
An aborted job cannot be restarted.

12 - Error Completion.

*** Note:***

All three returned status values can also return '0' in any of the following situations:

- Illegal combination of parameters specified.
- Unable to locate specified job sequence.
- Unable to locate specified job name.
- Job Not Found having started in the last SpecifiedMinutes minutes.
- Job Not Found having started after SpecifiedDateTime.

938

Teradata Parameters: Ws_Job_Status

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_check_sequence INTEGER IN

p_check_job VARCHAR(64) IN

p_started_in_last_mi INTEGER IN

p_started_after_dt TIMESTAMP IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

p_job_status_simple VARCHAR(1) OUT

p_job_status_standard VARCHAR(1) OUT

p_job_status_enhanced VARCHAR(2) OUT

Teradata Examples: Ws_Job_Status
-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

939

DECLARE v_job_status_simple varchar(1);

DECLARE v_job_status_standard varchar(1);

DECLARE v_job_status_enhanced varchar(2);

CALL [METABASE].Ws_Job_Status

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, NULL, 'Daily Run', 10, NULL

, v_return_code

, v_return_msg

, v_result_num

, v_job_status_simple, v_job_status_standard, v_job_status_enhanced

);

Ws_Load_Change
Synopsis

Changes the Connection or Schema of a load table.

Description

Changes either the Connection or the Schema of the specified load table. Only the Connection or
Schema can be changed so two calls are required to change both.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Change Property Change either the SCHEMA or the CONNECTION of the specified load
table. Separate calls must be made if both the schema and connection
need to be changed.

Load Table Name The name of the load table to be changed.

New Property Value Either the new schema name or the new connection name.

940

Output

Output Description

Return Code Output Return Code:

S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-2 Error.

-3 Fatal/Unexpected Error.

941

Teradata Parameters: Ws_Load_Change

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_action VARCHAR(64) IN

p_table VARCHAR(64) IN

p_new_value VARCHAR(255) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Load_Change

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Load_Change

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

942

, 'CONNECTION', 'load_customer', 'Connection2'

, v_return_code

, v_return_msg

, v_result_num

);

943

Ws_Maintain_Indexes
Synopsis

Drops and/or builds database indexes that are defined in the WhereScape RED metadata.

Description

Drops and/or builds indexes for a specified table or a specified index. Only indexes that are defined in
the WhereScape RED metadata are supported. Typically, this routine is used by a WhereScape RED
Scheduler and RED-generated procedures to automatically maintain indexes. However, it is also valid
for user-defined custom procedures/scripts to execute this routine to control when indexes are dropped
and/or created.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page 896)

Table Name Table Name to process the relevant indexes of.

Note: The Table Name is ignored when the optional Index Name is
specified.

Index Name Optional Index Name to only process the specified index. When NOT
specified all the relevant indexes of the table are processed.

Note: The Table Name is ignored when the Index Name is specified.

Note: Must be specified to use the DROP or BUILD index actions.

Index Action Action that specifies whether indexes are dropped or built and what types of
indexes are applicable:

DROP Drop the specified index (Index Name must be specified).

DROP ALL Drop ALL the indexes of the table.

PRE DROP Drop the indexes of the table that are defined as pre-drop.

BUILD Build the specified index (Index Name must be specified).
Otherwise, build all the indexes of the table that were pre-dropped.

BUILD ALL Build ALL the indexes of the table.

944

Output

Output Description

Result Number

Output Result Number:

1 Success.

-1 Warning.

-2 Error.

-3 Fatal/Unexpected Error.

Note: Ws_Maintain_Indexes does NOT include a Return Code or Return Message like most of the
WhereScape RED Callable routines but it does output a Result Number.

Teradata Parameters: Ws_Maintain_Indexes

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_table_name VARCHAR(64) IN

p_parameter VARCHAR(4000) IN

p_index_name VARCHAR(64) IN

p_option VARCHAR(20) IN

p_result INTEGER OUT

Teradata Examples: Ws_Maintain_Indexes

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

945

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

CALL [METABASE].Ws_Maintain_Indexes

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 'load_customer', NULL, NULL, 'DROP ALL'

, v_result_num

);

946

Ws_Version_Clear
Synopsis

Purges metadata versions for all objects that do not meet the specified retention criteria.

Description

Deletes metadata versions for all objects that do not meet the specified retention criteria, which can be
specified as the maximum number of versions to retain per object and/or the maximum age (in days) of
versions to retain. For example, it is possible to specify that a maximum of 5 versions are retained for
each object and/or that versions are retained for a maximum of 90 days.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Maximum Days to
Retain

The maximum age (in days) of the versions to retain. If 90 days are
retained, then all the versions that are older than 90 days are
purged/deleted to reduce the number of versions to the specified
maximum number of versions per object. If not specified, then the
retention date of each version determines whether it is deleted.

Maximum Versions
per Object to Retain

The maximum number of versions to retain for each object. If 5 is
specified, then the last 5 versions are retained per object regardless of
the specified maximum age to retain.

Options Currently NOT used.

Output

Output Description

Return Code Output Return Code:

S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

947

Output Description

Result Number

Output Result Number:

1 Success.

-2 Error.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Version_Clear

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_day_count INTEGER IN

p_keep_count INTEGER IN

p_options VARCHAR(256) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Version_Clear

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

948

DECLARE p_status integer;

DECLARE v_result_num integer;

DECLARE v_return_code varchar(1);

DECLARE v_return_msg varchar(256);

CALL [METABASE].Ws_Version_Clear

(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id

, 90, 5, NULL

, v_return_code

, v_return_msg

, v_result_num

);

949

WsParameterRead
Synopsis

Returns the value and comment (for most RDBMS) of a WhereScape RED metadata Parameter.

Description

Returns the value and comment (for most RDBMS) of the specified parameter from the
DSS_PARAMETER metadata table. For SQL Server, Teradata, and DB2 this routine is a PROCEDURE that
returns both the parameter value and comment. However, for Oracle this routine is a FUNCTION that
only returns the parameter value. For SQL Server, there is also a WsParameterReadF FUNCTION.

Typically, this routine is used by procedures to read information that is written by another process
(automatically or manually via the RED Tools - Parameters menu item), which is external to the
procedure.

Input

Input Description

Parameter Name The case-sensitive name of the WhereScape RED metadata parameter to
be retrieved. The name must exactly match an existing parameter,
otherwise a NULL value is returned.

Output

Output Description

Parameter Value The retrieved value of the parameter. Corresponds to the "Value"
property that is visible and maintainable via Tools - Parameters.

Parameter
Comments

The maximum number of versions to retain for each object. If 5 is
specified then the last 5 versions are retained per object regardless of
the specified maximum age to retain.

Teradata Parameters: WsParameterRead

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_parameter VARCHAR(64) IN

950

Parameter Name Datatype Mode

p_value VARCHAR(2000) OUT

p_comment VARCHAR(256) OUT

Teradata Examples: WsParameterRead

DECLARE v_current_date varchar(4000); -- Same length as DSS_PARAMETER.dss_parameter_value.

DECLARE v_comment varchar(256);

CALL [METABASE].WsParameterRead('CURRENT_DATE',v_current_date,v_comment);

WsParameterReadF
Synopsis

Returns the value of a WhereScape RED metadata Parameter [SQL Server only].

Description

Returns the value of the specified parameter from the DSS_PARAMETER metadata table. This routine is
a FUNCTION that is only available for SQL Server. For SQL Server, Teradata, and DB2 there is a
WsParameterRead PROCEDURE that returns both the parameter value and comment. For Oracle, the
WsParameterRead FUNCTION is equivalent to the SQL Server WsParameterReadF FUNCTION.

Typically, this routine is used by procedures to read information that is written by another process
(automatically or manually via the RED Tools - Parameters menu item), which is external to the
procedure.

Input

Input Description

Parameter Name The name of the WhereScape RED metadata parameter to be retrieved.
The case-sensitive name must exactly match an existing parameter,
otherwise a NULL value is returned.

951

Output

Output Description

Parameter Value The value of the parameter. Corresponds to the "Value" property that is
visible and maintainable via Tools - Parameters.

952

WsParameterReadG
Synopsis

Returns the value of a "global" WhereScape RED metadata Parameter that relates to a load table.

Description

Returns the value of an internal parameter that is defined and populated by WhereScape RED, which is
available to a procedure that is currently processing a load table.

The supported parameters are $$TABLE_NAME and $$SOURCE_TABLE.

Input

Input Description

Global Parameter
Name

The supported global parameters are:

$$TABLE_NAME returns the Load Table Name that the procedure is
executing against. Only available for load tables.

$$SOURCE_TABLE returns the maximum value of the Source Table
property from the columns of the Load Table that the procedure is
executing against. Only available for load tables. Note: Typically, a Load
Table has a single Source Table but if it has multiple sources then the
maximum (alphabetically) Source Table Name will be returned.

Job Identifier Unique identifier of the held or scheduled job that the running job is a
specific instance of. When invoked from a WhereScape RED Scheduler
the routine will be passed the parameter argument. When invoked
manually or externally to the WhereScape RED Scheduler, it is
recommended to use 0 (zero).

Task or Object
Identifier

Unique identifier of the running task (of a running job) that executed
the routine. When invoked from a WhereScape RED Scheduler, the
routine will be passed the parameter argument. When invoked manually
or externally to the WhereScape RED Scheduler, it should be the object
key.

Output

Output Description

Result Table Name The requested Load Table Name or Source Table Name.

953

Teradata Parameters: WsParameterReadG

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_parameter VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_value VARCHAR(2000) OUT

Teradata Examples: WsParameterReadG

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE v_source_name varchar(256);

CALL [METABASE].WsParameterReadG('$$SOURCE_TABLE', p_job_id, p_task_id, v_source_name);

954

WsParameterWrite
Synopsis

Updates the value and comment of a WhereScape RED metadata Parameter or creates it.

Description

Updates the value and comment of the specified parameter in the DSS_PARAMETER metadata table. If
the specified parameter is not found then it is added.

Typically, this routine is used by procedures to write information that is read by another process
(automatically or manually via the RED Tools>Parameters menu item), which is external to the
procedure.

Input

Input Description

Parameter Name The case-sensitive name of the WhereScape RED metadata parameter to
be updated or added.

Parameter Value The new value of the parameter to be assigned. Corresponds to the
"Value" property that is visible and maintainable via Tools>Parameters.

Parameter
Comments

The new comments of the parameter to be assigned. Corresponds to the
"Comments" property that is visible and maintainable via
Tools>Parameters.
The parameter comments will not be modified if a NULL value is
specified.

Teradata Parameters: WsParameterWrite

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_parameter VARCHAR(64) IN

p_value VARCHAR(2000) IN

p_comment VARCHAR(256) IN

955

Teradata Examples: WsParameterWrite

CALL [METABASE].WsParameterWrite('LAST_INVOICE_ID', '123456', 'The last invoice ID loaded');

WsWrkAudit
Synopsis

Records a message in the Audit Log.

Description

Adds the specified message to the WS_WRK_AUDIT_LOG workflow metadata table, which is referred to
as the Audit Log or Audit Trail. A variety of message types are supported such as Information, Warning,
and Error that are included in the corresponding message type counts for the task and job. Audit Log
messages are accessible via the "Scheduler" tab/window and/or the WS_ADMIN_V_AUDIT view of the
WS_WRK_AUDIT_LOG table.

NOTE: Both the Audit Log and Error/Detail Log support similar information and in user-defined custom
procedures either or both logs can be used. However, in RED-generated procedures/scripts the Audit Log
is used for higher-level or summary messages while the Error/Detail Log is used for more detailed
supporting information.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Note: Refer to the RDBMS-specific parameters for the relative positions
(they are NOT declared as the first parameters)

Audit Message Type
Code

Audit Message Type Code:

B Beginning of a Job or Task.

I Information.

S Success.

W Warning.

E Error.

F Fatal Error.

Audit Message Text
Custom message text to be recorded in the WhereScape RED Audit Log.

956

Input Description

RDBMS Code RDBMS-specific message code. e.g. The Oracle special variable
SQLCODE. It is optional but recommended to populate this when an
error occurs.

RDBMS Message RDBMS-specific message. e.g. The Oracle special variable SQLERRM. It
is optional but recommended to populate this when an error occurs.

Output

Output Description

Result Number

Output Result Number:

1 Success.

-3 Error.

Teradata Parameters: WsWrkAudit

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_status_code VARCHAR(1) IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_sequence INTEGER IN

p_message VARCHAR(255) IN

p_db_code VARCHAR(10) IN

p_db_msg VARCHAR(255) IN

p_task_key INTEGER IN

p_job_key INTEGER IN

Teradata Examples: WsWrkAudit

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

957

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

CALL [METABASE].WsWrkAudit

('I', p_job_name, p_task_name, p_sequence

, 'The task has started.'

, NULL

, NULL

, p_task_id

, p_job_id

);

WsWrkAuditBulk
Synopsis

Records multiple messages in the Audit Log.

Description

Adds the specified multiple messages to the WS_WRK_AUDIT_LOG workflow metadata table, which is
referred to as the Audit Log or Audit Trail. A variety of message types are supported, such as
Information, Warning, and Error that are included in the corresponding message type counts for the
task and job. Audit Log messages are accessible via the "Scheduler" tab/window and/or the
WS_ADMIN_V_AUDIT view of the WS_WRK_AUDIT_LOG table.

NOTE: Both the Audit Log and Error/Detail Log support similar information and in user-defined custom
procedures, either or both logs can be used. However, in RED-generated procedures/scripts the Audit
Log is used for higher-level or summary messages while the Error/Detail Log is used for more detailed
supporting information.

958

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Note: Refer to the RDBMS-specific parameters for the relative positions
(they are NOT declared as the first parameters)

Audit Message Type
Code

Audit Message Type Code:

B Beginning of a Job or Task.

I Information.

S Success.

W Warning.

E Error.

F Fatal Error.

Audit Message(s)
Text

Custom message(s) text to be recorded in the WhereScape RED Audit
Log. Multiple messages can be specified but each is limited to 256
characters. Each message must be separated by either a new-line (ASCII
10) or tilde (~) character. e.g. Message1~Message2~Message3 will create
3 messages.

RDBMS Code RDBMS-specific message code. e.g. The Oracle special variable
SQLCODE. It is optional but recommended to populate this when an
error occurs.

RDBMS Message RDBMS-specific message. e.g. The Oracle special variable SQLERRM. It
is optional but recommended to populate this when an error occurs.

Output

Output Description

Result Number

Note: Not provided for all RDBMS.

Output Result Number:

1 Success.

-2 Error

-3 Fatal/Unexpected Error.

Teradata Parameters: WsWrkAuditBulk

Callable Routine Type: PROCEDURE.

959

Parameter Name Datatype Mode

p_status_code VARCHAR(64) IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_sequence INTEGER IN

p_message VARCHAR(61440) IN

p_db_code VARCHAR(10) IN

p_db_msg VARCHAR(256) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_result INTEGER OUT

Teradata Examples: WsWrkAuditBulk

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

CALL [METABASE].WsWrkAuditBulk

('I', p_job_name, p_task_name, p_sequence

, 'Message1~Message2~Message3'

, NULL

, NULL

, p_job_id --### NOTE order.

, p_task_id --### NOTE order.

960

, v_result_num

);

961

WsWrkError
Synopsis

Records a message in the Error/Detail Log.

Description

Adds the specified message to the WS_WRK_ERROR_LOG workflow metadata table, which is referred to
as the Error Log or Detail Log. A variety of message types are supported such as Information, Warning,
and Error that are included in the "detail" message counts for the task and job (viewable via the
"Scheduler" tab/window). Error/Detail Log messages are accessible via the "Scheduler" tab/window
and/or the WS_ADMIN_V_ERROR view of the WS_WRK_ERROR_LOG table.

NOTE: Both the Audit Log and Error/Detail Log support similar information and in user-defined custom
procedures either or both logs can be used. However, in RED-generated procedures/scripts the Audit Log
is used for higher-level or summary messages while the Error/Detail Log is used for more detailed
supporting information.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Note: Refer to the RDBMS-specific parameters for the relative positions
(they are NOT declared as the first parameters)

Error/Detail
Message Type Code

Error/Detail Message Type Code:

E Error.

I Information.

W Warning.

Error/Detail
Message Text

Custom message text to be recorded in the WhereScape RED
Error/Detail Log.

RDBMS Code RDBMS-specific message code. e.g. The Oracle special variable
SQLCODE. It is optional but recommended to populate this when an
error occurs.

RDBMS Message RDBMS-specific message. e.g. The Oracle special variable SQLERRM. It
is optional but recommended to populate this when an error occurs.

Custom Message
Type Code

Custom Message Type Code. For custom usage and has no meaning
within the WhereScape RED metadata.

962

Output

Output Description

Result Number

Output Result Number:

1 Success.

-3 Error.

Teradata Parameters: WsWrkError

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_status_code VARCHAR(1) IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_sequence INTEGER IN

p_message VARCHAR(255) IN

p_db_code VARCHAR(10) IN

p_db_msg VARCHAR(255) IN

p_task_key INTEGER IN

p_job_key INTEGER IN

p_msg_type VARCHAR(10) IN

Teradata Examples: WsWrkError

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

963

DECLARE p_status integer;

CALL [METABASE].WsWrkError

('I', p_job_name, p_task_name, p_sequence

, 'This is an INFO message in the Error/Detail Log.'

, NULL

, NULL

, p_task_id

, p_job_id

, NULL

);

WsWrkErrorBulk
Synopsis

Records multiple messages in the Error/Detail Log.

Description

Adds the specified multiple messages to the WS_WRK_ERROR_LOG workflow metadata table, which is
referred to as the Error Log or Detail Log. A variety of message types are supported such as Information,
Warning, and Error that are included in the "detail" message counts for the task and job (viewable via
the "Scheduler" tab/window). Error/Detail Log messages are accessible via the "Scheduler" tab/window
and/or the WS_ADMIN_V_ERROR view of the WS_WRK_ERROR_LOG table.

NOTE: Both the Audit Log and Error/Detail Log support similar information and in user-defined custom
procedures, either or both logs can be used. However, in RED-generated procedures/scripts the Audit
Log is used for higher-level or summary messages while the Error/Detail Log is used for more detailed
supporting information.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
896)

Note: Refer to the RDBMS-specific parameters for the relative positions
(they are NOT declared as the first parameters)

964

Input Description

Error/Detail
Message Type Code

Error/Detail Message Type Code:

E Error.

I Information.

W Warning.

Error/Detail
Message(s) Text

Custom message(s) text to be recorded in the WhereScape RED
Error/Detail Log. Multiple messages can be specified but each is limited
to 256 characters. Each message must be separated by either a new-line
(ASCII 10) or tilde (~) character. e.g. Message1~Message2~Message3 will
create 3 messages.

RDBMS Code RDBMS-specific message code. e.g. The Oracle special variable
SQLCODE. It is optional but recommended to populate this when an
error occurs.

RDBMS Message RDBMS-specific message. e.g. The Oracle special variable SQLERRM. It
is optional but recommended to populate this when an error occurs.

Custom Message
Type Code

Custom Message Type Code. For custom usage and has no meaning
within the WhereScape RED metadata.

Output

Output Description

Result Number

Note: NOT provided for all RDBMS.

Output Result Number:

1 Success.

-2 Error.

-3 Fatal/Unexpected Error.

Teradata Parameters: WsWrkErrorBulk

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_status_code VARCHAR(64) IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

965

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_message VARCHAR(61440) IN

p_db_code VARCHAR(10) IN

p_db_msg VARCHAR(256) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_msg_type VARCHAR(10) IN

p_result INTEGER OUT

Teradata Examples: WsWrkErrorBulk

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_result_num integer;

CALL [METABASE].WsWrkErrorBulk

('I', p_job_name, p_task_name, p_sequence

, 'Message1~Message2~Message3'

, NULL

, NULL

, p_job_id --### NOTE order.

, p_task_id --### NOTE order.

, NULL

, v_result_num

967

WsWrkTask
Synopsis

Updates row counts for a task in the Task Log.

Description

Updates row counts for the specified task in the Task Log. Task Log messages (and row counts) are
accessible via the "Scheduler" tab/window and/or the WS_ADMIN_V_TASK view of the
WS_WRK_TASK_RUN and WS_WRK_TASK_LOG tables.

This routine is intended to be executed by a task of a job since it requires a valid job, task, and job
sequence number that are provided by a WhereScape RED Scheduler.

Input

Input Description

Common Input Includes 3 inputs of the Callable Routines Common Input (on page
896)

Inserted Row Count The number of rows inserted by the task.

Updated Row Count The number of rows updated by the task.

Replaced Row Count The number of rows replaced by the task.

Deleted Row Count The number of rows deleted by the task.

Discarded Row
Count

The number of rows discarded by the task.

Rejected Row Count The number of rows rejected by the task.

Error Row Count The number of rows with an error that were failed by the task.

Output

Output Description

Result Number

Output Result Number:

0 Success.

-1 Warning.

-3 Fatal/Unexpected Error.

968

Teradata Parameters: WsWrkTask

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_job_key INTEGER IN

p_task_key INTEGER IN

p_sequence INTEGER IN

p_inserted INTEGER IN

p_updated INTEGER IN

p_replaced INTEGER IN

p_deleted INTEGER IN

p_discarded INTEGER IN

p_rejected INTEGER IN

p_errored INTEGER IN

Teradata Examples: WsWrkTask

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated Procedure.

DECLARE p_sequence integer;

DECLARE p_job_name varchar(256);

DECLARE p_task_name varchar(256);

DECLARE p_job_id integer;

DECLARE p_task_id integer;

DECLARE p_return_msg varchar(256);

DECLARE p_status integer;

DECLARE v_insert_count integer;

DECLARE v_update_count integer;

CALL [METABASE].WsWrkTask

(p_job_id, p_task_id, p_sequence

, v_insert_count, v_update_count, 0, 0, 0, 0, 0

970

Admin views provide a means of interacting with the WhereScape RED metadata from within your
chosen reporting tools.

The following admin views are available:

Name Description

ws_admin_v_audit Created from the ws_wrk_audit_log table

ws_admin_v_error Created from the ws_wrk_error_log table

ws_admin_v_sched Created from the ws_wrk_job_log table

ws_admin_v_task Created from the ws_wrk_task_run and ws_wrk_task_log tables

In This Chapter

Ws_admin_v_audit .. 971
Ws_admin_v_error .. 971
Ws_admin_v_sched ... 972
Ws_admin_v_task .. 973

C h a p t e r 3 5

Ws_admin_v Views

971

Ws_admin_v_audit
This Audit view is created using columns from the ws_wrk_audit_log table.

Columns

The following columns are created:

Column Description

wa_time_stamp the date or time at which this view was created

wa_sequence See Callable Routines Common Input (on page 896)

wa_job See Callable Routines Common Input (on page 896)

wa_task See Callable Routines Common Input (on page 896)

wa_status See Callable Routines Common Input (on page 896)

wa_message the message associated with this audit log

wa_db_msg_desc the database message associated with this audit log

Ws_admin_v_error
This Error view is created using columns from the ws_wrk_error_log table.

Columns

The following columns are created:

Column Description

wd_time_stamp the date or time at which this view was created

wd_sequence See Callable Routines Common Input (on page 896)

wd_job See Callable Routines Common Input (on page 896)

wd_task See Callable Routines Common Input (on page 896)

wd_status See Callable Routines Common Input (on page 896)

wd_message the message associated with this audit log

wd_db_msg_desc the database message associated with this audit log

972

Ws_admin_v_sched
This Scheduled Job view is created from the ws_wrk_job_log table.

Columns

The following columns are created:

Column Description

type "Waiting"

job_name the name of the job

status a character value indicating the job status

H - on hold

R - running

P - pending

W - waiting

C - completed

B - blocked

F - failed

G - failed - aborted

E - error completion

else unknown

sequence sequence number of the job

started_schedule
d

completed date completed

hours_elapsed hours elapsed since job started

minutes_elapsed minutes elapsed since job started

okay okay count

info info count

warn warning count

detail detail count

error error count

973

Ws_admin_v_task
This Task view is created from the ws_wrk_task_run and ws_wrk_task_log tables.

Columns

The following columns are created:

Column Description

result

task_name the name of the task

status a character value indicating the task status

H - on hold

R - running

P - pending

W - waiting

C - completed

B - blocked

F - failed

G - failed - aborted

E - error completion

else unknown

sequence sequence number of the task

started

completed

hours_elapsed hours elapsed since the task started

minutes_elapsed minutes elapsed since the task started

info info count

warn warning count

detail detail count

inserted record inserted

updated record updated

replaced record replaced

deleted record deleted

discarded record discarded

974

Column Description

rejected record rejected

errored record errored

975

WhereScape RED includes an advanced retrofit capability that can be used to:

1 Migrate an existing data warehouse from one relational database to another (known as fork-lifting).

2 Load a data model from a modeling tool.

Retrofitting is achieved using the Retro object type in WhereScape RED and the Retrofit tables wizard.

For information on migrating an existing data warehouse, see Migrating the Data Warehouse Database
Platform (see "OLAP Retrofitting an OLAP Object" on page 588, on page 976).

For information on importing a data model, see Importing a Data Model (on page 986).

In This Chapter

Migrating the Data Warehouse Database Platform .. 976
Importing a Data Model ... 986
Re-Targeting Source Tables ... 993
Retro Column Properties .. 995

C h a p t e r 3 6

Retrofitting

976

Migrating the Data Warehouse Database Platform
WhereScape RED has an advanced retrofitting wizard for migrating an existing data warehouse from one
relational database to another.

The process to migrate an existing data warehouse is:

1 Create a connection object to the existing warehouse database.

2 Create Retro objects based on the source tables in the existing warehouse database.

3 Set the Retro objects as Retro Copy type objects.

4 Run a Scheduler task to build the Retro Copy objects from the source tables.

5 Set the Retro objects back to Retro (Retro Definition) type objects.

6 Convert the Retro objects to the Target Object types.

The steps to use this wizard are:

1 Create a connection object for the old data warehouse database, populating the following fields:

• Connection Name

• Connection Type => ODBC

• ODBC Source

• Work Directory

• Extract user name

• Extract password

OR

• Teradata Wallet User ID / Teradata Wallet String

Note: The extract user/ Teradata Wallet user must be able to select from all tables to be migrated.

977

2 Ensure all naming standards in Tools/Options are set to match the objects being retrofitted. This
saves work later.

3 Ensure Enable Retro is selected in the Tools/Options/Object Types menu.

4 Right-click on the Retro object group in the object tree in the left pane and select Select Source
Tables.

978

5 The Retrofit Tables dialog appears. In the Source Connection drop-down list choose the connection
set up in step 1. A list of databases appears in the left pane.

979

6 Double-click on the database/user/schema in the left pane. A list of tables in the database is
displayed in the middle pane.

980

7 Select all the required tables from the middle pane list and click > to move them to the right pane.
Then click the Add Ancillary Columns (eg. dss_update_time) checkbox and click OK.

981

8 WhereScape RED acquires the metadata for the tables being migrated and creates a new WhereScape
RED Retro object for each.

9 Double-click on the Retro object group in the left pane. Select all Retros in the middle pane.
Right-click and select Set Table Type to Copy. This allows the data in the legacy data warehouse to
be copied across to the new data warehouse.

10 Click on the Scheduler button on the toolbar.

11 Create a new job to run straight away.

Note: A scheduler must be running on the data warehouse connection for this job to complete,
please refer to section 17. Scheduler Installation and Configuration of the RED Setup
Administrator Guide.

982

983

12 Add all Retro objects created in steps (3) to (9) and click on Group Object Types.

984

13 Once the job has completed, return to the WhereScape RED builder. Double-click on the Retro
Object group. Select all objects in the middle pane and from the right-click menu select Set Table
Type to Definition. This indicates the data has been copied into the Retro objects and the Retros
can now be converted to the target objects.

14 In the middle pane, select all objects. Right-click and select Convert to Target Object. WhereScape
RED now converts the Retro objects to the appropriate object types.

Note: If the appropriate Target Object Type has not been set for one or more Retro objects; in the
right click menu select Change Target Object Type and select the correct Object Type.

985

15 There are no longer any Retro objects. They have been converted to Load, Stage, Dimension or Fact
objects.

16 Change the source table and source column values on all of the retrofitted objects using either the
Re-target source table dialog, or by editing column properties. See Re-target source tables (see
"Re-Targeting Source Tables" on page 993) for more information.

17 Convert the old data warehouses code to WhereScape RED procedure in the new data warehouse
database. See Integrate Procedures (see "Integrating, Procedures" on page 1010) for more
information.

18 If necessary, create new connections to be used with any migrated load tables. Attach a connection
to each load table. See Loading Data (on page 194) for more information.

986

Importing a Data Model
WhereScape RED provides functionality for importing data models from modeling tools.

The process to import a model is:

1 Create the physical data model in the modeling tool.

2 Generate DDL for the physical model in the modeling tool.

3 Run the DDL in the data warehouse database to create empty versions of the model tables.

4 Retrofit the tables in the dummy database into the WhereScape RED metadata as Retro objects.

5 Convert the Retro objects to Dimensions and Facts.

The following instructions outline steps 4 and 5 above:

1 Right-click on the Retro object group in the object tree in the left pane and select Select Source
Tables.

987

2 The Retrofit tables dialog is displayed. In the Source Connection drop-down list choose the Data
Warehouse connection. A list of databases appears in the left pane (your list will be different).

988

3 Double click on the required database in the left pane list. A list of tables in the database is
displayed in the middle pane.

989

4 Click on the required tables in the middle pane list and click > to move them to the right pane. Then
click the Add Ancillary columns (e.g. dss_update_time) checkbox. Click OK.

5 Double click on the Retro object group in the object tree in the left pane. You should see something
like this.

990

6 In the middle pane, select the tables. Right-click and select Set table type to Definition.

7 In the middle pane, select the tables. Right-click and select Convert to Target Object.

Note: If the appropriate Target Object Type has not been set for one or more Retro objects; in the
right click menu select Change Target Object Type and select the correct Object Type.

991

992

8 The new tables have been imported.

9 At this stage you have created the table metadata only. To create the tables in the data warehouse,
double click on the object group in the object tree in the left pane. In the middle pane highlight the
tables, then right-click and select Create (ReCreate).

993

Re-Targeting Source Tables
Objects that have been retrofitted into the WhereScape RED metadata have themselves as their source
table:

They can be re-targeted to the correct source table(s), using the WhereScape RED re-target wizard as
follows.

1 Right-click on a table object in the left pane and select Change Column(s).

2 Select the Column Source Table checkbox. Select dim_product from the Original Value drop-down
list. Select load_product from the New Value drop-down list. Click Apply.

994

3 A message will be displayed to show that the source columns have been changed. Click OK.

4 Click Close.

5 Confirm the Source Table column in the middle pane.

995

Retro Column Properties
Each Retro column has a set of associated properties. The definition of each property is defined below.

If the Column name or Data type is changed for a column, then the metadata will differ from the table
as recorded in the database. Use the Validate/Validate Table Create Status menu option to compare
the metadata to the table in the database. When positioned on the table name after the validate has
completed, a right-click menu option Alter Table will alter the database table to match the metadata
definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be altered
in the database. Use the Validate/Validate Table Create Status to compare metadata definitions to
physical database tables. The option also provides the ability to alter the database table, through a
pop-up menu option from the validated table name.

Table Name

The table to which the column belongs. Read only.

Column Name

The database name of the column. This name must conform to database column naming standards.
Typically such standards exclude the use of spaces etc. A good practice is to only use alphanumerics and
the underscore character. Changing this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Title

This defines how the business refers to this column. Although it would not be normal practice to provide
end user access to Retro tables, the contents of this field are passed through to the fact table during the
drag and drop operation, so this field can be commented for later use in the fact table if desired. This
field does not affect the physical table definition.

Note: A case conversion button on the right converts the text between different cases: UPPER CASE,
Capitalized Case and lower case. The mode cycles to the next case in the sequence each conversion.

Column Description

Normally this field will contain the strategy for acquiring or populating a column. It is a useful place to
record specific problems with the source data.

In the case of dimension keys, this field is used to show the join between the Retro table and the
dimension, once it has been defined as part of the Retro table update procedure generation.

996

Column Order

This numeric field provides the ordering of the columns in the database table create statement. The
lowest numbered column will appear first in the table. Although this affects the physical table definition
no action will be taken unless the table is re-created in the database. The columns can be re-numbered
based on the existing order by choosing the Respace Order Number pop-up menu option when
positioned over any column in the table. This action will number the columns in increments of 10
starting at 10. In addition to a simple change of the order field, the column order can be changed by first
displaying the columns in the middle pane and then using drag and drop to move the columns around.
This drag and drop process will automatically renumber the columns as required.

Data Type

This is the database specific data type. It must be a valid data type for the data warehouse database
platform. Typical Teradata databases often have integer, numeric(), varchar(), char(), date and
timestamp data types. See the database documentation for a description of the data types available.
Changing this field alters the table's definition.

Null Values Allowed

This checkbox when set allows nulls to exist in this column. If cleared then nulls are not permitted in
the column. Although this affects the physical table definition no action or comparison is made on this
field. If you wish to change this attribute for a column in an existing table, then the only supported way
is to re-create the table, which may not be desirable.

Default Value

The default value Teradata puts in the column, if the column is not included in the insert statement
populating the table.

Character Set

Select Latin or Unicode.

Format

This field is to allow the definition of a format mask for end user tools. It does not affect the physical
table definition. This field would not normally be populated.

Character Comparison/Sorting

Indicates the Teradata case of the column; one of: case specific, not case specific, uppercase case
specific or uppercase not case specific.

Compress/Compress Value

Indicates the column is compressed and enables the compress value text box. In the compress value text
box, you can enter the list of values to use when compressing the column.

Numeric

Indicates that the column in question is numeric when set. This is normally only relevant for fact tables
and would not normally be used for Retro tables.

997

Additive

Indicates that the column in question is additive when set. This is normally only relevant for fact tables
and would not normally be used for Retro tables.

Attribute

Indicates that the column in question is an attribute when set. This is normally only relevant for fact
tables and would not normally be used for Retro tables.

Business Key

Indicates that the column is part of the primary business key when set. Multiple columns can form the
primary business key. This indicator is set and cleared by WhereScape RED during the Retro update
procedure generation process. This should not normally be altered.

Key Type

The key type is used internally by WhereScape RED in the building of the update procedure and the
generation of indexes. It can be altered here, but this should only be done if the consequences are fully
understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of
any business key. For example: By default the dss_source_system_key is added
to every dimension table. It is considered part of any lookup on that table and
has the key type set to 1. Set when the column is added during drag and drop
table generation.

2 Indicates that this column is a dimensional join. Used on fact tables to
indicate the dimension keys. Results in bitmap indexes being built for the
columns. Set during the update procedure generation for a fact table, based
on information from the staging table.

3 Slowly changing column indicator. Used on dimension tables to indicate that
the column is being managed as a slowly changing column within the context
of a slowly changing dimension. Set when a column is identified during the
dimension update procedure generation.

4 Previous value column indicator. Used on dimension tables to indicate that
the column is being managed as a previous value column. The source column
identifies the parent column. Set during the dimension creation.

A Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used
during index generation and not normally set.

998

Source Table

Indicates the table from which the column was sourced. This source table is normally a load table, or a
dimension table within the data warehouse. If the column was sourced from multiple tables, then the
normal practice is to record one of the tables in this field and a comment listing all of the other tables in
the Source Strategy field. This field is used when generating a procedure to update the Retro table. It is
also used in the track back diagrams and in the documentation.

Source Column

Indicates the column in the Source table from which the column was sourced. Such a column is
normally a load table column, which in turn may have been a transformation or the combination of
multiple columns. This may also be a dimensional key where a dimension is being joined.

Join

This field is set by WhereScape RED during the building of the update procedure and should not
normally be altered. It indicates that the column in question provides a join to a dimension table. The
Source Table and Source Column fields will provide the dimension's side of the join. The options for
this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the dimension table is looked up, during the update
procedure build. It allows you to join the dimension manually in the Cursor mapping dialog (where the
'Where' clause is built). The usual dialog for matching the dimension business key to a column or
columns in the retro table is not displayed if this option is enabled.

Setting this field to Pre Join activates the Join Source field and allows you to select a table from the
drop-down list.

Join Source

When the Join option is set to False, this field becomes inactive. When the Join option is set to True or
Manual, this field is set to the current table name. When the Join option is set to Pre Join, then you can
select the required table from the drop-down list.

999

Retro Column Properties Screen

1000

Retro Column Transformations
It is possible to do transformations on Retro table columns. It is recommended that transformations are
not performed on columns that are dimension keys or the business keys for the table. The
Transformation screen is as follows:

Note: Transformations are only put into effect when the procedure is re-generated.

See Transformations (on page 593) for more details.

1001

Two main options exist in terms of bringing WhereScape RED into an existing data warehouse
environment:

1 Rebuild tables and procedures with WhereScape RED.

2 Integrating existing tables and procedures into WhereScape RED.

Both options require manual coding changes to stored procedures. The main advantages and
disadvantages of these two options are discusses below, and in detail in the following sections.

Rebuilding

The rebuild option is essentially a redevelopment of the existing data warehouse utilizing the
knowledge acquired in the initial development and the rapid development capabilities of WhereScape
RED. A rebuild will take more time and effort than just integrating existing tables and procedures but
will provide a better platform on which to extend the data warehouse. See the Rebuild (see "Rebuilding"
on page 1002) section for the approach to achieve this option.

Integrate

Existing data warehouse tables can be identified to WhereScape RED. The tables are seen and can be
managed to a degree. The main disadvantage is the increased difficulty in utilizing these tables when
trying to extend the data warehouse. This option is however significantly quicker and easier than a
rebuild. It is discussed in detail in the Integrate (see "Integrating" on page 1003) section of this chapter.

The decision as to which option to choose will depend on the size and complexity of the existing data
warehouse. Another important factor is the degree to which the existing data warehouse is to be
extended. If future enhancements revolve around new analysis areas that have little overlap with the
existing environment then a integrate may be the best answer. If the data warehouse is small and
relatively simple than a rebuild may be worth considering. In any event the best plan may be to do a test
integrate and then re-evaluate the situation.

In This Chapter

Rebuilding .. 1002
Integrating ... 1003

C h a p t e r 3 7

Integrating WhereScape RED into an Existing
Warehouse

1002

Rebuilding
The rebuild process essentially is a total re-creation of the data warehouse. One of the major impacts of
such an approach is the 'end user layer', or rather the effect on the end user tools and saved queries and
reports that are currently in use. The redesign or redeployment of this interface to the end users of the
data warehouse may be too large a task to undertake. The problem can be circumvented to some degree
though the use of views to make the new data warehouse environment look the same as the previous.
But it is this impact and the subsequent re-testing process that must be considered when deciding to
undertake a rebuild.

The advantages of a rebuild is the seamless integration of future analysis areas into the data warehouse
and the single point of management that is provided. The major steps in the rebuild process will depend
very much on the environment being replaced. As a guideline the following steps may be worth
considering.

The rebuild process
1 Load a copy of the WhereScape metadata repository into an otherwise empty test environment. See

the Installation and Administration Guide for instructions on how to load a metadata repository.

2 Ensure there are no public synonyms that point to existing table names, if the rebuild process is to
use the same names as some or all of the existing tables.

Working within the WhereScape RED tool proceed to:

3 Create connections to the new test data warehouse and to all the source systems.

4 Using the source system knowledge from the existing data warehouse, create the appropriate load
tables in the data warehouse based on the existing extract or load methodology.

5 Build up the stage and model tables using the same column and table names where possible.

6 Examine the existing procedures or update methodology and include this into the generated stored
procedures.

7 Test the new environment.

8 Work out a plan to convert the existing data into the new data warehouse. Where possible it is best
to keep existing key values and re-assign sequences to match these existing key values where
appropriate.

9 Convert and test the old data warehouse data in the new environment.

10 Redeploy the end user tool access.

1003

Integrating
The integrate process

The steps in the integrate process are:

1 Create a test environment (database user) with the existing data warehouse tables loaded.

2 Load a copy of the WhereScape metadata repository into this test environment. See the Installation
and Administration Guide for instructions on how to load a metadata repository.

Working within the WhereScape RED tool proceed to:

3 Create any connections to Windows servers where host scripts are currently executed. See creating a
Windows connection (see "Windows" on page 148).

4 Create a Data Warehouse connection mapping back to the test environment. See creating a
connection to the data warehouse (see "Database - Data Warehouse/Metadata Repository" on page
135).

5 Incorporate any Host system scripts currently used. See incorporating host scripts (see "Integrating,
Host Scripts" on page 1004).

6 Browse the Data Warehouse connection (Browse/Source Tables).

7 Drag and drop each existing data warehouse table into an appropriate object type. See Selecting an
appropriate table type (see "Integrating, Selecting a Table Type" on page 1006)

8 Answer the retrofit questions, and build any required procedures. See integrate questions (see
"Integrating, Questions" on page 1006).

9 Edit and amend all generated procedures, or create new procedures to handle the existing processing
methodology. See procedure changes (see "Integrating, Procedures" on page 1010).

10 Test the new environment.

Removing the metadata for a table

It is possible to delete the metadata for a table without deleting the table itself. For example, if the
integrate process is incorrectly undertaken, the metadata for the specific table can be removed. To
delete the metadata only: First, select the table and using the right-click menu select Delete. A dialog
box will ask if you wish to delete the object and drop the table. Answer No. A second dialog box will now
appear asking if just the metadata is to be deleted. Answer Yes to this question and only the metadata
will be removed.

1004

Integrating, Host Scripts
Existing windows host scripts can be brought into the WhereScape RED meta data. To incorporate an
existing script the process is as follows:

1 Create a Host Script object using RED. In the left pane click on a project or the All Objects project
and using the right-click menu select New Object. The new object dialog box will appear. From the
Object Type drop-down select Host Script and enter a name for the new script.

2 The following properties dialog will appear. Select the script type. Either UNIX or Windows script.
Select the appropriate connection from the Default Connect drop-down. Fill in the Purpose field to
define the role of the script and then click Update to store the changes.

3 Double-click on the new script or right-click on the the new script and select Edit the Script.

4 Within the script editor, either paste the script or if it is available on the PC, select the File/Insert
from file option and load the file.

5 The script will need to be modified to handle the standards required by the scheduler. See Loading
via a host script (see "Script based loads" on page 258) for more details.

1006

Integrating, Selecting a Table Type
When integrating existing tables there may not be a clear decision as to which table type to use. As a
guideline, the following groupings can be considered.

Temporary tables:

• Load tables

• Stage tables

Permanent tables:

• Model tables

Although these table groups have very distinct names in terms of data warehousing, they do not impose
any restrictions on the types of tables they contain. The table groupings are most relevant in the
automatic generation of procedures, and in the sequencing for the scheduler.

Typically, a mapping table may be stored in the Staging table group.

Integrating, Questions
When a table within the data warehouse schema, that is unknown to RED, is dropped onto a table target
the following dialog appears.

If this is a retro-fit then click Yes to proceed with the retro-fit process. The standard New Object dialog
will appear and it would be advisable to leave the name of the object unchanged so that it matches the
existing table.

A dialog will ask if the bulk of the columns in this table are derived from another table. If they are enter
the table from which these columns derive at this stage. The purpose of this dialog is simply to set the
'source table' field against each of the columns for the table.

1007

Artificial Key definition

If the table target is a model table then the following dialog will appear to enable the definition of any
artificial or surrogate key. If no such key exists then simply proceed to the next question.

Business Key definition

A dialog will now prompt for the selection of the business key from the table. Multiple columns may
constitute the business key, but they must uniquely identify each record in the table.

1008

1009

Foreign Key definition

A dialog will now prompt for the selection of the foreign keys from the table.

Update Procedure

If the target table is a stage, model or aggregate a dialog box will ask if an update procedure is required.
If selected a subsequent dialog will define the structure and content of this procedure. If an existing
procedure is to be modified to include the scheduler imposed procedure standards it is best to select this
option and use the existing procedure name to cut down on the amount of work required. The existing
procedure can then be loaded into the generated procedure using the procedure editor.

Index definition

Any indexes associated with the table will now be automatically defined and loaded into the metadata.
Changes may need to be made in terms of when the indexes are dropped and to set the Drop Before
Update checkbox if appropriate and the scheduler is to be used to manage these indexes.

Procedure creation

If defined the get key and update procedures will now be generated. They will need to be manually
edited and compiled. See the section on retro-fitting procedures (see "Integrating, Procedures" on page
1010).

1010

Integrating, Procedures
The procedures managed by the WhereScape scheduler require the following standards.

Parameters

The procedure must have the following parameters in the following order:

Parameter name Input or Output Data Type

p_sequence Input Integer

p_job_name Input Varchar(256)

p_task_name Input Varchar(256)

p_job_id Input Integer

p_task_id Input Integer

p_return_msg Output Varchar(256)

p_status Output Integer

The input parameters are passed to the procedure by the scheduler. If the procedure is called outside the
scheduler then the normal practice is to pass zero (0) in the sequence, job_id and task_id. A description
of the run can be passed in the job name and the task name is typically the name of the procedure.

The output parameters must be populated by the procedure on completion. The return_msg can be any
string up to 256 characters long that describes the result of the procedures execution. The status must
be one of the following values:

Status Meaning Description

1 Success Normal completion

-1 Warning Completion with warnings

-2 Error Hold subsequent tasks dependent on this task

-3 Fatal Error Hold all subsequent tasks

The major task in retro-fitting a procedure will be in adapting it to the WhereScape scheduler standards
and work flow.

1011

Integrating, Views
When integrating views an additional step is required if you want WhereScape RED to be able to recreate
the view.

The view will be mapped correctly and the Get Key function can still be built. This step is only required
if the view is to be re-created.

Change the source column on the artificial key to match the artificial key in the table from which the
view was created.

Integrating, WhereScape Tables
When retro-fitting WhereScape generated tables and views a number of additional considerations need
to be taken.

Change the properties of all such columns. The key type should be set to 1, and the primary business key
checkbox should be set.

1012

Relationship Maintenance is available for the maintenance of joins between tables; providing a way to
record joins between tables when surrogate keys are not being used. This functionality then enables the
generation of Links Diagrams for these tables.

NOTE: It is necessary to explicitly specify relationships for tables on Tabular target databases for the
relationships to be created in the Tabular database.

Relationship Maintenance options are available in the Relationships sub-menu when right-clicking on
an object in the Object Pane.

Add Relationship
To add a relationship, right-click on the object in the Object Pane and select Relationships->Add
Relationships. The following dialog appears.

C h a p t e r 3 8

Relationship Maintenance

1013

For each object in the relationship, enter in the following details:

Join Type

For the Join Type, choose between the following:

• Undefined

• Many to One

• One to One

• One to Many

• Many to Many

Primary Join

If this is a primary join, select the Primary Join check-box. For MSAS Tabular tables this defines an
active relationship. At most, one relationship between two specific tables can have this enabled.

Object Type

Enter the Object Type from the drop-down box (Data Store, Load table, Stage table, etc.).

Table/View

Enter the name of the object in the relationship.

1014

Column

Enter the Column to join in each object.

Once you have entered the details for the join, the joined columns are displayed in the list of Joins at
the bottom of the dialog box. Erroneous joins can be removed by right-clicking on the join and selecting
Remove Join. All joins can be removed by clicking the Reset button.

To add all the relationships shown in the list of Joins, click the Add button.

1015

List Relationships
To view relationship for an object, right-click on the object in the Object Pane and select
Relationships->List Relationships. The relationships for the selected object are displayed in the Drop
Target Pane (middle pane).

Multi-column joins are shaded when one join is selected.

Right-clicking on a column or join displays the following menu:

Modify Relationship

The Modify Relationship option shows the following dialog, allowing the editing of joins (including
multi-column joins) between the two objects in the selected relationship.

1016

Relationships are edited in this dialog in the same way as the Add Relationship dialog above. Object
Types and Table names cannot be modified.

Delete Relationship

Deletes the selected relationship.

Generate Relationships
To generate relationships in metadata for an object, right-click on the object in the Object Pane and
select Relationships->Generate Relationships. Results are shown in the Results Pane.

1017

The upgrading of RED is discussed at some length in the Installation and Administration Guide.

C h a p t e r 3 9

Upgrading RED

1018

The following checks are performed during login; and if necessary, warning messages are displayed:

1 Warning if the login Data Source does not match the data warehouse connection's ODBC DSN.

You can correct this issue by performing one of the following actions:

• Alter the Data Warehouse Connection ODBC Source to match the login Data Source.

C h a p t e r 4 0

Login Checks

1019

• Log off and log back in using the Data Source with the same name as the Data Warehouse
Connection ODBC Source.

2 Warning if more than one connection has the data warehouse check-box on:

You can correct this issue by editing all the connections and making sure that only one is set to Data
Warehouse:

1020

1021

In This Chapter

Using Data Type Mapping Sets ... 1022
Maintaining Data Type Mapping Sets .. 1024
Loading Data Type Mapping Sets ... 1044
Exporting Data Type Mapping Sets .. 1046
Data Type Mapping Examples .. 1048

C h a p t e r 4 1

Data Type Mappings

1022

Using Data Type Mapping Sets
Data type mapping sets contain a list of mappings that are used when loading tables into the data
warehouse.

Custom data type mapping sets give you the ability to automatically change the data type of any column
or to add column transformations when dragging and dropping new load tables. These mapping sets
may be created, edited, deleted, imported and exported using the Data Type Mappings options on the
Tools menu.

Data Warehouse Connection Properties Dialog

1023

Non-Data Warehouse Connection Properties Dialog

In the Connection Properties dialogs, a drop-down list Data Type Mapping Set is displayed.

This is the default set that will be used when loading tables into the data warehouse.

1024

Maintaining Data Type Mapping Sets
To maintain the data type mapping sets, select Tools/Data Type Mappings/Maintain Data Type
Mappings...

Select a data type mapping set from the Data Type Mapping Set drop-down list.

Of the standard files, only the files relevant to the database that you are on will be displayed in the list.

To create a data type mapping set, see Creating a New Data Type Mapping Set (on page 1025)

To copy a data type mapping set, see Copying a Data Type Mapping Set (on page 1029)

To edit a data type mapping set, see Editing a Data Type Mapping Set (on page 1033)

To delete a data type mapping set, see Deleting a Data Type Mapping Set (on page 1043)

1025

Creating a New Data Type Mapping Set
To create a new data type mapping set, select Tools/Data Type Mappings/Maintain Data Type
Mappings...

Click on the New button, enter the name of the new Mapping Set and click OK.

1026

Description

Enter the description for the data type mapping set.

You can then enter the individual mappings by clicking the New button on the right side of the dialog.

1027

Similarly, you can delete an individual mapping, using the Delete button on the right side of the dialog;
or you can edit a mapping, using the Edit button on the right side of the dialog.

1028

To move a mapping up or down in the list, select a mapping and then click on the Move Up or Move
Down button on the right side of the dialog.

Note: The order of the data type mappings is significant as when loading a table, the procedure checks
the data type mappings from top to bottom and stops when a data type and its parameters are correctly
matched. A blank parameter means that it will match to anything.

1029

Copying a Data Type Mapping Set
To copy an existing data type mapping set, select Tools/Data Type Mappings/Maintain Data Type
Mappings...

Select the Mapping Set to be copied from the drop-down list and then click on the Copy button. Enter
the name of the new Mapping Set and click OK.

1030

Description

Enter the description for the data type mapping set.

To edit a data type mapping, select the mapping and then click on the Edit button on the right side of
the dialog.

1031

Similarly, you can delete a mapping, using the Delete button on the right side of the dialog; or you can
add a new mapping, using the New button on the right side of the dialog.

1032

To move a mapping up or down in the list, select the mapping and then use the Move Up or Move
Down button on the right side of the dialog.

Note: The order of the data type mappings is significant as when loading a table, the procedure checks
the data type mappings from top to bottom and stops when a data type and its parameters are correctly
matched. A blank parameter means that it will match to anything.

1033

Editing a Data Type Mapping Set
To edit a data type mapping set:
• Select Tools/Data Type Mappings/Maintain Data Type Mappings...

1034

• Select a data type mapping set from the Data Type Mapping Set drop-down list.

On the right is a group of buttons used to maintain the list of mappings in a data type mapping set.
These buttons are not available for standard mapping sets.

Only user defined mapping sets are editable.

Note: The order of the mappings within a set is significant as when loading a table, the procedure
checks the data type mappings from top to bottom and stops when a data type and its parameters are
correctly matched. A blank parameter means that it will match to anything.

1035

To add a new mapping to the data type mapping set:
• Click on the New button on the right.

1036

• Enter the required fields and click OK.

From Data Type

The source Data Type to map to the Target Data Type.

From Length

The length parameter to match. (the number of characters or the number of bytes used to store the
number)

From Precision

The precision parameter to match. (the number of digits in a number)

From Scale

The scale parameter to match. (the number of digits to the right of the decimal point in a number)

To Data Type

The data type, including parameters, which is the output of this mapping. Available tokens are
%data_type, %length, %precision and %scale. See Data Type Mapping Examples (on page 1048)

1037

Transform Code

The code to transform values into the mapped Data Type. Available tokens are %table_name,
%column_name, %format, %data_type, %length, %precision and %scale. See Data Type Mapping
Examples (on page 1048)

Format Value

The format of this Conversion's Data Type output.

Default Value

The default value of this Conversion's Data Type output.

Character Set

The Database-compliant character set used for storage. Type Latin or Unicode.

To copy an existing mapping in the data type mapping set:
• Select the mapping and then click on the Copy button on the right.

1038

• A copy of the mapping will be added to the bottom of the list.

• Select the mapping and click on the Edit button to change the details.

1039

To edit an existing mapping in the data type mapping set:
• Select the mapping you want to edit and click the Edit button.

1040

• Change any fields as required and click OK.

1041

To delete an existing mapping in the data type mapping set:
• Select the mapping and then click the Delete button.

• Click OK to delete.

1042

To move a mapping in the data type mapping set up or down in the list:
• Select a mapping and then click on the Move Up button on the right to move the mapping up in the

list;

• Or click on the Move Down button on the right to move the mapping down in the list.

1043

Deleting a Data Type Mapping Set
To delete a data type mapping set, select Tools/Data Type Mappings/Maintain Data Type
Mappings...

Select the Mapping Set to be deleted and click the Delete button.

1044

Note: The Delete button is disabled for standard data type mapping sets.

Loading Data Type Mapping Sets
The Load Custom Data Type Mapping Set menu option allows you to load a custom data type
mapping set from an XML file into the metadata repository.

To load a data type mapping set, select Tools/Data Type Mappings/Load Custom Data Type
Mapping Set...

1045

The following dialog is displayed. Select the xml file to load the data type mappings. By default RED
expects the xml files to be in ProgramData\WhereScape\Work

1046

Exporting Data Type Mapping Sets
The Export Custom Data Type Mapping Set menu option allows you to export a custom data type
mapping set from the metadata repository to an XML file.

To export a data type mapping set, select Tools/Data Type Mappings/Export Custom Data Type
Mapping Set...

Select the data type mapping set to export from the drop-down list. Click OK.

1047

By default, RED exports the xml file to ProgramData\WhereScape\Work, but this can be changed.
Change the File name if necessary and click Save.

1048

Data Type Mapping Examples
WhereScape RED allows you to create Custom Data Type Mapping Sets. These give you the ability to
automatically change the data type of any column or to add column transformations when dragging and
dropping new load tables.

The examples in this topic demonstrate how Custom Data Type Mapping Sets can be configured using
the following variables:

• %length

• %scale

• %precision

• %table_name

• %column_name

• %format

• %prompt

%length

In the example below, when converting a varchar in a file to Teradata format, we follow the following
steps in the given order:

1049

• If the varchar is of a length less than or equal to 63, the data type will become varchar(64).

• If the first step was NOT applied, i.e. the varchar is of a length greater than 63, then the data type
will become varchar(%length); where we substitute the length for the variable '%length'. Thus if the
varchar is of length 64 then the resulting data type will be varchar(64), but if the varchar is of length
123 then the resulting data type will be varchar(123).

%scale

In the example below, when converting a decimal in DB2 to Teradata format, we follow the following
steps in the given order:

1050

• If the decimal has a scale of zero, the data type will become decimal(%precision); where we
substitute the number of digits in the number for the variable '%precision'. Thus if the decimal has 8
digits then the resulting data type will be decimal(8).

• If the first step was NOT applied, i.e. the decimal has a scale of 1 or greater, then the data type will
become decimal(%precision,%scale); where we not only substitute the number of digits in the
number for the variable '%precision', but we also substitute the scale for the variable '%scale'. Thus
if the decimal is made up of 8 digits and has 3 digits after the decimal point (example 12345,678),
the resulting data type will be decimal(8,3).

NOTE: The Scale is the number of digits to the right of the decimal point in a number.

1051

%precision

In the example below, when converting a varchar in SQL Server to Teradata format, we follow the
following steps in the given order:

• If the varchar has a length of 1 or greater, the data type will become varchar(%precision); where we
substitute the number of digits in the varchar for the variable '%precision'. Thus if the varchar has a
length of 14, the resulting data type will be varchar(14).

• If the varchar has a length of 0, the data type will be become varchar(9000) where the
transformation will ensure that the correct length of the source string.

NOTE: The Precision is the total number of digits in a number.

1052

%table_name and %column_name

In the example below, we use the following transformations to handle NULL for different lengths of
varchars:

• If the varchar is 1 or 2 digits/chars long, the data type will become varchar(%precision); where we
substitute the number of digits/chars in the varchar for the variable '%precision'. Secondly, the
value of the column will become the column value (if it is not null), else it will become 'U'.

• If the varchar is 3-6 digits/chars long, the data type will become varchar(%precision); where we
substitute the number of digits/chars in the varchar for the variable '%precision'. Secondly, the
value of the column will become the column value (if it is not null), else it will become 'UNK'.

• If the varchar is 7 or more digits/chars long, the data type will become varchar(%precision); where
we substitute the number of digits/chars in the varchar for the variable '%precision'. Secondly, the
value of the column will become the column value (if it is not null), else it will become 'UNKNOWN'.

1053

%format

In the example below, we use the following transformations to convert a certain character field to a
date:

• If the varchar has a length of 1-10, the data type will become date and the value of the column will
become the date 20131212 (a chosen date in the future).

• If the varchar has a length of 11, the data type will become date and the value of the column will
use the transformation TO_DATE(%table_name.%column_name,%format); where we substitute
'YYYYMMDD' for the variable '%format'. Thus the value of the column will be converted to a date of
format 'YYYYMMDD'.

• If the varchar has a length of 12 or greater, the data type will become date and the value of the
column will become the date 20131212 (a chosen date in the future).

1054

%prompt

In the example below we use %prompt to help the user to define a mapping for an unknown datatype
that is not already mapped in the previous mapping rules.
This placeholder must be used with a custom Data Type mapping set, as described in the following
steps:

• Create a new custom set or copy from an existing set.

• Create a new Data Type mapping with a From Data Type of star (*) and a To Data Type of
%prompt. Click OK to save the New Data Type Mapping to the Custom set.

• When browsing a connection to load a table, set the Data Type Mapping Set to the new Custom
SQL Server to Teradata set. This can be set on the List Sources Tables Connection Dialog or on the
Connection Screen.

• As the table is dragged and dropped to the middle pane, RED will prompt to have the new datatype
mapping defined.

1055

• In the example below, just before loading the table, users can map the unknown geography SQL
Server datatype mapping to a varchar(30) in Teradata.

1056

• Clicking the Save to Set check-box in the Data Type mapping screen above will save the mapping to
the custom set that was used for loading the table.

1057

To view the column context menu, click on an object in the left pane to display the columns in the
middle pane. When positioned on a column in the middle pane, right-click on the column to bring up
the menu.

In This Chapter

Properties ... 1059
Change Column(s) .. 1062
Add Column.. 1064
Duplicate Column .. 1065
Delete Column .. 1067
Re-space Order Number ... 1068
Impact .. 1069
Sync Column order with database .. 1071
Send Columns to Another Object ... 1072

C h a p t e r 4 2

Column Context Menu

1059

Properties
To display the column Properties, right-click on a column in the middle pane and select Properties.

Edit any field as required and then click OK to close.

1060

Warning: WhereScape RED does not support the following characters in Column Names:

- leading and trailing white spaces
- internal white spaces
- symbols other than #, $ and _

If users attempt to enter any of the above characters in Column Names, the following dialog will be
displayed, advising users to review changes made by RED to correct any unsupported column name

1061

characters:

Note: There is a variation in column Properties, depending on the object type.

For Dimension tables, see Dimension Column Properties (on page 303).
For Stage tables, see Stage Table Column Properties (on page 331).
For Model tables, see Model Column Properties (see "Model Table Column Properties" on page 471).
For Data Store tables, see Data Store Column Properties (on page 371).
For EDW 3NF tables, see EDW 3NF Column Properties (see "EDW 3NF Table Column Properties" on
page 395).

1062

Change Column(s)
To change the properties for multiple columns, right-click on a column in the middle pane and select
Change Column(s).

To change a column property, you first need to select the relevant checkboxes on the left. Each
checkbox, when selected, allows you to change the value for that field in the column properties.

1063

In the Original Value column, select the value/s to be changed.

• Choosing (All) will change the selected property for all of the columns in the table.

• Choosing (Selected) will change the selected property for the selected column in the table.

• Choosing (Empty) will change the selected property for all of the columns where that property field
is empty. This option is only available if there is a column where this property is empty.

• Choosing one of the other options will change the selected property for all the columns in the table
having that value.

Note: (Selected) is the default for the Original Value column.

In the New Value column, select the new value to be assigned; or key in the new value.

1064

Note: When editing the property Column Source Table, selecting the Update matched columns only
check-box will validate that the selected column name exists in the new source table. If it does not exist,
then the update will not take place.

Add Column
To add a column, right-click on one of the columns in the middle pane and select Add Column.

Enter the details to define a new column and click OK.

1065

Duplicate Column
To duplicate/copy a column, right-click on one of the columns in the middle pane and select Duplicate
Column.

1066

Change the Column Name and the Column Title and any other properties to define a new column and
click OK.

1067

Delete Column
To delete a column, right-click on one of the columns in the middle pane and select Delete Column.

Click Yes to continue with the delete.

1068

Re-space Order Number
To re-space the column order, right-click on any column in the middle pane and select Respace Order
Number.

The Column Order number for each column will be adjusted so that the column order numbers are
evenly spaced.

1069

Impact
To display a Track Back Report, right-click on a column in the middle pane and select Impact > Track
Back Report.

1070

The report will be displayed in the bottom middle pane. This report lists the origins of the selected
column. See Track Back Report (see "Column Track-Back" on page 805).

1071

To display a Track Forward Report, right-click on a column in the middle pane and select Impact >
Track Forward Report.

The report will be displayed in the bottom middle pane. This report lists the columns derived from the
selected column. See Track Forward Report (see "Column Track-Forward" on page 807).

1072

Sync Column order with database
To synchronize the metadata's column order to match the same order in the physical table in the
database:

• Right-click on one of the columns in the middle pane and select Sync the column order with the
database.

This will reorder the metadata columns to match the column order in the database table.

1073

Send Columns to Another Object
To send/copy columns to another object, right-click on a column in the middle pane and select Send
Columns To Another Object.

Click on the destination table in the left pane, then right-click in the middle pane and select Add
Columns From Another Object.

1074

The columns will be added to the destination table using the same functionality and settings as drag and
drop.

1075

1076

In This Chapter

Using Database Function Sets .. 1077
Maintaining Database Function Sets ... 1080
Loading Database Function Sets .. 1103
Exporting Database Function Sets ... 1106

C h a p t e r 4 3

Database Functions

1077

Using Database Function Sets
Database function sets contain a list of functions and operators that can be used for building
transformations. These function sets may be created, edited, deleted, imported and exported using the
Database Functions options on the Tools menu.

Column Transformation Properties Dialog

A drop-down list allows the user to select which set of functions are to be displayed in the tree view
when creating a transformation on a column of a table.

1078

Transformation Definition Dialog

A drop-down list allows the user to select which set of functions are to be displayed in the tree view
when creating a re-usable transformation in Tools/Define Re-Usable Transformations...

1079

Connection Properties Dialog

In the Connection Properties dialog, when the Data Warehouse check-box is selected, a drop-down list
Default Transform Function Set is displayed. This is the default set that will be selected in the
transformation dialogs above.

1080

Maintaining Database Function Sets
To maintain the database function sets, select Tools/Database Functions/Maintain Database
Functions...

1081

The following dialog is displayed.

Select a database function set from the Function Set drop-down list.

1082

To create a database function set, see Creating a New Database Function Set (on page 1083)

To copy a database function set, see Copying a Database Function Set (on page 1086)

To edit a database function set, see Editing a Database Function Set (on page 1089)

To delete a database function set, see Deleting a Database Function Set (on page 1101)

1083

Creating a New Database Function Set
To create a new database function set, select Tools/Database Functions/Maintain Database
Functions...

Click on the New button.

1084

Enter a Function Set Name and select a Database from the drop-down list. Click OK.

Function Set Name

Enter a unique function set name.

Note: The function set name may not contain the phrase "Standard Functions" as this is reserved for
WhereScape supplied function sets.

1085

Database

Select the database from the drop-down list or type in the name of the database if not already in the list.
This field is mandatory.

1086

Copying a Database Function Set
To copy an existing database function set, select Tools/Database Functions/Maintain Database
Functions...

Select a Function Set from the drop-down list and click on the Copy button.

1087

Enter the new Function Set Name and select a Database from the drop-down list. Click OK.

Function Set Name

Enter a unique function set name.

Note: The function set name may not contain the phrase "Standard Functions" as this is reserved for
WhereScape supplied function sets.

1088

Database

Select the database from the drop-down list or type in the name of the database if not already in the list.
This field is mandatory.

1089

Editing a Database Function Set
To edit a database function set, select Tools/Database Functions/Maintain Database Functions...

Select a database function set from the Function Set drop-down list.

1090

On the right is a group of buttons used to maintain the list of functions in a function set. These buttons
are not available for standard function sets.

To add a new function to the database function set:

Click on the New button on the right.

1091

Enter the details for the new function and click OK.

1092

Function Name

This field is mandatory and must be unique within the group.

Group

This field is mandatory. Select a group from the drop-down list or add a new group name.

Description

Enter a description for the function.

Syntax

Enter the syntax for the function.

Model

This field is mandatory. This is the text that will be pasted into the transformation/ model fields when
the function is selected.

1093

Default Column

This is the text that will automatically be highlighted when the function is used in the
transformation/model dialogs. To set the default column, highlight it in the model field and click the
Default Column button. The default column will now show in red in the Model field.

Clear Default Column

Click this button to clear the default column.

To copy an existing function in the database function set:

Select the function and then click on the Copy button on the right.

1095

Enter a new Function Name and change any other details; then click OK.

To edit an existing function in the database function set:

Select the function and then click on the Edit button on the right.

1096

Change any fields as required and then click OK.

1097

Note: A function can also be edited by double-clicking on the function.

1098

To delete an existing function in the database function set:

Select the function and then click on the Delete button.

Click Yes to confirm the delete.

1099

To move a function in the database function set up or down in the list:

Select a function and then click on the Move Up button on the right to move the function up in the
function list, within its group; else click on the Move Down button on the right to move the function
down in the function list, within its group.

1100

To move a group of functions in the database function set up or down in the list:

Using the Group column, select any function in a particular group and then click on the Move Up button
under the Groups heading on the right to move the function group up in the function list. Similarly, use
the Move Down button under the Groups heading to move a function group down in the function list.

1101

Deleting a Database Function Set
To delete a database function set, select Tools/Database Functions/Maintain Database Functions...

Select a Function Set from the drop-down list and click on the Delete button.

1102

Note: The Delete button is disabled for standard function sets.

Click Yes to confirm the delete.

When all functions are deleted, the function set ceases to exist.

1103

Loading Database Function Sets
To load a database function set, select Tools/Database Functions/Load Database Functions...

The following dialog is displayed. Select the xml file to load the database functions. By default RED
expects the xml files to be in ProgramData\WhereScape\Work

1104

The xml file is validated using the schema definition file at <install directory>\Administrator\Function
Sets\Database Function Set.xsd

If a function set containing the phrase Standard Function is loaded, a warning is displayed:

If an existing function set (not a standard set) is about to be overwritten, a warning is displayed:

1105

A message is displayed in the results pane.

1106

Exporting Database Function Sets
To export Database Function Sets, select Tools/Database Functions/Export Database Functions...

Select the Function Set to export from the drop-down list. Click OK.

By default, RED exports the xml file to ProgramData\WhereScape\Work, but this can be changed.
Change the File name if necessary and click Save.

1107

1108

Gathering Statistics on a table will enable the underlying database to optimize each query based on the
statistics collected about the data that is being accessed.
Users can either chose to Define Statistics or to Refresh Full Statistics.
Gathering statistics can be performed on any table by selecting this option from a table's right click
menu, or to automate this process, by adding a statistics task to a job being processed by the scheduler
(Stats, Quick Stats, Analyze or Quick Analyze). For more information about adding statistics tasks to
jobs see Editing Tasks (see "Editing Tasks in a Job" on page 722).

In This Chapter

Define Statistics ... 1108

C h a p t e r 4 4

Gather Statistics

1109

Define Statistics
In a multiple database environment it is required not to have the database name hard-coded into the
COLLECT STATS command. When tables are deployed to a new environment using RED, these hard
coded database names are not translated to the database names in the target environment in the
COLLECT STATS commands. RED can automatically add the Database Name (storage location) prefix to
the table_name in the COLLECT STATS DDL.

1 Right click on any table object on the left pane to Gather Statistics.

2 Find Gather Statics on the drop-down menu.

3 Options allow choosing either to Define Statistics or to Refresh Full Statistics.

4 Select Gather Statistics -> Define Statistics.

5 On the Define Statistics Collection dialog, enter the "COLLECT STATS dbname.tablename
COLUMN(column_name,);" command by using $OBJECT$ COLUMN (table_name).

1110

6 Click Execute if adding the DDL statement for the first time.

When the DDL is executed, RED substitutes the Database name from the Storage Properties of the
object. This improves the portability of objects between environments.

7 Click OK on the Define Statistics Collection dialog to close it.

8 Right-click on the table and select Refresh Full Statistics to manually refresh the statistics on that
table.

9 To automate gathering statistics on a table, users can add a statistics task to a job to be processed by
the scheduler. For more information about adding statistics tasks to jobs see Editing Tasks (see
"Editing Tasks in a Job" on page 722).

	Overview
	Overview of WhereScape RED
	How to use this Guide

	Design
	Objects and Windows
	Object Types
	Working with Objects
	Object Check-Outs and Check-Ins
	Re-Create Dialog

	Organizing Objects
	Adding Objects to Projects
	Removing Objects from Projects
	Using Project/Object Maintenance
	Adding Projects to Groups
	Removing Projects from Groups
	Moving Projects within Groups
	List Projects Memberships for an Object(s)

	Windows and Panes
	Builder Window
	Scheduler Window
	Diagram Window
	Procedure Editor Window

	Export Middle Pane Output
	Find Function

	Tutorials
	Default Settings
	Settings - Options
	Settings - Repository Identification
	Settings - Repository Privacy Settings
	Settings - Object Types
	Object Type Availability
	Object Type Names
	Object Type Ordering
	Object Type End User Setting
	Object Type Icon
	Object Type Color
	Object Sub Types

	Settings - Global Naming Conventions
	Case Conversion
	Global Naming of Tables
	Global Naming of Indexes
	Global Naming of Key Columns
	Global Naming of Procedures

	Settings - DSS Tables and Columns
	DSS Tables
	DSS Columns

	Settings - Check-Out and Check-In
	Code Generation
	General
	Default Update Procedure Options

	Settings - Storage
	Target Location
	Table Storage
	Default Optional CREATE Clause
	Index Type

	Settings - Versioning
	Settings - Documentation
	Settings - Other

	Settings - User Preferences
	Settings - Common
	Look and Feel
	General
	Code Editor
	Confirmation Prompts
	Diagrams
	Property Grids

	Local Naming Conventions
	General
	Local Naming of Tables
	Local Naming of Key Columns
	Local Naming of Indexes

	Local Paths
	Outputs
	Other

	Settings - Current Repository
	Look and Feel

	Settings - Language Options

	Parameters
	Connections
	Connection Types
	Database - Data Warehouse/Metadata Repository
	General
	Source System
	Big Data Adapter Settings
	Database Credentials
	Other
	When Connection is an OLAP Data Source
	Target Table Location [For target enabled licenses]

	Database
	General
	Source System
	Database Credentials
	Other
	Target Table Location [For target enabled licenses]

	ODBC
	General
	ODBC
	Big Data Adapter Settings
	Credentials
	Other

	Windows
	General
	Windows Host
	Credentials
	Other

	UNIX
	General
	UNIX/Linux Host
	Credentials
	Other

	Hadoop
	General
	Apache Hadoop
	Big Data Adapter Settings
	Credentials
	Other
	To test the drag and drop functionality
	Closing the Connection

	Microsoft Analysis Server 2005+
	Microsoft Analysis Server 2005+ - OLAP Cubes
	Microsoft Analysis Server 2005+ - Tabular Mode

	Browsing a Connection
	Connection Browse Properties

	Changing a Connection's Properties
	Reset Meta Database Connections
	Configuration Settings for BDA
	Configuring the BDA Server
	Big Data Adapter Settings

	Configuring your database for use by BDA
	Big Data Adapter Settings

	Table Properties
	Properties
	Rebuilding Update Procedures

	Storage
	Table Storage Screen - Teradata
	Location
	Table Storage Screen - Tabular
	Location
	Other
	Processing

	Bulk Table Storage Change

	Override Create DDL
	Source
	Documentation Fields
	Documentation Fields Screen

	Notes

	Loading Data
	Choosing the Best Load Method
	Load Drag and Drop
	Data Type Mappings

	Database Link Load
	Database Link Load - Properties
	Database Link Load - Source Screen

	ODBC Based Load
	Native ODBC Based Load
	Native ODBC Based Load - Source Screen
	File Actions
	Native Loads using UNIX and LINUX

	TPT Load
	TPT Load - Source Screen
	Cleanup after TPT Load Failure

	TPT UNIX/Linux Script Load
	TPT UNIX Script Load - Properties

	SSIS Loader
	Loading Data into RED Load Tables using SSIS

	Flat File Loads
	Loading Data from Flat Files using SSIS
	Flat File Load - Source Screen

	Source File Details
	Trigger File Details
	Load Configuration
	Archived File Details
	SQL Server Integration Services (SSIS)
	Script based loads

	XML File Load
	External Load
	Apache Sqoop Load
	Handling Missing Source Columns
	Load Table Transformations
	Post-Load Procedures

	Changing Load Connection and Schema

	Dimensions
	Dimensions Overview
	Building a Dimension
	Drag and Drop
	Dimension Properties
	Create and Load
	Deleting and Changing columns
	Adding additional columns
	Manually adding previous value columns
	Create the table

	Generating the Dimension Update Procedure
	Generating a Procedure
	Processing tab
	Source tab

	Joining multiple source tables
	Using Change Detection - Change Detection Tab
	Building and Compiling the Procedure

	Indexes
	Dimension Artificial Keys
	To allow for non identity surrogate keys on Dimensions:

	Dimension Column Properties
	Changing a Column Name

	Dimension Column Transformations
	Dimension Hierarchies
	Adding a Dimension Hierarchy
	Using a Maintained Hierarchy

	Snowflake
	Creating a Snowflake

	Dimension Language Mapping

	Staging
	Building the Stage Table
	Generating the Staging Update Procedure
	Generating a Procedure
	Procedure type
	Locking Request Modifier
	Source Table Mapping
	Parameter selection
	Model/Dimension Joins
	Model history information
	Building and Compiling the Procedure

	Stage Table Custom Procedure
	Stage Table Column Properties
	Stage Table Column Transformations
	Permanent Stage Tables
	Generating the Permanent Staging Update Procedure
	Set Merge Procedure

	Data Store Objects
	Data Store Objects Overview
	Building a Data Store Object
	Drag and Drop
	Data Store Object Properties
	Create and Load
	Deleting and Changing columns
	Adding additional columns
	Create the table

	Generating the Data Store Update Procedure
	Generating a Procedure
	Processing tab
	Source tab

	Building and Compiling the Procedure

	Data Store Artificial Keys
	To manually add an extra artificial key column to a Data Store table:
	Allowing for non identity surrogate keys on Data Store tables:

	Data Store Column Properties
	Data Store Column Transformations

	EDW 3NF Tables
	EDW 3NF Tables Overview
	Building EDW 3NF Table
	Generating the EDW 3NF Update Procedure
	Generating a Procedure
	Processing tab
	Source tab
	Indexes

	Converting an existing EDW 3NF Table to a EDW 3NF History Table

	EDW 3NF Table Artificial Keys
	To manually add an extra artificial key column to an EDW 3NF table:
	Artificial keys set via a non identity column:
	Allowing for non identity surrogate keys on EDW 3NF tables:

	EDW 3NF Table Column Properties
	EDW 3NF Table Column Transformations

	Data Vaults
	Data Vault Functions and Features
	Load Table Meta Data Columns
	Data Vault Stage Table
	Hash Key Generation Wizard
	Hub, Link and Satellite Creation Wizard
	Data Vault Templates
	Data Vault Settings
	Object Types settings:
	Global Naming Conventions settings:
	DSS Tables and Columns settings:

	Table Column Properties
	Maintain Hash Key Columns

	Building Data Vault Objects
	Creating Load Tables
	Creating Data Vault Stage Tables
	Generating Update Procedures for the Data Vault Stage Table
	Creating the Hub, Link and Satellite Tables
	Creating the Hub table
	Creating the Link table
	Creating the Satellite table

	Generating Update Procedures for Hub, Link and Satellite Tables
	Hub table
	Link and Satellite Tables

	Custom Objects
	Model Tables
	Model Table Overview
	Building a Model Table
	Drag and Drop
	Model Table Properties
	Create and Load
	Deleting and Changing columns
	Adding additional columns
	Create the table

	Generating the Model Table Update Procedure
	Generating a Procedure
	Business Key definition
	Locking Request Modifier
	Source Table Mapping
	Building and Compiling the Procedure

	Model Table Artificial Keys
	Model Table Custom Procedure
	Model History Tables
	Generating History Table Update Procedures
	Model Table Column Properties
	Model Table Column Transformations

	Fact Tables
	Detail Fact Tables
	Creating Detail Fact Tables
	Generating the Detail Fact Update Procedure
	Generating a Procedure
	Define Fact Procedure Type and Options
	Template
	Define Fact Business Key Columns
	Source Tab

	Fact Table Column Properties
	Fact Table Column Transformations
	Fact Table Language Mapping

	Aggregation
	Creating an Aggregate Table
	Creating an Aggregate Summary Table
	Aggregate Table Column Properties
	Aggregate Table Column Transformations

	Join Indexes
	Creating a Join Index

	Views
	One to One Views
	Model Views for Aliasing
	Compound Views, Facts and Dimensions
	Dimension View Hierarchies
	Adding a Dimension View Hierarchy

	Creating a Custom View
	View Aliases

	Analysis Services OLAP Cubes
	OLAP Overview
	OLAP Defining the Data Source for the OLAP Cube
	OLAP Defining an OLAP Cube
	Building a New OLAP Cube
	Setting Cube Properties
	OLAP Inspecting and Modifying Advanced Cube Properties
	OLAP Creating an OLAP Cube on the Analysis Services Server
	OLAP Cube Objects
	OLAP Cube Properties
	OLAP Cube Measure Groups
	OLAP Cube Measure Group Processing/Partitions
	OLAP Cube Measure Group Partitions
	OLAP Cube Measures
	OLAP Cube Calculations
	OLAP Cube Key Performance Indicators
	OLAP Cube Actions
	OLAP Cube Dimensions
	OLAP Cube Measure Group Dimensions

	OLAP Dimension Objects
	OLAP Dimension Overview
	OLAP Dimension Attributes
	OLAP Dimension Attribute Relationships
	OLAP Dimension Hierarchies
	OLAP Dimension User Defined Hierarchy Levels

	OLAP Changing OLAP Cubes
	OLAP Retrofitting an OLAP Object

	Transformations
	Column Transformations
	Column Transformation Properties
	Load Table Column Transformations
	Database Link During Load Transformations
	File During Load Transformations
	After Load Transformations

	Teradata User Defined Functions
	Teradata UDF Example

	Re-usable Transformations
	Creating a New Re-usable Transformation
	Specify the Name of the Transformation
	Enter Re-usable Transformation Metadata
	Define the Transformation Model
	Completed Re-usable Transformation

	Changing a Re-usable Transformation
	Applying Changes to Dependant Transformations

	Using Re-usable Transformations

	Exporting Data
	Building an Export Object
	File Attributes
	File Attributes - SSIS Exports

	Export File Definition
	SQL Server Integration Services (SSIS)
	Export Column Properties
	Script based Exports

	Procedures and Scripts
	Procedure Generation
	Procedure Editing
	Procedure Loading and Saving
	Procedure Comparisons
	Procedure Compilation
	Procedure Running
	Procedure Syntax
	Procedure Properties
	Macros
	BTEQ Scripts
	Script Generation
	Script Generation (Windows/Teradata)
	24.11.1.1 Windows PowerShell Scripts
	Via the WhereScape RED Script Editor
	Via the Stub Template

	Script Editing
	Script Testing
	Script Syntax
	Script Environment Variables
	Calling a Batch File from a Script
	Scheduling Scripts
	Manually created scripts

	Templates
	Template Properties
	Template Editor
	Evaluating an API Outline Template

	Template Usage
	Windows PowerShell Templates
	PowerShell Template (wsl_common_powershellscript_stub):

	Scheduler
	Scheduler Options
	Auto
	Tools
	Select Job Report Fields

	Scheduler States
	Scheduling a Job
	Working with Jobs
	Creating a Job
	Editing a Job
	Editing Tasks in a Job
	Editing Task Dependencies
	Show Dependencies Diagram
	Inserting a Copy of a Job
	Deleting a Job
	Deleting Job Logs
	Starting a Job
	Halting a Job
	Aborting a Job
	Restarting a Job
	Creating an Application from a Job

	Stand Alone Scheduler Maintenance
	SQL to return Scheduler Status
	Reset Columns in Job and Task View
	Stopping a Linux/UNIX Scheduler from within RED

	Indexes
	Index Definition

	Documentation and Diagrams
	Creating Documentation
	Batch Documentation Creation
	Reading the Documentation
	Diagrams
	Types of Diagrams
	Schema Diagram
	Source Diagram
	Joins Diagram
	Links Diagram
	Impact Diagram
	Dependency Diagram

	Working with Diagrams
	Creating a Job from a Diagram
	Creating an Application from a Diagram
	Creating a Project from a Diagram

	Reports
	Dimension-Fact Matrix
	OLAP Dimension-Cube Matrix
	Model Views for a Specified Model
	Column Reports
	Columns without Comments
	All Column Transformations
	Re-Usable Column Transformations
	Column Track-Back
	Column Track-Forward

	Table Reports
	Tables without Comments
	Load Tables by Connection
	Export Objects by Connection
	Records that failed a Dimension Join
	External Source Tables/files

	Procedure Reports
	Modified Procedures
	Custom Procedures

	Index Reports
	Modified Indexes

	Object Reports
	Objects-Projects Matrix
	Modified Objects (excluding indexes)
	Objects Checked-out
	Loaded or Imported Objects

	Job Reports
	Object-Job Matrix
	Jobs with an Object
	Tasks of a Job

	Operational Reports
	Object Performance History
	Job Performance History
	Task Performance History

	Validate
	Validate Meta-data
	Validate Workflow Data
	Validate Table Create Status
	Validate Load Table Status
	Validate Procedure Status
	List Meta-data Tables not in the Database
	List Database Tables not in the Meta-data
	List Tables with no related Procedures or Scripts
	List Procedures not related to a Table
	Compare Meta-data Repository to another
	Compare Meta-data Indexes to Database
	Teradata: View of Model Validate
	List Duplicate Business Key Columns
	Query Data Warehouse Objects

	Promoting Between Environments
	Applications
	Application Creation

	Creating an Application
	Define an Application distribution
	Output Directory
	Objects to Add/Replace
	Objects to Delete
	Application Loading
	Creating and Loading Applications from the Command Line

	Importing Object Metadata
	Importing Language Files
	Data Warehouse Testing

	Backing Up and Restoring Metadata
	Backup using DB Routines
	Restoring DB Backups
	Unloading Metadata
	Loading an Unload

	Altering Metadata
	Validating Tables
	Validating Source (Load) Tables
	Validating Procedures
	Altering Tables
	Validating Indexes
	Recompiling Procedures

	Callable Routines
	Introduction to Callable Routines
	Callable Routines API
	Callable Routines per RDBMS
	Callable Routines Names Qualifier
	Callable Routines Common Input
	Callable Routines Invocation
	Alternative Invocation Methods
	Invocation via ODBC
	Invocation via the Command-Line

	Ws_Api_Glossary
	Ws_Connect_Replace
	Ws_Job_Abort
	Ws_Job_Clear_Archive
	Ws_Job_Clear_Logs
	Ws_Job_Clear_Logs_By_Date
	Ws_Job_Create
	Ws_Job_CreateWait
	Ws_Job_Dependency
	Ws_Job_Release
	Ws_Job_Restart
	Ws_Job_Schedule
	Ws_Job_Status
	Ws_Load_Change
	Ws_Maintain_Indexes
	Ws_Version_Clear
	WsParameterRead
	WsParameterReadF
	WsParameterReadG
	WsParameterWrite
	WsWrkAudit
	WsWrkAuditBulk
	WsWrkError
	WsWrkErrorBulk
	WsWrkTask

	Ws_admin_v Views
	Ws_admin_v_audit
	Ws_admin_v_error
	Ws_admin_v_sched
	Ws_admin_v_task

	Retrofitting
	Migrating the Data Warehouse Database Platform
	Importing a Data Model
	Re-Targeting Source Tables
	Retro Column Properties
	Retro Column Properties Screen
	Retro Column Transformations

	Integrating WhereScape RED into an Existing Warehouse
	Rebuilding
	Integrating
	Integrating, Host Scripts
	Integrating, Selecting a Table Type
	Integrating, Questions
	Integrating, Procedures
	Integrating, Views
	Integrating, WhereScape Tables

	Relationship Maintenance
	Add Relationship
	List Relationships
	Generate Relationships

	Upgrading RED
	Login Checks
	Data Type Mappings
	Using Data Type Mapping Sets
	Data Warehouse Connection Properties Dialog
	Non-Data Warehouse Connection Properties Dialog

	Maintaining Data Type Mapping Sets
	Creating a New Data Type Mapping Set
	Copying a Data Type Mapping Set
	Editing a Data Type Mapping Set
	Deleting a Data Type Mapping Set

	Loading Data Type Mapping Sets
	Exporting Data Type Mapping Sets
	Data Type Mapping Examples

	Column Context Menu
	Properties
	Change Column(s)
	Add Column
	Duplicate Column
	Delete Column
	Re-space Order Number
	Impact
	Sync Column order with database
	Send Columns to Another Object

	Database Functions
	Using Database Function Sets
	Column Transformation Properties Dialog
	Transformation Definition Dialog
	Connection Properties Dialog

	Maintaining Database Function Sets
	Creating a New Database Function Set
	Copying a Database Function Set
	Editing a Database Function Set
	To add a new function to the database function set:
	To copy an existing function in the database function set:
	To edit an existing function in the database function set:
	To delete an existing function in the database function set:
	To move a function in the database function set up or down in the list:
	To move a group of functions in the database function set up or down in the list:

	Deleting a Database Function Set

	Loading Database Function Sets
	Exporting Database Function Sets

	Gather Statistics
	Define Statistics

