

WhereScape Red Teradata

User Guide

8.1.1.0

WhereScape RED Teradata User Guide

The software described in this book is furnished under a license agreement and may be used only
in accordance with the terms of the agreement.

Copyright Notice

Copyright © 2002-2018 WhereScape Software Limited. All rights reserved. This document may be
redistributed in its entirety and in this electronic or printed form only without permission; all
other uses of this document and the information it contains require the explicit written
permission of WhereScape Software limited.

Due to continued product development, this information may change without notice.
WhereScape Software Limited does not warrant that this document is error-free.

Trademarks

WhereScape and WhereScape RED are trademarks or registered trademarks of WhereScape
Software Limited. Other brands or product names are trademarks or registered trademarks of
their respective companies.

WhereScape USA, Inc

1915 NW AmberGlen Parkway

Suite 400, Beaverton
Oregon 97006

United States

T: 503-466-3979

F: 503-466-3978

WhereScape Limited

P.O.Box 56569, Auckland 1446

12-16 Tapora Street
Quay Park

Auckland 1010, New Zealand

T: +64-9-358-5678

F: +64-9-358-5679

WhereScape Europe

450 Brook Drive

Green Park

Reading RG2 6UU

United Kingdom

T: +44-118-914-4509

F: +44-118-914-4508

WhereScape Asia Pte. Ltd

300 Tampines Avenue 5

#09-02 Singapore 529653

T: +65-6679-5728

i

Contents

Overview 1

Overview of WhereScape RED 2
How to use this Guide 5

Design 7

Objects and Windows 9

Object Types 10
Working with Objects 15

Connections 15
Load Tables 17
Dimension Tables 22
Data Store Tables 25
EDW 3NF Tables 27
Stage and Aggregate Tables 28
OLAP Cubes 29
OLAP Dimensions 32
Procedures 35
Scripts 37
Indexes 38
Views 39
Join Indexes 40
Exports 41
Source Mapping 42
Object Check-Outs and Check-Ins 44
Re-Create Dialog 49

Organizing Objects 51
Adding Objects to Projects 54
Removing Objects from Projects 56
Using Project/Object Maintenance 57
Adding Projects to Groups 58
Removing Projects from Groups 59
Moving Projects within Groups 59
List Projects Memberships for an Object(s) 59

Windows and Panes 60
Builder Window 61
Scheduler Window 66
Procedure Editor Window 69

Export Middle Pane Output 71
Find Function 73

ii

Tutorials 75

Default Settings 77

Settings - Options 78
Settings - Repository Identification 79
Settings - Repository Privacy Settings 80
Settings - Object Types 83

Object Type Availability 83
Object Type Names 84
Object Type Ordering 85
Object Type End User Setting 86
Object Type Icon 87
Object Type Color 90
Object Sub Types 91

Settings - Global Naming Conventions 93
Case Conversion 93
Global Naming of Tables 94
Global Naming of Source Mappings 95
Global Naming of Indexes 96
Global Naming of Key Columns 97
Global Naming of Procedures 99

Settings - DSS Tables and Columns 100
DSS Tables 102
DSS Columns 103
DSS Columns for Custom Targets 105

Settings - Check-Out and Check-In 107
Code Generation 108

General 108
Default Update Procedure Options 110

Settings - Storage 112
Target Usage 112
Target Location 113
Table Storage 116
Default Optional CREATE Clause 117
Index Type 118

Settings - Metadata Versioning 119
Settings - Documentation 120
Settings - Available Load Types 121
Settings - Other 122

Settings - User Preferences 123
Settings - Common 124

Look and Feel 124
Local Naming Conventions 130
Local Paths 135
Outputs 136
Other 138

Settings - Current Repository 139
Look and Feel 139

iii

Settings - Language Options 140

Parameters 143

Connections 145

Connection Types 147
Database - Data Warehouse/Metadata Repository 148
Database 155
ODBC 159
Windows 164

Other 166
UNIX 167
Hadoop 172
Microsoft Analysis Server 2005+ 178

Microsoft Analysis Server 2005+ - OLAP Cubes 179
Microsoft Analysis Server 2005+ - Tabular Mode 181

Browsing a Connection 184
Connection Browse Properties 186

Changing a Connection's Properties 188
Reset Meta Database Connections 189
Connection Settings for BDA 190

Configuring the BDA Server 191
Big Data Adapter Settings 192

Configuring your database for use by BDA 192
Big Data Adapter Settings 193

Connection Extended Properties 195

Table Properties 197

Properties 198
Rebuilding Update Procedures 200

Storage 202
Table Storage Screen - Teradata 203

Location 203
Storage 204
Other 205

Table Storage Screen - Tabular 205
Location 206
Other 206
Processing 206

Bulk Table Storage Change 206
Override Create DDL 209
Source 210
Documentation Fields 210

Documentation Fields Screen 211
Table Extended Properties 212

iv

Notes 213

Loading Data 215

Choosing the Best Load Method 217
Load Drag and Drop 218

Data Type Mappings 220
Database Link Load 221

Database Link Load - Properties 221
Database Link Load - Source Screen 223

ODBC Based Load 225
Native ODBC Based Load 225

Native ODBC Based Load - Source Screen 226
File Actions 228
Native Loads using UNIX and LINUX 231

TPT Load 233
TPT Load - Source Screen 235
Cleanup after TPT Load Failure 238

TPT UNIX/Linux Script Load 240
TPT UNIX Script Load - Properties 241

SSIS Loader 244
Loading Data into RED Load Tables using SSIS 245

Flat File Loads 253
Loading Data from Flat Files using SSIS 259
Flat File Load - Source Screen 268
Script based loads 275

XML File Load 277
External Load 281
Apache Sqoop Load 281
Handling Missing Source Columns 288
Load Table Transformations 290

Post-Load Procedures 290
Changing Load Connection and Schema 291

Dimensions 293

Dimensions Overview 294
Building a Dimension 295
Generating the Dimension Update Procedure 303

Source tab 308
Dimension Artificial Keys 314
Dimension Column Properties 316
Dimension Column Transformations 325
Dimension Hierarchies 326

Adding a Dimension Hierarchy 327
Using a Maintained Hierarchy 329

Snowflake 330

v

Creating a Snowflake 331
Dimension Language Mapping 332

Staging 333

Building the Stage Table 334
Generating the Staging Update Procedure 337

Generating a Procedure 337
Procedure type 337
Locking Request Modifier 339
Source Table Mapping 339
Parameter selection 342
Dimension Joins 343
Dimension history information 344
Building and Compiling the Procedure 345

Stage Table Custom Procedure 345
Stage Table Column Properties 345
Stage Table Column Transformations 351
Permanent Stage Tables 352
Generating the Permanent Staging Update Procedure 352
Set Merge Procedure 358

Data Store Objects 364

Data Store Objects Overview 365
Building a Data Store Object 367

Drag and Drop 367
Data Store Object Properties 367
Create and Load 368
Deleting and Changing columns 369
Adding additional columns 369
Create the table 370

Generating the Data Store Update Procedure 371
Generating a Procedure 371

Processing tab 371
Source tab 375

Building and Compiling the Procedure 376
Data Store Artificial Keys 378
Data Store Column Properties 382
Data Store Column Transformations 387

EDW 3NF Tables 388

EDW 3NF Tables Overview 389
Building EDW 3NF Table 391
Generating the EDW 3NF Update Procedure 395

Processing tab 395

vi

Source tab 399
Indexes 400

Converting an existing EDW 3NF Table to a EDW 3NF History Table 401
EDW 3NF Table Artificial Keys 403
EDW 3NF Table Column Properties 406
EDW 3NF Table Column Transformations 411

Data Vaults 413

Data Vault Functions and Features 414
Load Table Meta Data Columns 414
Data Vault Stage Table 416
Hash Key Generation Wizard 417
Hub, Link and Satellite Creation Wizard 418
Data Vault Templates 419
Data Vault Settings 420

Object Types settings: 420
Global Naming Conventions settings: 421
DSS Tables and Columns settings: 422

Table Column Properties 423
Maintain Hash Key Columns 425

Building Data Vault Objects 426
Creating Load Tables 426
Creating Data Vault Stage Tables 428
Generating Update Procedures for the Data Vault Stage Table 437
Creating the Hub, Link and Satellite Tables 440

Creating the Hub table 440
Creating the Link table 444
Creating the Satellite table 448

Generating Update Procedures for Hub, Link and Satellite Tables 452
Hub table 452
Link and Satellite Tables 454

Changing the Data Vault Hash Key Function in WhereScape RED 6.9.1.0 and
above 455

Custom Objects 459

Model Tables 461

Model Table Overview 462
Building a Model Table 464

Drag and Drop 464
Model Table Properties 465
Create and Load 466
Deleting and Changing columns 467
Adding additional columns 467
Create the table 468

vii

Generating the Model Table Update Procedure 469
Generating a Procedure 469
Business Key definition 469
Locking Request Modifier 471
Source Table Mapping 472
Building and Compiling the Procedure 474

Model Table Artificial Keys 475
Model Table Custom Procedure 475
Model History Tables 476
Generating History Table Update Procedures 478
Model Table Column Properties 481
Model Table Column Transformations 486

Fact Tables 487

Detail Fact Tables 488
Creating Detail Fact Tables 488
Generating the Detail Fact Update Procedure 490
Generating a Procedure 490
Define Fact Procedure Type and Options 490
Template 491
Define Fact Business Key Columns 491

Source Tab 494
Fact Table Column Properties 495
Fact Table Column Transformations 500
Fact Table Language Mapping 501

Aggregation 503

Creating an Aggregate Table 504
Creating an Aggregate Summary Table 504
Aggregate Table Column Properties 505
Aggregate Table Column Transformations 510

Join Indexes 511

Creating a Join Index 512

Views 515

One to One Views 516
Dimension Views for Aliasing 518
Compound Views, Facts and Dimensions 520

Dimension View Hierarchies 524
Adding a Dimension View Hierarchy 524

Creating a Custom View 526

viii

View Aliases 528

Analysis Services OLAP Cubes 531

OLAP Overview 532
OLAP Defining the Data Source for the OLAP Cube 533
OLAP Defining an OLAP Cube 535
Building a New OLAP Cube 535
Setting Cube Properties 538
OLAP Inspecting and Modifying Advanced Cube Properties 539
OLAP Creating an OLAP Cube on the Analysis Services Server 540
OLAP Cube Objects 541

OLAP Cube Properties 541
OLAP Cube Measure Groups 546
OLAP Cube Measure Group Processing/Partitions 548
OLAP Cube Measure Group Partitions 552
OLAP Cube Measures 554
OLAP Cube Calculations 557
OLAP Cube Key Performance Indicators 560
OLAP Cube Actions 563
OLAP Cube Dimensions 567
OLAP Cube Measure Group Dimensions 570

OLAP Dimension Objects 573
OLAP Dimension Overview 573
OLAP Dimension Attributes 577
OLAP Dimension Attribute Relationships 580
OLAP Dimension Hierarchies 582
OLAP Dimension User Defined Hierarchy Levels 584

OLAP Changing OLAP Cubes 586
OLAP Retrofitting an OLAP Object 588

Transformations 593

Column Transformations 594
Column Transformation Properties 595
Load Table Column Transformations 597

Database Link During Load Transformations 598
File During Load Transformations 600
After Load Transformations 601

Teradata User Defined Functions 602
Teradata UDF Example 603

Re-usable Transformations 605
Creating a New Re-usable Transformation 605

Specify the Name of the Transformation 606
Enter Re-usable Transformation Metadata 608
Define the Transformation Model 609
Completed Re-usable Transformation 610

ix

Changing a Re-usable Transformation 611
Applying Changes to Dependant Transformations 612

Using Re-usable Transformations 613

Exporting Data 614

Building an Export Object 615
File Attributes 619

File Attributes - SSIS Exports 622
Export File Definition 623
SQL Server Integration Services (SSIS) 623
Export Column Properties 624
Script based Exports 627

Procedures and Scripts 629

Procedure Generation 631
Procedure Editing 637
Procedure Loading and Saving 640
Procedure Comparisons 642
Procedure Compilation 643
Procedure Running 643
Procedure Syntax 644
Procedure Properties 645
Macros 647
BTEQ Scripts 647
Script Generation 647

Script Generation (Windows/Teradata) 648
Windows PowerShell Scripts 654

Script Editing 658
Script Testing 659
Script Syntax 659
Script Environment Variables 661
Calling a Batch File from a Script 667
Scheduling Scripts 669
Manually created scripts 671

Templates 673

Template Properties 675
Template Editor 677

Evaluating an API Outline Template 678
Template Usage 682

Windows PowerShell Templates 683

Scheduler 685

x

Scheduler Options 686
Auto 689
Tools 690

Select Job Report Fields 690
Scheduler States 691
Scheduling a Job 693
Working with Jobs 699

Creating a Job 701
Editing a Job 711
Editing Tasks in a Job 715
Editing Task Dependencies 722
Show Dependencies Diagram 727
Inserting a Copy of a Job 729
Deleting a Job 731
Deleting Job Logs 732
Starting a Job 734
Halting a Job 735
Aborting a Job 736
Restarting a Job 737
Creating an Application from a Job 742

Stand Alone Scheduler Maintenance 745
SQL to return Scheduler Status 748
Reset Columns in Job and Task View 749
Stopping a Linux/UNIX Scheduler from within RED 750

Indexes 753

Index Definition 754

Documentation and Diagrams 759

Creating Documentation 760
Batch Documentation Creation 763
Reading the Documentation 764
Diagrams 765

Types of Diagrams 765
Schema Diagram 767
Source Diagram 769
Joins Diagram 773
Links Diagram 774
Impact Diagram 775
Dependency Diagram 776

Working with Diagrams 778
Creating a Job from a Diagram 781
Creating an Application from a Diagram 783
Creating a Project from a Diagram 785

xi

Reports 787

Dimension-Fact Matrix 788
OLAP Dimension-Cube Matrix 789
Dimension Views for a Specified Dimension 790
Column Reports 791

Columns without Comments 791
All Column Transformations 793
Re-Usable Column Transformations 794
Column Track-Back 795
Column Track-Forward 797

Table Reports 799
Tables without Comments 799
Load Tables by Connection 801
Export Objects by Connection 802
Records that failed a Dimension Join 803
External Source Tables/files 805

Procedure Reports 806
Modified Procedures 806
Custom Procedures 807

Object Reports 808
Objects-Projects Matrix 808
Modified Objects (excluding indexes) 809
Objects Checked-out 811
Loaded or Imported Objects 812
Objects with Extended Properties 813

Job Reports 816
Object-Job Matrix 816
Jobs with an Object 818
Tasks of a Job 819

Operational Reports 821
Object Performance History 821
Job Performance History 822
Task Performance History 823

Validate 825

Validate Meta-data 826
Validate Workflow Data 826
Validate Table Create Status 826
Validate Load Table Status 827
Validate Procedure Status 827
List Meta-data Tables not in the Database 827
List Database Tables not in the Meta-data 828
List Tables with no related Procedures or Scripts 829
List Procedures not related to a Table 831

xii

Teradata: View of Model Validate 832
Query Data Warehouse Objects 833

Promoting Between Environments 835

Applications 836
Application Creation 837

Creating an Application 837
Define an Application distribution 837
Output Directory 838
Objects to Add/Replace 840
Objects to Delete 841

Application Loading 842
Creating and Loading Applications from the Command Line 843

Importing Object Metadata 843
Importing Language Files 845
Data Warehouse Testing 846

Backing Up and Restoring Metadata 851

Backup using DB Routines 852
Unloading Metadata 853
Loading an Unload 856

Altering Metadata 861

Validating Tables 862
Validating Source (Load) Tables 864
Validating Procedures 865
Altering Tables 866
Validating Indexes 867
Recompiling Procedures 867

Callable Routines 869

Introduction to Callable Routines 870
Callable Routines API 870
Callable Routines per RDBMS 872
Callable Routines Names Qualifier 873
Callable Routines Common Input 873
Callable Routines Invocation 874

Alternative Invocation Methods 875
Ws_Api_Glossary 877
Ws_Connect_Replace 879
Ws_Job_Abort 881
Ws_Job_Clear_Archive 882
Ws_Job_Clear_Logs 885

xiii

Ws_Job_Clear_Logs_By_Date 887
Ws_Job_Create 889
Ws_Job_CreateWait 893
Ws_Job_Dependency 897
Ws_Job_Release 900
Ws_Job_Restart 902
Ws_Job_Schedule 905
Ws_Job_Status 907
Ws_Load_Change 913
Ws_Maintain_Indexes 915
Ws_Version_Clear 918
WsParameterRead 921
WsParameterReadF 922
WsParameterReadG 923
WsParameterWrite 925
WsWrkAudit 926
WsWrkAuditBulk 929
WsWrkError 932
WsWrkErrorBulk 935
WsWrkTask 938

Ws_admin_v Views 941

Ws_admin_v_audit 942
Ws_admin_v_error 943
Ws_admin_v_sched 944
Ws_admin_v_task 944

Retrofitting 947

Migrating the Data Warehouse Database Platform 948
Importing a Data Model 957
Re-Targeting Source Tables 964
Retro Column Properties 966

Retro Column Properties Screen 970
Retro Column Transformations 971

Integrating WhereScape RED into an Existing Warehouse 973

Rebuilding 974
Integrating 975

Integrating, Host Scripts 976
Integrating, Selecting a Table Type 977
Integrating, Questions 978
Integrating, Procedures 981
Integrating, Views 982

xiv

Integrating, WhereScape Tables 982

Relationship Maintenance 983

Add Relationship 984
List Relationships 985
Generate Relationships 986

Upgrading RED 987

Login Checks 989

Data Type Mappings 991

Using Data Type Mapping Sets 992
Maintaining Data Type Mapping Sets 994

Creating a New Data Type Mapping Set 996
Copying a Data Type Mapping Set 1000
Editing a Data Type Mapping Set 1003
Deleting a Data Type Mapping Set 1006

Loading Custom Data Type Mapping Sets 1008
Exporting Custom Data Type Mapping Sets 1010
Custom Data Type Mapping Examples 1012

Column Context Menu 1019

Properties 1020
Change Column(s) 1023
Add Column 1025
Duplicate Column 1026
Delete Column 1027
Re-space Order Number 1028
Impact 1029
Sync Column order with database 1031
Send Columns to Another Object 1032

Database Functions 1035

Using Database Function Sets 1036
Column Transformation Properties Dialog 1036
Transformation Definition screen 1037
Connection Properties screen 1038

Maintaining Database Function Sets 1039
Creating a New Database Function Set 1041
Copying a Database Function Set 1043
Editing a Database Function Set 1045

xv

Deleting a Database Function Set 1056
Loading Database Function Sets 1058
Exporting Database Function Sets 1061

Gather Statistics 1063

Define Statistics 1063

Extended Properties 1065

Defining Extended Properties 1066
Creating an Extended Property Definition 1067

Variable Settings 1068
Scope Settings 1069

Maintaining Extended Property Definitions 1070
Extended Properties Value Assignment 1072

Setting Up Extended Property Values for a Connection 1072
Setting Up Extended Property Values for an Object 1073

Extended Properties Lookup 1073
Extended Properties Data Migration Between Repositories 1074

Exporting Extended Properties 1074
Loading Extended Properties 1076

Table and Column Comments 1079

Defining Table Comments 1080
Exporting Table Comments 1081
Loading Table Comments 1084
Defining Column Comments 1088
Exporting Column Comments 1089
Loading Column Comments 1093
Importing Comments from an External Source 1097
Viewing the Import/Export Logs 1099

Multi Source Processing 1101

Multi Source Functions and Features 1102
Source Mapping Object 1102
Source Mapping Tool 1103
Global Naming of Source Mappings 1104
Independent Execution of Update Procedures 1105
Table Column Properties 1106

Adding Source Mapping to Objects 1107
Drag and Drop 1109

Maintaining Source Column Mappings 1112
Generating Update Procedures for Source Mapping Objects 1116
Executing Update Procedures via Scheduler 1119

xvi

Reverting to Non Source Mapping Object 1122

1

WhereScape RED User Guide for Teradata

The WhereScape RED User Guide for Teradata is available either as online help, as a PDF, or in a
printed manual. The User Guide provides information on how to use WhereScape RED to build a
data warehouse.

This online help version of WhereScape RED's documentation is for RED 8.1.1.0, last updated
Wednesday, April 18, 2018.

In This Chapter

Overview of WhereScape RED .. 2
How to use this Guide ... 5

C h a p t e r 1

Overview

2

Overview of WhereScape RED
Traditionally data warehouses take too long to build and are too hard to change. WhereScape
RED is an Integrated Development Environment to support the building and managing of data
warehouses. It has the flexibility to enable you to build an entire enterprise data warehouse or
just the user facing views, aggregates and summaries.

In all cases, the core values of WhereScape RED are twofold: its rapid capabilities that enable
better data warehouses to be built, faster, and its integrated environment that simplifies
management.

As a data warehouse specific tool, WhereScape RED embodies a simple, pragmatic approach to
building data warehouses. With WhereScape RED you specify what you want to achieve by
dragging and dropping objects to create a meta view, and then let WhereScape RED do the heavy
lifting of creating the necessary tables, procedures, etc. Data warehouse wizards prompt for
additional information at critical points to provide the maximum value from the generated
objects.

Different data warehousing approaches including agile, prototyping and waterfall are supported
by WhereScape RED. Agile developers will find specific functionality has been included to
support common agile practices. For developers who are new to data warehousing, or are looking
for a fast, pragmatic approach, WhereScape's Pragmatic Data Warehousing Methodology can be
used.

The basic concepts behind WhereScape's Pragmatic Data Warehousing Methodology are:

• minimize the impact on the source systems
• centralize management within the data warehouse
• store transactional data at the lowest practical grain within the data warehouse
• snapshot, combine and rollup transactional tables to provide additional value
• utilize views or cubes for end user access
• allow for incremental loads from day one
• use an iterative approach
• minimize cleansing and transformations to ease source system reconciliation
• design the data warehouse independently from the end user tool layer

WhereScape RED supports these concepts to facilitate very rapid building of data warehouses.

Wherescape RED controls the flow of data from the source systems through transforming and
modeling layers to analysis areas. Different styles of data warehousing (EDW 3NF, dimensional,
etc.) are supported and utilize different objects, but all follow the same basic flow.

3

The diagram below shows the objects and the information flow:

Data Flow

Data is moved from source tables to load tables via scripts, database links and ODBC links. These
load tables are created by dragging and dropping from a connection object. Load tables are
generally based on source system tables. Their main purpose is to be a destination for moving
data as simply and quickly as possible from the source system. Load tables will generally hold a
single unit of data (e.g. last night or last month), and will be truncated at the start of each extract.
Transformations can be performed on the columns during the load process if required.

Load tables feed stage tables, which in turn feed data store, dimension tables. Data from multiple
load tables can be combined at this level.

First tier transactional tables (fact or dimension tables) are created and updated from stage
tables. Second tier tables (summary rollup, aggregate, join indexes, etc.) are created and updated
from lower level tables.

Feeds for downstream systems (exports) can be created by dragging and dropping from a
dimension, view or aggregate object. Fast export or parallel transporter are used to generate file
exports.

Cubes can be created from transactional tables or views.

Procedural code

WhereScape RED for Teradata generates procedural code using Teradata database procedures at
each stage in the data warehouse build process. The generated code is, in nearly all cases,
sufficient to create a rapid prototype of the data warehouse.

While the generation of code is often seen as a key benefit of WhereScape RED, the ability to
control and manage custom code is also critical to the long-term management of the data
warehouse environment.

In most cases 85-100% of the generated code will be taken through to production with no
customization required.

4

Scheduler

The flow of data from the source systems to data warehouse tables is controlled and managed by
the WhereScape RED scheduler. All generated code includes audit and error logging logic that is
used by the scheduler.

The scheduler provides a single point of control for the warehouse. From the scheduler, the state
of all jobs can be ascertained. Any warning or error messages can be investigated and if a problem
occurs, the scheduler controls the restart of the job from the point of failure.

Documentation

Documenting the warehouse is often a task left until last, and in many cases done once (if at all!)
and not kept up to date. WhereScape RED generates user and technical documentation, including
diagrams, in HTML format.

Technical documentation includes copies of all current procedures.

User documentation includes a glossary of business terms available independently of any end
user tool.

Where additional specific information needs to be included in the documentation, WhereScape
RED supports the inclusion of custom HTML pages in the generated output. This means in many
cases the entire documentation requirements can be managed from one location, and
regenerated as changes occur.

WhereScape RED and ETL Tools

WhereScape RED's core strength is in the rapid building of data warehouse structures.
Organizations that have already purchased traditional ETL tools can used WhereScaoe RED as a
pureplay data warehouse toolset. WhereScape RED can be used to iteratively build data marts or
presentation layer objects that need to be constantly updated to keep relevant for end users. In
most cases, customers will find that WhereScape RED has enough ETL capabilities to build the
entire data warehouse, using the database rather than a proprietary engine to perfom ETL
processing.

The cross over in functionality between ETL tools and WhereScape RED is not large. WhereScape
RED is tightly integrated into the data warehouse database and has an embedded data warehouse
building approach. For WhereScape data movement is the start of the process—from source
system to load tables. The key benefits of the product: development productivity and an
integrated environment to manage and maintain your warehouse, come after the data movement
stage. Where a traditional ETL tool is already in use, the output of the ETL process is a
WhereScape RED Load, Stage or Dimension table from which WhereScape RED builds more
advanced data warehouse structures.

5

How to use this Guide
The WhereScape RED User Guide, the online help, and the WhereScape RED Installation and
Administration Guide assume that you are proficient in the use of the Windows operating
system.

WhereScape RED often provides multiple ways to accomplish a task. In some cases, you can use
the main menu, the right-click menu, or a toolbar, or a key combination (e.g. Alt/M and Ctrl/M to
raise menus). Instructions in this documentation generally include only the most convenient
method of accomplishing a task.

The following sources of information are available with WhereScape RED:

WhereScape RED Installation and Administration Guide

The Installation and Administration Guide is available either as online help, as a PDF, or in
printed format. The Installation and Administration Guide provides the information needed to:

• Install the WhereScape RED software
• Validate the various software components required by WhereScape RED
• Install the WhereScape RED metadata
• Install a scheduler
• Optionally install third party data warehouse applications
• Upgrade the WhereScape RED software
• Create and load language files.

WhereScape RED User Guide for Teradata

The WhereScape RED User Guide for Teradata is available either as online help, as a PDF, or in a
printed manual. The User Guide provides information on how to use WhereScape RED to build a
data warehouse.

Sql Admin User Guide

The Sql Admin User Guide is available either as online help, or as a PDF. It provides
documentation in the use of the stand-alone SQL query tool shipped as part of the WhereScape
RED product.

WhereScape Forum

A web forum is available at http://www.wherescape.com. This forum contains information on
the latest version, and bug reports that may be relevant for installation. In addition the
WhereScape Blog is available at http://www.wherescape.com which may provide additional
information.

7

Design Introduction

WhereScape RED for Teradata can be used to build data warehouses based on any number of
design philosophies from EDW 3NF enterprise data warehouses with consumer data marts
through to federated or conformed star schema based warehouses. In the absence of another
approach, the following methodology can be used for the design of data warehouses.

Note: This section can be skipped if you already have data warehouse design experience or a
methodology you wish to utilize. It is meant to provide the novice designer with some tips for
designing a data warehouse.

Design Approach

The concepts behind the WhereScape Pragmatic Data Warehouse Methodology are as follows:

1 Building an enterprise-wide data warehouse is a process—an evolution rather than a big bang.
Start small and grow the warehouse in manageable chunks until all the pieces are in place.
Once you reach that stage, changes and new source systems will continue the process.

2 You need to understand the big picture, but not get lost in it. Talk to all the various
departments, business units and companies within the organization. Do so at a relatively
high level and try to understand how the information from each area impacts or affects the
others. Identify commonalities and areas where the same information is handled in different
ways. This process should take days or weeks not months.

3 Identify the high value, high return and possibly easiest areas of the business. Drill down in
these areas and break down the workload into small manageable chunks of work, for example,
one to two analysis areas. Agree on the first component of the data warehouse and do that.

4 Get an understanding of the source system for this first component or analysis area. If
possible, get an entity relationship diagram and talk to the people who built or support the
application. Identify the tables that contain the key information you will need. The goal is a
quick and initial view, a detailed specification is not required.

5 Design the first component. This design should be a first draft, and can be written rather than
using a design tool. Remember at this stage what the end users want is not really known, so
don't set the design in concrete, or spend a large amount of time in this area.

Note: Experienced users of Wherescape RED will often dispense with a design and go straight
to building a prototype.

6 Build a prototype. In most cases this should not take more than one or two weeks -
experienced WhereScape RED developers can expect to build prototypes in hours or days.
Concentrate on the detailed and descriptive data, unless you have a clear picture of the
summarized requirements. Do as much as possible in terms of validating the data back to the

C h a p t e r 2

Design

8

source system. If dealing with a large or complex source system then only deliver a segment
in this prototype, e.g. one branch, one store, one product group, etc. Keep It Simple.

7 Demonstrate the prototype to a group of the key users. Then drill down to a subset of key
users (we recommend no more than three) who will help you go forward with the design. If
possible give these users access to the prototype and get them using the data. Stress that data
accuracy is not the issue at this stage, rather the look and feel.

8 Enhance the prototype with the feedback provided by the users. Again a quick process. If
complicated requirements evolve then create a plan to implement, doing the highest value
parts first. The goal is to get quick buy in and support from the two or three key users.

9 Provide key users access to the reworked prototype and get them using the data. Have them
define the business names for all the measures and attributes, and to define any pre-
calculated measures that they frequently use. Get them to define the hierarchies in the data.
Ascertain the commonly utilized queries and reports, and see if there would be a better way
of presenting these.

10 From the user feedback look at the need or possibility of using higher level fact tables, such as
summaries, aggregates, snapshot or composite rollup tables.

The concepts and methodologies for designing and building a data warehouse are beyond the
scope of this manual. It is assumed that the reader understands the basic concepts of a data
warehouse, and is familiar with modeling, EDW 3NF, star and snowflake schemas, dimensions,
fact tables, etc.

Refer to the WhereScape web site for a basic overview of data warehouse design if required.

9

WhereScape RED makes use of an object concept when dealing with the different components
that make up a data warehouse solution.

The main object types are: Connections, Load Tables, Dimensions, Stage Tables, Fact Tables,
OLAP Cubes, Aggregates, Procedures, Host Scripts, Indexes, Retros and Exports.

This chapter explains and provides an overview of each of these object types and how they can be
managed and organized. The full functionality of each object is covered in the following chapters.

The various Windows, Panes and Views that form the WhereScape RED tool are also explained.

In This Chapter

Object Types ... 10
Working with Objects ... 15
Organizing Objects ... 51
Windows and Panes .. 60
Export Middle Pane Output .. 70
Find Function .. 73

C h a p t e r 3

Objects and Windows

10

Object Types
WhereScape RED has a concept of objects which are combined to build the data warehouse. Each
WhereScape RED object has properties that allow the data warehouse developer to change how
the object is used.

Note: Some objects may not be available for certain types of WhereScape RED licenses.

WhereScape RED objects include:

Object Type Purpose

Connection

Connections define the path to external objects such as source data.
Examples of connection object types are databases, analysis services cubes,
operating systems or ODBC sources. Connections isolate environments
simplifying, for example, the promotion of code between development and
production.

Load Table

Load tables are the first entry point of data into the data repository, and
typically hold the latest set of change data. These objects contain their
definition. Load tables can be defined as external, file, script or XML. Based
on their definition they will, for example, run a predefined script or create
a load script at run time. Pre-load actions (e.g. truncate) or post load
procedures can be defined as part of a load object. In addition,
transformations (either during or after the load) can be defined against
columns in a load table.

Dimension

Dimension tables are the constraining elements in the star schema
design, and are defined by this object type. WhereScape RED will
automatically generate procedural code for the three standard types of
slowly changing dimensions, as well as date ranged dimensions (where the
current version is defined by an external system). WhereScape RED also
ships with a standard time dimension which can of course be extended.
Dimensions can also be defined as mapping or work tables which do not
appear in the generated user documentation.

Dimension View

Note: WhereScape RED version 8.1.1.0 and above no longer supports the
Dimension View object type when creating new objects. However, users
that have existing Dimension View objects in their data warehouse can
retain and continue to use them.

A dimension view is a database view of a dimension table. It may be a full
or partial view. A common usage is to create views where multiple date
dimensions exist for one fact table. Other types of views supported by
WhereScape RED include fact views, other table views, work views and user
defined views.

11

Object Type Purpose

Stage Table

Stage tables are used in the transformation of raw data into model or star
schema format. They typically hold only the latest set of change data. As
well as custom procedures, WhereScape RED can generate different types
of procedural code based on the complexity and speed of the data set. A
stage table can also be defined as a work table, which has the same
properties as a stage table but does not appear in the generated user
documentation.

EDW 3NF Table

An EDW 3NF table is a data warehouse object used to build third normal
form enterprise data warehouses. In WhereScape RED, EDW 3NF objects
have many of the code generating attributes of stage, dimension and fact
tables. Third normal form enterprise data warehouses can be thought of as
a source system for star schema data marts. Alternatively, they may be
reported off directly by users and reporting tools.

Data Store Table

A Data Store Table is a data warehouse object used to store any type of
data for later processing. In WhereScape RED, Data Store objects have
many of the code generating attributes of stage,dimension and fact tables.
Data objects can be thought of as a source system for the data warehouse.
Alternatively they may be reported off directly by users and reporting tools.
Data Store Objects can be considered either reference or transactional in
nature.

Model Table

Note: WhereScape RED version 8.1.1.0 and above no longer supports the
Model Table object type when creating new objects. However, users that
have existing Model table objects in their data warehouse can retain and
continue to use them.

Model objects are used to create EDW 3NF models in an enterprise data
warehouse. They may contain surrogate keys to other model tables.

Fact Table

Fact tables are the central table in a star schema design. This object type
allows the definition of fact tables. They support transactional, rollup,
snapshot or partitioned (detail, rollup or exchange) fact tables. Changing a
fact table's properties to partitioned will start a partitioning wizard that
prompts for the required information.

Aggregate

The aggregate object type provides a means to speed up access by
summarizing data to a higher grain.

12

Object Type Purpose

Join index

Join index is a Teradata specific object used for performance across
multiple tables.

View

View objects are usually created as end user objects from any table in the
data warehouse. The data or columns may be restricted or extra
descriptions may be added for use by the end user or reporting tools.

OLAP Cube

The OLAP Cube object type provides a means to develop and manage
Microsoft Analysis Services cubes. Cubes would normally be built from fact
tables and provide summarized data.

OLAP Dimension

An OLAP Dimension is built by WhereScape RED for every dimension
table associated with the fact (or aggregate) table the OLAP Cube is derived
from. OLAP Dimensions are shared across one or more OLAP Cubes. In
analysis services, a dimension is a group of attributes that represent an
area of interest related to the measures in the cube and which are used to
analyze the measures in the cube.

Index

This object type defines database indexes used to improve the access times
on any of the table object types (i.e. Load, Stage, Dimension and
Aggregate).

Export

Exports are used to manage exports from the data repository.

Retro

Retros are used to load predefined data models from modeling tools and to
retrofit existing tables into the WhereScape RED metadata.

13

Object Type Purpose

Retro Copy

Retros can be used to copy data from an existing data warehouse into
WhereScape RED metadata. Retros can be set as Retro Copy objects to
enable data transfer from the existing data warehouse to the new data
warehouse.

Procedure

The procedure object type is used to define and hold database stored
procedures. As such it may contain functions, procedures and packages
that are generated, modified or custom developed.

Host script

Host script objects are either Windows or UNIX scripts. These scripts are
maintained within the WhereScape RED environment and can be scheduled
to run in their host environments.

Template

Template objects are used to generate DDL, update procedures and host
scripts. Once a template has been created it can be associated with a table
and an operation on that table. The template is then used to generate the
script used for the associated operation.

Each template is assigned a type and a target database, these properties are
used to assist with filtering when associating table operations to templates.
Note that not all operations support template script generation on all
target databases.
Utility type templates can contain common code for use by other
templates.

Hub

A Hub is a table of unique business keys, they usually contain a hash key,
business key(s), load date and record source. Hubs should normally have at
least one Satellite.

Link

Links are many-to-many tables representing current and past
relationships between two or more Hub entities and are used to describe
associations, transactions, hierarchies and redefinitions of Hub entities in a
Data Vault. Links have their own hash key and the hash keys for the Hubs
that are linked as well as a Load Date and Record Source. The attributes
describing the context of a link are stored in Satellite Tables (see below).

14

Object Type Purpose

Satellite

Satellites are Data Vault objects which contain metadata that provides
context for Hub and Link entities at a given time or over a period of time.
Each Satellite entity can contain information on one Hub or Link.

Satellite tables contain a hash key for the parent Hub or Link, a timestamp
for the date of change and relevant descriptive fields. Satellites are usually
created once per source system. However, descriptive attributes can change
at different rates, so Satellites can also be created based on rate of change.

Source Mapping

Source mapping objects can be defined for a number of table object types,
for example stage tables, hubs, links and satellites. They allow these target
tables to be sourced from more than one set of source tables.

Source mapping objects don’t result in data warehouse tables but contain
source table and column information metadata, including any
transformations and join criteria. This metadata is used to generate a
procedure or script to populate the target table. Source mappings support
more than one insert/update routine from different sources to be defined
for the target table, and either executed collectively or independently.

Refer to the section Multi Source Processing (on page 1101) for details.

Custom1/Custom2

Custom1 and Custom2 objects are user defined objects. These Object
Types can be renamed in the Tools>Options>Object Types>Object Names
menu.

Connections are normally the first objects created. These connections are then used in the
creation of load tables through the drag and drop functionality. Subsequent objects can also be
created, using drag and drop.

It should be noted that although the object types have names that correspond with their primary
usage, they can be used for other purposes. For example, the fact object type could be used to
create persistent stage tables if required.

Some objects are not supported by all databases, and some advanced properties are specific to the
different databases.

15

Working with Objects
Most object types perform some form of action in the data warehouse. For example stage,
dimension and aggregate table based objects are 'Updated' in the data warehouse via the defined
update procedure. Procedures can be executed in the database.

When positioned on an Object in the left pane of the RED Builder window, the right-click pop-up
menu provides a number of options for manipulating the object. Further options may be available
through the menus provided in the various windows.

The operations of each of the objects is discussed in the following chapters. A brief overview of
some of the more common operations follows:

Connections
Connections, once defined are typically browsed and used as a source for drag and drop
operations. For database connections, a database link is normally required. This link can be
created via the right-click menu associated with a connection. See sample menu below:

Other operations available through the menu are editing the properties of the connection,
creating a version of the connection, creating a telnet window for UNIX connections and creating
a remote view creation procedure where required for database connections and loads.

The Documentation menu option can be used to generate (or read if already generated) the
WhereScape RED HTML documentation for the selected connection. Two options are available:
Display and Create:

16

The Projects menu option can be used to remove the connection from the current project or to
add the connection to the current project. The List Projects option displays a list of projects
which contain the current object, results are shown in the bottom pane. Multiple objects can be
selected by double-clicking the Connection icon in the left pane and Ctrl + clicking multiple
connections in the middle pane.

If there aren't any projects in the repository, these options are unavailable.

The Impact menu enables you to run reports on load and export objects associated with the
connection.

17

Load Tables
Load tables once defined would normally be created and loaded, unless these actions were
performed as part of the drag and drop operation. The menu below shows the operations that can
be performed on Load tables.

Properties, Storage and Source all launch the properties window for the Load table, albeit
focused on different tabs within this window.

18

The columns and indexes of the load table can be displayed using Display Columns and Display
Indexes. Any data in the load table can be displayed using Display Data. If the data is displayed,
only the first 100 rows are returned from the table. Either the Sql Admin tool (accessible via the
WhereScape start menu option), or the Excel query must be used if more detailed data analysis is
required. Query the columns in Excel using Query via Excel.

 TIP: When a column list has been displayed in the central pane, it is sorted based on the
order field associated with each column. Clicking the column label Col name will sort the
columns into alphabetic order. A subsequent click will re-sort based on the order field.

New columns and indexes can be manually added through this menu using Add Column and Add
Index. Normally columns are added via drag and drop and most common indexes are created
during the procedure generation phase.

The Regenerate Indexes menu option is used to add missing standard indexes. Selecting this
menu item displays a dialog box with options to regenerate missing indexes in the metadata and
recreate them or to just regenerate the missing indexes in the metadata.

The Relationships menu options enable the management of enhanced relationships. The Add
Relationship option opens the Add Relationships dialog, the List Relationships option displays
a list of enhanced relationships in the Drop Target Pane for the selected object and Generate
Relationships generates relationships which have not yet been defined in metadata.

The Impact of Change to Table menu option produces a list of objects that will be potentially
impacted by a change to the load table structure.

The Change Column(s) menu option to apply changes to a selected number of columns.

The Validate for Reserved Words menu option produces a list of table or column names where
reserved words have been used; enabled for supported ODBC Drivers.
The metadata for the load table can be compared with the physical table resident in the database,
using Validate Against the Database and where required, the table altered to match the
metadata.

The Update Comments context menu option refreshes the table and column comments from the
metadata, e.g. the description fields in the table and column Properties screen are updated.

Notes: You can manage the table and column comments outside the data warehouse
environment via the Tools>Table and Column Comments menu option. Refer to the Table and
Column Comments (on page 1079) chapter for more information.

19

Use Gather Statistics to gather statistics on a table. This action enables the underlying database
to optimize each query, based on the statistics collected about the data that is being accessed.
Users can either chose to Define Statistics or to Refresh Full Statistics.
Gathering statistics can be performed on any table by selecting this option from a table's right
click menu, or to automate this process, by adding a statistics task to a job being processed by the
scheduler (Stats, Quick Stats, Analyze or Quick Analyze). For more information about adding
statistics tasks to jobs, see Editing Tasks in a job (on page 715).

The statistics process from the object context menu for Teradata tables is described below:

Teradata tables

Define Statistics Using the DlgDefineStats dialog, we save the DDL and
execute it. This is object specific.

Refresh Full Statistics COLLECT STATISTICS ON database.table (this requires
statistics to have been executed on the object).

 Tip: To Define Statistics on a Table Object see also Gather Statistics (on page 1063).

A version of a Load table is a copy of the metadata definition of the table at the time of the
versioning. This version information can be used to create a new Load table, or can simply be left
as a backup and reference point. Use Version Control > New Version to version a Load table.
The Build Application menu option enables you to build an application file for the Load table
and the Duplicate Object menu option enables you to create a new Load table as a duplicate of
this table.

Note: The extended property values set in the original Load table is copied to the duplicate Load
table. Refer to the Extended Properties (on page 1065) chapter for more information.

The Create (ReCreate) menu option creates the table in the database based on the definition
stored in the metadata. To alter a table, select the Validate against database option (see the
section on table validation).

The Truncate menu option truncates the table.

20

The Change Connect/Schema menu option enables the rapid changing of the connection
information associated with the Load table. This information can be changed en-bulk for a
number of Load tables. See Changing Load Connection and Schema (on page 291) for details.

The Delete Metadata and Drop Table menu option deletes the metadata definition for the
table. It also gives you the option to drop the table in the database (dropping the table in the
database is the default option). This is a permanent delete and no recovery is provided, so please
use with caution. A version of the object's metadata is normally auto created (depends on the
settings in Tools>Options).

The Load menu option performs an interactive load of the data. The method of loading depends
on the type of connection. This menu option is intended for use with small data volumes as in a
prototype environment. Large data volumes would normally be scheduled. The Load locks the
WhereScape RED screen until completed.

Note: The Load option does not drop or create any indexes. Use the Process option, if indexes
need to be maintained.

The Process Table via Scheduler menu option sends a request to the scheduler to immediately
process the load table. This process will drop any indexes marked as pre_drop, load the data and
rebuild any required indexes. Control is immediately returned to the user and the loading will
occur via the scheduler.

The Reset Failed TPT Load menu option is used when a TPT load has failed which results in a
residual database lock on the Load table and a TPT checkpoint file being created.

If the cause of the failure was temporary and has been resolved, then restarting the failed load is
the recommended action. This is normally done by restarting the failed job in the scheduler.
Refer to Cleanup after TPT Load Failure (on page 238) for details.

However, if the cause of the failed load persists (for example, an outage of the source database)
then the Reset Failed TPT Load function from the Load table's context menu can be used. This
option uses TPT functionality to clear the checkpoint file and release the database lock on the
Load table.

Note:
- If the Load table is not populated via a TPT load or is loaded via TPT load but no failure was
detected, then a message displays that no reset is required when Reset Failed TPT Load is
selected.
- For Unix/Linux TPT and Windows TPT Script loads, you need to ensure that the TPT Job Name
(see "TPT Load - Source Screen" on page 235) is a constant value so that the Failed and Reset
jobs are using the same TPT job name.

The Check Out menu option can be used to check out objects for editing to prevent any other
users from being able to modify, update or delete any of their associated objects while you are
making changes to them. Refer to Object Check-Outs and Check-Ins for details.

21

The Documentation menu option can be used to generate (or read if already generated) the
WhereScape RED HTML documentation for the selected load table. Two options are available:
Display and Create:

The Projects menu option can be used to remove the Load table from the current project or to
add the Load table to the current project. If there aren't any projects in the repository, these two
options are unavailable.

The Impact menu option enables you to produce a number of reports and diagrams:

• Track Back, Track Forward or Dependent Jobs report
• Track Back and Track Forward diagrams

The Code menu option can be used to view a procedure associated to a table or to regenerate the
table's update procedure.

Hover over this option to display an additional menu containing a list of procedures associated
with the table:

Choose a procedure from the list to open in the procedure editor in view mode or choose to
regenerate the update procedure.

Notes:
1. Only Load tables with one or more defined procedures have the Code view option.
2. If the Load table is Script-based load type, either option is displayed in the Code sub menu:
 - Generate Load Script (if a script is not yet generated).
 - Regenerate <script name> (if a script has already been generated).
 Refer to Script based loads for details.

22

Dimension Tables
The standard pop-up menus for dimensions follow (dimension tables on the left, dimension
views on the right):

Note: WhereScape RED version 8.1.1.0 and above no longer supports the Dimension View object
type when creating new objects. However, users that have existing Dimension View objects in
their data warehouse can retain and continue to use them.

The bulk of these menu options are the same as for Load tables and are described under the Load
table section above. The differences are:

23

The Source Mappings sub-menu contains two options:

Source mapping objects are created when there is a requirement to have more than one set of
source tables to populate the target table and provides for the generation of a update and custom
procedure per source mapping object.

Source Mappings can be added using Add Source Mapping and listed using List Source
Mappings.

Refer to the section Multi Source Processing (on page 1101) for details.

The Hierarchies sub-menu contains the following options:

Hierarchies can be added using Hierarchies>Add Hierarchy and listed using Hierarchies>List
Hierarchy. Hierarchy elements can be listed using Hierarchies>List Hierarchy Elements. The
Hierarchies>Copy Hierarchies from Source feature copies all hierarchies from the source table
to the destination table. Source hierarchies are copied to the destination table automatically
during table creation, but this feature is useful if the source table has been updated since
destination table was created.

The Relationships menu options allow the management of enhanced relationships. The Add
Relationship option opens the Add Relationships dialog, the List Relationships option displays
a list of enhanced relationships in the Drop Target Pane for the selected object and Generate
Relationships generates relationships which have not yet been defined in metadata.

The Execute Update Procedure menu option executes the procedure defined as the 'update
procedure' for the table. The procedure is executed interactively and locks the screen until
completed. This menu option is only intended for use when working with small/prototype data
volumes, and no index handling is performed.

The Execute Custom Procedure menu option executes the procedure defined as the 'custom
procedure' for the table. As with Update, the procedure is executed interactively.

The Execute Custom Procedure via Scheduler menu option executes the procedure defined as
the 'custom procedure' for the table, via the Scheduler.

24

The Code menu option can be used to view a procedure attached to a table or to rebuild the
table's update procedure; and to view or rebuild the Get Key function on the
Dimension/Dimension View.

Note: The Get Key function is not available for dimension objects that are stored in custom
database targets.

Hover over this option to display an additional menu containing available options:

Choose a procedure from the list to open in the procedure editor in view mode or choose to
rebuild the update procedure.

Note: Only tables with one or more defined procedures have the Code option.

25

Data Store Tables
The standard pop-up menus for Data Store tables is:

The menu options available for Data Store Tables is a subset of the options for Dimension Tables,
except for an additional option under the code menu.

26

The Code menu option can be used to view a procedure attached to a table or to rebuild or
regenerate the table's update procedure. Hover over this option to display an additional menu,
containing available options:

Choose a procedure from the list to open in the procedure editor in view mode or choose to
rebuild or regenerate the update procedure.

27

EDW 3NF Tables
The standard pop-up menu for EDW 3NF tables is:

The menu options available for EDW 3NF Tables is a subset of the options for Data Store Tables.

28

Stage and Aggregate Tables
All of these table types have a similar pop-up menu. The standard stage table menu is as follows:

29

OLAP Cubes
The standard pop-up menu for OLAP Cubes is:

The Properties menu option opens the properties dialog that defines cube creation options and
access to documentation tabs.

The Display Measure Groups menu option shows the details of the measure groups associated
with the cube in the middle pane.

30

The Display Measures menu option lists the measures associated with the measure groups in the
cube. This is the default view in the middle pane when a cube is selected in the left pane with a
single click.

The Display Calculations menu option lists all the calculated members defined in the cube.

The Display KPIs menu option lists all the Key Performance Indicators defined in the cube.

The Display Actions menu option lists all the actions defined in the cube.

The Display Partitions menu option lists all the partitions defined against the related measure
groups within the cube.

The Display Dimensions menu option lists all of the dimensions defined in the cube.

The Display Measure Group Dimensions menu option displays a cross tab report in the middle
pane showing cube dimensions relating cube measure groups.

The Add Measure group menu option allows a new measure group to be added to the cube.

The Add Measure menu option adds another measure to the cube.

The Add Calculation menu option adds a new calculated member to the cube.

The Add KPI menu option adds a new KPI to the cube.

The Add Action menu option adds a new action to the cube.

The Add Partition menu option adds a new partition to a measure group in the cube.

The Add Dimension menu option adds an existing OLAP Dimension to the cube.

A version of an OLAP cube is a copy of the metadata definition of the cube at the time of the
versioning. This version information can be used to create a new OLAP cube, or can simply be left
as a backup and reference point. Use Version Control, New Version to version an OLAP cube.
The Build Application option allows you to build an application file for the OLAP cube and the
Duplicate Object option allows you to create a new OLAP cube as a duplicate of this OLAP cube.

The Create (Alter) Cube menu option creates the cube and supporting objects in Analysis
Services (including cube database, data source view (DSV) and dimensions) based on the
definition in WhereScape RED.

The Create via Scheduler menu option submits a create of the OLAP cube to the scheduler.

The Delete Cube Metadata menu option deletes the cube definition from WhereScape RED.

The Drop Analysis Services Object menu option drops the selected object in Analysis Services.

The Retrofit Cube menu option retrofits the OLAP cube from Analysis Services.

The Update menu option processes the cube in Analysis Services interactively from the
WhereScape RED interface.

The Process Cube via Scheduler menu option generates a WhereScape RED scheduler job to
process the cube in Analysis Services.

31

The Query via Excel menu option opens up an .oqy file in Microsoft Excel.

Note: Due to a shortcoming in the Microsoft Office installation, it may be necessary to associate
the .oqy file extension with Microsoft Excel before this option will succeed.

The Documentation menu option can be used to generate (or read if already generated) the
WhereScape RED HTML documentation for the selected OLAP cube. Two options are available:
Display and Create:

The Projects menu option can be used to remove the OLAP cube from the current project or to
add the OLAP cube to the current project. The List Projects option displays a list of projects
which contain the current object, results are shown in the bottom pane. Multiple objects can be
selected by double-clicking the OLAP Cube icon in the left pane and Ctrl + clicking multiple
connections in the middle pane.

If there aren't any projects in the repository, these options are unavailable.

The Impact menu option enables you to produce a Track Back diagram on the OLAP cube.

32

OLAP Dimensions
The standard pop-up menu for an OLAP Dimension is:

The Properties menu option displays the OLAP dimension properties dialog which includes
documentation tabs.

The Display attributes menu option lists the attributes for the selected dimension. This is the
default view when an OLAP Dimension is selected in the left pane.

The Display Attribute relationships menu option shows the relationships between the
dimensional attributes.

The Display hierarchies menu option lists the hierarchies associated with the selected
dimension.

The Display hierarchy levels menu option lists all the levels for all hierarchies for that
dimension.

The Add Attributes menu option adds a new attribute to the dimension.

The Add Attribute relationships menu option adds an attribute relationship for the selected
dimension.

The Add hierarchy menu option adds a new hierarchy to the dimension.

The Add hierarchy level menu option adds a level to a hierarchy.

33

A version of an OLAP Dimension is a copy of the metadata definition of the OLAP Dimension at
the time of the versioning. This version information can be used to create a new OLAP
Dimension, or can simply be left as a backup and reference point. Use Version Control, New
Version to version an OLAP Dimension. The Build Application option allows you to build an
application file for the OLAP Dimension and the Duplicate Object option allows you to create a
new OLAP Dimension as a duplicate of this OLAP Dimension.

The Delete Dimension Metadata menu option deletes the cube definition from WhereScape
RED metadata.

The Drop Analysis Services object menu option provides the ability to drop the selected object
from Analysis Services.

The Retrofit Dimension menu option retrofits the OLAP Dimension from Analysis Services.

The Create (Alter) Dimension menu option creates the OLAP Dimension and supporting objects
in Analysis Services (including cube database and dsv) based on the definition in WhereScape
RED. This option requires connection and cube database information populated in the OLAP
Dimension properties.

The Create via Scheduler menu option submits a create of the OLAP Dimension to the
scheduler.

The Update menu option processes the OLAP Dimension in Analysis Services interactively from
the WhereScape RED interface. This option requires connection and cube database information
populated in the OLAP Dimension properties.

The Process Dimension via Scheduler menu option generates a WhereScape RED scheduler job
to process the OLAP Dimension in Analysis Services. This option requires connection and cube
database information populated in the OLAP Dimension properties.

The Documentation menu option can be used to generate (or read if already generated) the
WhereScape RED HTML documentation for the selected OLAP dimension. Two options are
available: Display and Create:

34

The Projects menu option can be used to remove the OLAP dimension from the current project
or to add the OLAP dimension to the current project. The List Projects option displays a list of
projects which contain the current object, results are shown in the bottom pane. Multiple objects
can be selected by double-clicking the OLAP Dimension icon in the left pane and Ctrl + clicking
multiple connections in the middle pane.

If there aren't any projects in the repository, these options are unavailable.

The Impact menu option enables you to produce a Track Back diagram on the OLAP dimension.

35

Procedures
Procedures are commonly auto built through the Properties screen of one of the table types.
They can also be created manually. Once created they can be edited, compiled, etc. The menu
displayed when right-clicking a procedure name is as follows:

If a procedure has been locked as the result of the WhereScape RED utility being killed or failing
or a database failure, then it can be unlocked via the properties screen associated with the
procedure.

The Edit the Procedure menu option invokes the procedure editor and loads the procedure. A
procedure can be compiled and executed within the procedure editor.

The View the Procedure menu option displays a read only copy of the procedure. If the
procedure is locked by another user, then viewing the procedure is the only option available.

The Compile Procedure menu option compiles the procedure from the metadata.

The Execute Procedure menu option executes the procedure and displays the results in the
results window.

The Execute Procedure via Scheduler menu option sets up a job to execute the procedure via
the scheduler.

A version of a Procedure can be created at any time via the Version Control, New Version menu
option. The various versions of the procedure can be viewed from within procedure editor, or a
new procedure can be created from the version. The Build Application option allows you to
build an application file for the Procedure and the Duplicate Object option allows you to create a
Procedure as a duplicate of this Procedure.

36

Selecting the Delete Metadata menu option deletes the procedure from the meta data. It then
asks if the procedure should also be dropped from the database.

Selecting the Drop Procedure menu option drops the procedure from the meta data and from the
database as well.

Note: Procedures cannot be dropped or deleted if they are protected by, for example, an Edit
Lock.

The Documentation menu option can be used to generate (or view if already generated) the
WhereScape RED HTML documentation for the selected procedure. Two options are available:
Display and Create:

The Projects menu option can be used to remove the procedure from the current project or to
add the procedure to the current project. The List Projects option displays a list of projects
which contain the current object, results are shown in the bottom pane. Multiple objects can be
selected by double-clicking the Procedure icon in the left pane and Ctrl + clicking multiple
connections in the middle pane.

If there aren't any projects in the repository, these options are unavailable.

37

Scripts
Scripts are very similar in their operations to procedures. Some key differences are as follows:

• If a script is deleted, it is only removed from the metadata. However, because WhereScape
RED never stores the script on the host system, this removes the script permanently.

• Unix scripts, Windows CMD scripts and Windows PowerShell scripts (see "Windows
PowerShell Scripts" on page 653) are available on Load objects.

• Windows CMD scripts and Windows PowerShell scripts are available on all table object types,
where the table is stored in a custom database target and when using a Windows scheduler.

• The table object needs to specify the connection appropriate for the script (typically Windows
or Unix).

38

Indexes
Indexes are always associated with a table. To define a new index, the menu option associated
with the table that is to have the index must be used. Once defined, the following operations can
be performed.

The Properties menu option displays the Properties screen, which contains the entire definition
of the index, including the columns in use, storage parameters and index type, etc. The way the
scheduler handles the index is also defined in the Properties. An index can be set so that it will be
dropped by the scheduler prior to a table update and then rebuilt by the scheduler once the
update has been completed. It can also be defined for rebuild on certain days.

The Storage menu option displays the storage properties screen, containing storage options and
parameters.

The Create Index menu option creates the index in the database. This may take some time for
large indexes, and in such cases, it would be better to schedule a create of the index. See the
chapter on the Scheduler, if such an activity is required. This menu option is intended for use
when working with prototype data volumes.

The Drop Index menu option drops the index in the database.

The Delete Metadata and Drop index removes the metadata definition of the index and drops it
from the database. No recovery is possible once this option is actioned.

The Create via Scheduler menu option submits a create of the index to the scheduler.

The Projects menu option can be used to remove the index from the current project or to add the
index to the current project. The List Projects option displays a list of projects which contain the
current object, results are shown in the bottom pane. Multiple objects can be selected by double-
clicking the Index icon in the left pane and Ctrl + clicking multiple connections in the middle
pane.

If there aren't any projects in the repository, these options are unavailable.

39

Views
Views are primarily built to alias column names or add locking clauses to table objects (Load,
Stage, Dimension and Aggregate Tables). The menu below shows the operations that can be
performed on views.

The menu options available for views are almost a subset of those for stage tables, described
under the stage section above.

The additional menu option is Build From/Where clause. This option provides a way to invoke a
wizard to define a join between two or more tables.

Display Indexes, Query table via Excel, Add Index, Regenerate Indexes are not available for
views.

40

Join Indexes
Join indexes are an indexing structure containing columns from one or more base tables. They
are used to summarize data, pre-perform table joins and re-hash Teradata storage, by providing
alternate primary indexing. The standard join index menu is as follows.

The bulk of these menu options are the same as for views and are described under the view
section above. The differences are:

A join index may have an index on it, so the Add Index option is provided.

Join indexes are automatically maintained by Teradata, so do not have the Execute Update
Procedure, Execute Custom Procedure or Process via Scheduler options.

41

Exports
Export objects do not exist as an object in their own right in the Teradata database. They are
created from a single model, view or aggregate object and are used to generate file exports for a
downstream system. Export files are built using Teradata tools, such as FastExport and Teradata
Parallel Transporter.

The pop-up menu displayed when a right-click is used on an export is as follows:

File Attributes launches the properties window for the export table, focusing on the File
Attributes tab within this window.

All the other options for export objects are described above under other object types.

42

Source Mapping
Source Mapping objects are used in WhereScape RED to define source column mappings when
there is a requirement for the target table to be populated by more than one set of source tables.
These objects support the generation of an update procedure for the target table, sourced from
each set of the source tables.

Refer to the section Multi Source Processing (on page 1101) for details.

The context menu displayed when you right-click a source mapping object is as follows:

Maintain Source Mappings launches the Source Mapping tool which enables you to manage the
column mappings of the selected target table.

The Execute Update Procedure via Scheduler menu option sets up a WhereScape RED
scheduler job to execute the source mapping object's update procedure.

The Execute Custom Procedure via Scheduler menu option executes the procedure defined as
the 'custom procedure' for the table via the the WhereScape RED scheduler.

43

The Impact sub-menu option enables you to produce the following:

• Track Back Report – Lists the source tables of the selected source mapping object.
• Track Forward Report – Lists the parent table object of the selected source mapping object.
• Track Back Diagram – Displays the source tables of the selected source mapping object.
• Track Forward Diagram – Displays the parent table object of the selected source mapping

object.
• Dependent Jobs Report – Lists jobs that includes the currently selected source mapping

object or the parent table object.

All the other options for source mapping objects are described above, under other object types.

44

Object Check-Outs and Check-Ins
Objects in RED can be checked out for editing to prevent any other users from being able to
modify, update or delete any of their associated objects while you are making changes to them.

This functionality is configured through the Tools>Options>Check-Out and Check-In setting.

The Check-Out option is enabled by default.

This setting enables users to check-out/check-in objects in WhereScape RED through the object's
right-click context menus.

45

Checked out objects and their associated procedures and scripts cannot be modified, updated or
deleted by other users. If a different user tries to access the properties screen or procedure
windows for those objects, their fields become unavailable and headed NO UPDATE: Checked Out
by (user name).

46

Other users logging in to the same metadata repository will have some of the checked-out
object's context menu options unavailable, as shown below.

47

48

To check-in a checked-out object, simply right-click it and select Check In from the context
menu.

49

Re-Create Dialog
The Re-create window provides available options for dropping and recreating an existing table
and associated procedures. Objects and actions available depend on the table being recreated.

Actions in the table are completed from top to bottom; the action performed on each object can
be set as desired:

Object(s) Action Description

Table Recreate Recreate the table structure only. Do not make
changes to associated procedures. This action is
mandatory.

Artificial key sequence
(Oracle only)

Do Nothing Do not recreate the key sequence. Skip to the
next action.

Recreate (Default) Recreate the artificial key sequence. Do not
make changes to associated procedures.

Update procedure Do Nothing Do not regenerate the update procedure, skip to
the next action.

Regenerate (Default) Recreate the table structure, regenerate the
procedure definition in metadata based on the
current table and column properties, and
recreate the procedure in the database. This is
the option to use if there have been changes to
column or table properties, e.g. column
transformations.

Recompile Recreate the table structure and recreate the
update procedure based on the existing
procedure definition in the metadata.

50

Object(s) Action Description

Load tables Do Nothing (Default) Do nothing for this object, skip to the next
action.

Load Perform an interactive load of the data into the
table. WhereScape recommends performing this
via the Scheduler for large tables.

Load via Scheduler Add a data load task to the scheduler. Useful for
large tables where processing may take some
time.

Load script Regenerate Regenerate the table's load script.
This option is only available for Load tables with
a load type of script and with the source
connection setting defined. If the Load table
does not have an existing script then a new
script is created.

Update procedure Do Nothing (Default) Do nothing for this object, skip to the next
action.

Execute Execute the update procedure. WhereScape
recommends performing this via the Scheduler
for large tables.

Execute via Scheduler Execute the update procedure via the scheduler.
Useful for large tables where processing may
take some time.

Tables Do Nothing Do not display the data.

Display Data Display the table data after recreating the table
and update procedure (if applicable).

This is the default setting for Views and
Dimension Views.

This is the default setting for tables when an
update procedure is present and has been
executed in the previous action.

Unavailable when an update procedure is present
but has not been executed in the Recreate
window.

Save these choices as the Defaults

This option can be used to store the current actions as the default choices for all object types. The
Recreate window is then automatically populated with the saved actions each time it appears.

Count the Rows in the Table

Displays the total number of rows in the table at the bottom of the Recreate window. Knowing
the number of rows in a table can help estimate how long Load and Execute actions may take.

51

Organizing Objects
As mentioned in the previous section there are many types of object in WhereScape RED.

The objects in the metadata repository are displayed in the left pane of the Builder window. They
are displayed in a tree structure which can be expanded and closed as required. The tree can be
refreshed by using the F5 or Ctrl/R key.

Object Groups

The objects created in WhereScape RED are grouped together into object groups based on object
type. For example, we store all the dimension objects in the Dimension object group. Optionally,
we can choose to display dimension tables as the Dimension object group and dimension views
as the Dimension View object group.

Projects

These object groups are in turn stored within projects. When WhereScape RED is first started,
the special project called All Objects is the only project. This project will always contain all the
objects that exist in the metadata repository. Additional projects can be created if desired. These
additional projects can hold some or all of the objects as seen in All Objects. An object as such,
only exists once in the metadata. Therefore, if we have a dimension object called dim_product,
there is and can only be one copy of the object dim_product within the metadata.

Projects are used to hold a group of objects that relate back to a similar module or analysis area of
the data warehouse. In the example below, we have additional projects called Budgets,
Promotions, Sales, Demand Planning and Inventory. In this way projects enable us to restrict the
amount of information (objects) we need to deal with to just those relevant to the area being
worked on.

52

The example below shows a meta repository, using two project groups (Sales and Stock Control)
and five additional projects (Budgets, Promotions, Sales, Demand Planning and Inventory).

Note: If you delete an object using the right-click menu, then the object will be deleted from the
metadata and will be removed from all Projects. Remove the object from the project instead of
deleting it.

It is important to understand that these projects are only a means of visualizing the objects. Even
though an object may appear in many projects, it only exists once in the metadata.

To create a project, right-click in the left pane below the last project and select New Project.

The File>New Project menu option may also be used. Projects can be renamed,removed from the
project group or deleted by using the right-click menu when positioned on the project name.
Deleting a project does not delete the objects from the metadata; it simply removes their
reference in the project being deleted.

53

To view or make changes to the Project's Properties; right-click the project name and select
Project Properties.

The following screen shows four check boxes.

Include in User Documentation - When selected, the project is included in the User
Documentation. The default state is selected.

54

Include in Tech Documentation - When selected, the project is included in the Technical
Documentation. The default state is checked.

Local Project - When selected as local, the project is not included in the Application files. The
default state is unchecked.

Show Unused Object Types in Object Browser - When selected, all object types are displayed
in the Object Browser Pane. When unchecked, only object types currently in use are displayed.
The default state is unchecked. Refreshing the Object Browser Pane is required after changing
this setting.

Project Groups

Projects can in turn be grouped together into Project Groups. A project must only appear in one
Project Group. To create a Project Group, use the File>New Group menu option. Project Groups
can be removed by using the right-click menu when positioned on a group name.

Adding Objects to Projects
There are several different ways to add objects to a project:

• Click an object in the left pane, press Ctrl+C, click the target project (either the project folder
or any object group or object within it) and press Ctrl+V

• Drag the object to the required project
• Right-click on an object in the left pane and select Projects>Add to Project
• Highlight a number of objects in the middle pane, right-click and select Projects>Add to

Project
• Use the Project Object Maintenance Facility (see "Using Project/Object Maintenance" on

page 57)

Both options above that use the right-click Projects>Add to Project menu, displays the
following dialog box:

55

To add an object to an independent project (a project that is not in a group)
1 Right-click the object from the Objects list pane and then select Projects > Add to Project.
2 Select the required project from the Project drop-down list and then click OK. Choose the

required project from the project drop-down list and click OK.

To add an object to a dependent project
1 Select the required group from the Group drop-down list.

2 Select the required project from the Project drop-down list and then click OK.

Notes:
- Selecting the Include associated objects check box, also adds any indexes, procedures and
scripts to the selected project.
- Selecting the Retain selected Group and Project as the defaults check box enables you to
retain the last values defined in the Group and Project fields and use them by default when an
object is added to a Project or Group.

56

Removing Objects from Projects

To remove objects from a project

There are different ways to remove objects from a project:

• Drag the object to the blank area at the bottom of the pane
• Drag the object into the middle pane
• Drag the object to the All Objects project
• Right-click on an object in the left pane and select Projects>Remove from Project
• Highlight a number of objects in the middle pane, right-click and select Projects>Remove

from Project
• Use the Project Object Maintenance Facility (see "Using Project/Object Maintenance" on

page 57)

57

Using Project/Object Maintenance
The Project Object Maintenance Facility is invoked by right-clicking a project and choosing
Project Object Maintenance.

The following window is displayed:

• To add objects to a project, move objects from the left to the right using the > button. By
default, associated object (procedures, scripts and indexes) are also moved to the left. These
can be manually removed if not required.

• To remove objects from a project, move objects from the right to the left using the < button.
• When done, click OK.
• Clicking Apply updates object/project relationships without having to exit the Project Object

Maintenance Facility.
• Clicking Refresh refreshes the object tree in the left pane.

58

Adding Projects to Groups
The best way to move a project into a group is to first create the project in the group. This is done
by right-clicking on the group and selecting New Project:

The other option is to move an existing project from another group into this group. See Moving
Projects within Groups (on page 59)

59

Removing Projects from Groups
A project can be removed from a group by:

• Dragging the project to the blank area at the bottom of the pane
• Dragging the project into the middle pane
• Dragging the project to the All Objects project
• Removing the project using right-click Remove Project from Group
• Deleting the project using right-click Delete Project

Note: The first four methods move the project out from the group to become an independent
project. The last option removes the project from the metadata repository.

Moving Projects within Groups
Note: An object can be in any number of projects, but a project can only be in one Group.

Performing a drag from one group to another group will simply create an additional project-
>group mapping.

To move a project from one group to another group:

1 'Copy' the project by dragging the project from the one group to the other group.

2 Remove the project from the original group by right-clicking and selecting Remove Project
from Group.

List Projects Memberships for an Object(s)
To list which projects contain a specific object, right click on the object in the left pane and select
Project>List Projects. Results are shown in the bottom pane.

Multiple objects of one type can be selected by double-clicking the Object Type icon in the left
pane (e.g. Connection, Load Table, etc.) and Ctrl + clicking multiple connections in the middle
pane.

60

Windows and Panes
WhereScape RED has a number of different windows that are utilized in the building and
maintenance of a data warehouse. Each window may in some cases be broken into panes. There
are four main windows that are used extensively in the building of a data warehouse:

• The Builder window
• The Scheduler window
• The Diagram window
• The Procedure Editor window

61

Builder Window
The Builder Window has four panes.

The left, bottom and right panes can be dragged out of its docking place and docked elsewhere.
Docking handles appear when a pane is dragged.

62

The left pane contains all the objects within the metadata repository. These objects are stored in
object groups (e.g. Model). The object groups are in turn optionally stored in Projects, and the
Projects are optionally stored within Project Groups.

The middle pane is used to show the results of various queries on both the metadata and the
underlying source and database tables. The middle pane is also used as the drop target in drag
and drop operations. The status line at the bottom of the screen displays the current contents of
the middle pane. To send the middle pane output to a file or to clipboard, see Export Middle
Pane Output (on page 70).

The right pane is the Browser Pane, it shows both source and data warehouse systems. There
are two browser panes available at any one time. The source may be the data warehouse itself.
Typically, this pane is used as the source of information in the drag and drop operations. The
Browser Pane can be filtered:

• To filter by type click the down arrow next to the Filter button.

63

• Or to filter by name click the Filter button and enter the filter criteria.

Name based filters can be cleared by clicking the down arrow next to the Filter button and
selecting Clear Name Based Filter, seen in the image above.

The bottom pane is the results pane and it shows the results of any command executed on an
object. Multiple messages can be displayed. Expand the '+' sign next to an object to see a
complete list of messages relating to an object. When a report is run from the main menu, the
results are displayed in a separate tab in the bottom pane.

Pop-up menus are typically available in all four panes.

F5 or Ctrl+R key can be used to refresh the left and right panes, when the cursor is positioned
within these panes.

Toolbar

The Builder toolbar is shown below:

The Diagram button switches to the diagram view window which provides a graphical
representation of the star schema and track back diagrams.

The Scheduler button switches to the scheduler control window.

The two source browse buttons (orange and blue) provides a quick method of invoking the
source browser which populates the 'Browser pane'. Each of the two browse buttons, when clicked
browses to the connection last used for that button. To change the connection being browsed,
click the down arrow beside the glasses icon.

64

The Web Links button brings up the online WhereScape forum in a new tab. To select or enter
other web links, click the down arrow beside the Web Links button.

For example, let us add a Web Link to the Documentation Download on WhereScape's web page.
Select Configure to open the following dialog box, allowing you to enter three custom URLs.
Enter the name and the URL for the first custom link. Click OK.

To select the newly entered web link, click the down arrow beside the Web Links button. Select
the newly entered Documentation Download option.

65

The relevant web page is displayed in a new tab.

Quick access buttons on the Builder Toolbar also include versioning, building application,
reports and document creation.

66

Scheduler Window
The Scheduler Window is used as the main interface to the scheduler.

Jobs can be scheduled, monitored, edited and deleted through this window. The window consists
of two panes. The toolbar provides a quick way to display various job selections in the top pane.
Double-click on the job in the top pane to see the tasks of the selected job in the bottom pane.
Double-click on the task in the bottom pane to see the audit trail displayed in a separate tab in
the bottom pane.

See the Scheduler (on page 685) chapter for more details.

Toolbar

The scheduler toolbar is shown below:

The New Job button invokes the dialog to create a new scheduled job.

The Builder Window button switches back to the main builder window.

The Auto Refresh button, when depressed, will result in a refresh of the current (right pane)
display every 10 seconds. Click the button again to stop the auto refresh.

The refresh interval can be adjusted through the menu option Auto/Refresh interval.

Quick access to different categories of jobs are also available via the toolbar.

67

Diagram Window
The Diagram Window is used to display the tables of the data warehouse in diagrammatic form,
showing the various sources or targets of the selected object.

The Diagram Selection is as follows:

• Schema Diagram
• Source Diagram
• Joins Diagram
• Links Diagram
• Impact Diagram
• Dependency Diagram

See the Diagrams (on page 765) chapter for more details.

68

Toolbar

The Diagram toolbar is shown below:

The New Diagram button provides a dialog to allow the selection of the diagram type and table.

The Overview button provides a diagram showing the various objects in the WhereScape
metadata and the standard flow of data through these objects. Repeated clicking of the Overview
button will step though each stage of the data flow.

The Toggle button switches between display only diagrams and a printable variant. When the
printable variation of a diagram is displayed, the Grid button will toggle the display of grid lines.

The Builder button switches back to the main builder window.

69

Procedure Editor Window
The Procedure Editor Window provides a means of viewing, editing, compiling, comparing and
running procedures.

Multiple such windows can be open at any one time, each processing a different procedure.

Comments (identified by a leading double dash --) are displayed in green in this window and the
procedural code in black. The font is a fixed pitch font (by default) to make the indentation and
alignment of code easier to view. The font, colors and indent size can all be changed if desired.

See the Procedures and Scripts (on page 629) chapter for more details.

70

Toolbar

The procedure editor toolbar is shown below:

The Save button will write the procedure to the WhereScape metadata repository in the database.

The View Other Procedures button allows the concurrent viewing of older versions of the
current procedure, other procedures in the metadata, compiled procedures in the database and
templates.

The Compile button will attempt to compile the procedure. Once compiled the procedure is
stored within the database as well as in the metadata.

The Execute button will run a procedure that conforms to the WhereScape parameter syntax. See
the chapter on procedures for more details.

71

Export Middle Pane Output
To send the middle pane output to a file, go to the Edit menu and select Send 'Middle Pane'
Output to File.

A file is created in the directory chosen in Tools>User Preferences>Outputs>Output File
Directory.
If the Output File Extension is set to .csv in Tools>User Preferences>Outputs>Output File
Extension, then an Excel file is created.
If the file is set to auto-open in Tools>User Preferences>Outputs>Output File Auto Open,
then the file opens automatically.

72

To save to a File, click on the File tab and then select either Save or Save As to save to a file.

To view the settings for Middle Pane File Output, see Export Middle Pane Output Settings
(see "Outputs" on page 136).

To send the middle pane output to clipboard, go to the Edit menu and select Send 'Middle Pane'
Output to Clipboard.

To view the settings for Middle Pane Clipboard Output, see Export Middle Pane Output
Settings (see "Outputs" on page 136).

73

Find Function
The Find function can help users quickly find a table when the list of tables has grown to a large
size. The Find function can be accessed two ways within WhereScape RED:

• Click anywhere in the Object Pane or Browser Pane and press Ctrl + F, or
• select Edit > Find Object (this option searches the Object Pane only).

Both methods open the following dialog:

75

Note: The WhereScape RED Tutorial Help has been removed from Release 8.0.2.0 and above.

C h a p t e r 4

Tutorials

77

This chapter describes the settings and default values that can be set for a metadata repository.
To access these settings, select the Tools menu; and then select either Options or User
Preferences.

In This Chapter

Settings - Options ... 78
Settings - User Preferences ... 123
Settings - Language Options .. 140

C h a p t e r 5

Default Settings

78

Settings - Options
Select Options from the Tools menu.

79

Settings - Repository Identification
This option enables users to set the Repository Identification settings.

Repository Name

Set the name for the repository. This name appears in the top left corner of the title bar in
WhereScape RED. Restart WhereScape RED for repository name changes to take effect.

Repository Type

Set the type for the repository. The repository type must reflect the environment. For example, a
'Production' type must be chosen for the production environment.

Data Warehouse Database

The database of the data warehouse that is used by the WhereScape RED scheduler. You should
not normally need to change this value.

80

Settings - Repository Privacy Settings
This option allows users to set the Repository Privacy Settings.

WARNING: For UNIX/Linux scheduler processing, the Encrypt User and Password options
cannot be used. Encrypt options are only supported when using a Windows scheduler.

Changing Repository Settings

Since the repository privacy settings can be configured from the Tools (Options) menu, for an
environment to be secured, a database administrator must change the permissions on table
ws_meta_admin table to read-only after the appropriate repository privacy change settings
in WhereScape RED have been made.

Note: Changing this set of permissions to read-only is something which occurs outside of
WhereScape RED and will be dependent on the specific meta data database.

81

Username and Password Settings
• Meta Login Method - This option can be set to restrict users to using a particular login

method for the meta repository
• Include User Details in Application Deployments - Includes or excludes User Details in

Application Deployment packages

Extract User ID Settings
• Mask Extract User ID - Masks the input of the "Extract/Unix/Windows User ID" on the

connection properties
• Enable Extract User ID Editing - Enables editing the "Extract/Unix/Windows User ID" via

the connection properties
• Encrypt Extract User ID - Encrypts "Extract/Unix/Windows User ID" in the meta repository

using WhereScape encryption

Extract User ID Settings
• Mask Extract User Password - Masks the input of the "Extract/Unix/Windows User

Password" on the connection properties
• Enable Extract User Password Editing - Enables editing "Extract/Unix/Windows User

Password" via the connection properties
• Encrypt Extract User Password - Encrypts "Extract/Unix/Windows User Password" in the

meta repository using WhereScape encryption

Admin User ID Settings
• Mask Admin User ID - Masks the input of the "Admin/DSS User ID" on the connection

properties
• Enable Admin User ID Editing - Enables editing the "Admin/DSS User ID" via the

connection properties
• Encrypt Admin User ID - Encrypts "Admin/DSS User ID" in the meta repository using

WhereScape encryption

Admin User Password Settings
• Mask Admin User ID - Masks the input of the "Admin/DSS User ID" on the connection

properties
• Enable Admin User ID Editing - Enables editing the "Admin/DSS User ID" via the

connection properties
• Encrypt Admin User ID - Encrypts "Admin/DSS User ID" in the meta repository using

WhereScape encryption

Teradata Wallet User ID Settings
• Mask Teradata Wallet User ID - Masks the input of the "Teradata Wallet User ID" on the

connection properties
• Enable Teradata Wallet User ID Editing - Enables editing the "Teradata Wallet User ID" via

the connection properties
• Encrypt Teradata Wallet User ID - Encrypts the "Teradata Wallet User ID" in the meta

repository using WhereScape encryption

82

Teradata Wallet String Settings
• Mask Teradata Wallet String - Masks the input of the "Teradata Wallet String" on the

connection properties
• Enable Teradata Wallet String Editing - Enables editing the "Teradata Wallet String" via

the connection properties
• Encrypt Teradata Wallet String - Encrypts the "Teradata Wallet String" in the meta

repository using WhereScape encryption

JDBC User ID Settings
• Mask JDBC User ID - Masks the input of the "JDBC User ID" on the connection properties
• Enable JDBC User ID Editing - Allows editing the "JDBC User ID" via the connection

properties

JDBC User Password Settings
• Mask JDBC User Password - Masks the input of the "JDBC User Password" on the connection

properties
• Enable JDBC User Password Editing - Allows editing the "JDBC User Password" via the

connection properties

83

Settings - Object Types

Object Type Availability
This option enables you to activate or deactivate the various object types within the data
warehouse repository.

Object Type Availability

Enable/Disable object types in the data warehouse by selecting/clearing the availability check-
boxes for each object type. All settings are enabled by default, except for the Enable Cube and
Enable Virtual Cube options which are soon to be deprecated.

84

Object Type Names
This option enables you to set the names for the various object types in RED.

Object Type Name

Set the desired name for each object type.

NOTE - Data Vault Repository Types: Users with Data Vault model type licenses that chose a
Data Vault repository type while creating the RED metadata repository will have appropriate
Data Vault repository default settings, such as Object Type Names, Global Naming of Tables,
Indexes, Key Columns and Procedures/Scripts, as well as other repository settings/user
preferences.
These repository types will have their default Object Type Names of Normalized and Data Store
objects set to Hub/Link and Satellite.

85

Object Type Ordering
This option enables you to set the ordering in which the object types appear in the object tree on
the left pane.

Object Type Order

Set the ordering of the object types as displayed in the object tree pane.

86

Object Type End User Setting
This option enables you to set the Object types as end user objects.

All the options in this screen are selected by default.

Object Type End User Visible

Clear an object type check box to remove it as an end user object, else leave selected.

87

Object Type Icon
This option enables you to configure the Icons for all Object Types. To configure custom Object
Type icons:

1 Create an 'Icons' folder in the WhereScape RED install directory, if it doesn't exist. For
example:

C:\Program Files (x86)\WhereScape\Icons

2 Place custom '.ico' files in the Icons folder.

3 In RED, select Options>Object Types>Object Type Icon.

4 Click the ellipses button '...' next to each Object Type and select the desired icon.

88

5 All configured icons are displayed as file names in the screen. To save changes click OK.

89

To Reset An Icon

To reset an icon to default, click the reset button () next to the icon.

Reset All Icons

To reset all icons to default, click the Reset All Icons button at the top of the dialog.

Note: All installations must have a copy of the icon directory.

90

Object Type Color
This option enables you to set the diagram colors for each object type in RED.

Object Type Diagram Color

Set the Diagram color for each object type.

91

Object Sub Types
This option enables you to set the default sub type for activated objects in RED.

Object Default Sub Type

This option enables specifying the Default Sub Type for enabled object types. Select the desired
default sub-types from the Object's drop-down lists.

For example, to have Dimension objects created in RED as Changing Dimensions at the time of
drag and drop, select the Changing Dimension option in the Default Sub Type for Dimension
Objects.

After the table is dragged and dropped, users can simply hit enter to proceed on the Dimension
Type where the Slowly Changing type is already defaulting to the sub type option previously
selected in Tool>Options menu.

92

The Dimension Properties screen reflects the selected table sub type on the Table Type drop-
down list.

93

Settings - Global Naming Conventions

Case Conversion
This option enables you to set the case conversion methods for the Tables and Columns in RED.

Case Conversion

Set the Table Case Conversion method and the Column Case Conversion method from the
drop-down lists.

94

Global Naming of Tables
This option enables you to set the Global Naming of Tables options.

A prefix and/or a suffix string can be applied to an object name. Within Oracle and IBM DB2, a
table name may be a maximum of 30 characters long, so these pre and post fix strings should not
be more than eight characters long (WhereScape RED short names are a maximum of 22 long in
Oracle and SQL Server and 12 long in DB2).

From the example screen above, if a source table called customer (with a short name of
'customer') was dragged into a Load table drop target then the default name would be
load_customer.

The object name defaults shown above are the values that are installed with the base metadata.
They can be changed at any stage, however, the change does not affect any existing objects.
Therefore, if a new naming regime is chosen any existing objects will need to be renamed through
the Properties screen of the object.

95

Global Naming of Source Mappings
This option enables users to set the Global Naming of Source Mappings options.

Similar to table objects created in RED, a prefix and/or a suffix string can also be applied to
source mapping child objects.

Within Oracle and IBM DB2, a table name may be a maximum of 30 characters long, so these pre
and post fix strings should not be more than eight characters long (WhereScape RED short names
are a maximum of 22 long in Oracle and SQL Server and 12 long in DB2).

From the example screen above, if a source table was dragged into a table drop target called
stage_customer (with a full table name of 'customer') then the default name for the first source
mapping object created would be src_stage_customer_1.

The same applies for the second source mapping object created—the object would be named
src_stage_customer_2.

The object name defaults shown above are the values that are installed with the base metadata.

They can be changed at any stage, however, the change does not affect any existing objects.
Therefore, if a new naming regime is chosen any existing objects will need to be renamed through
the Properties screen of the object.

96

Global Naming of Indexes
This option enables users to set the Global Naming of Indexes options.

Whenever a new procedure is defined, WhereScape RED builds or rebuilds a standard set of
indexes for the table. These indexes will be created using the standard defined. As with the key
naming, we can set either a pre-fix or suffix value, or in fact both, as well as choosing the use of
either the table name or the short name associated with the table.

In addition to the naming specified above, WhereScape RED will add up to a further 3 characters
to the end of the index name. These additional values will be "_0" through "_99", or "_A" through
"_Z", or "_PR". When a new index is manually added, it will have the additional value of "_x" by
default. This should be changed. The WhereScape RED naming standard for indexes is described
below, but any valid name may be used.

From the example screen above, a dimension table would have indexes generated using the short
name and with a suffix of "_idx". Therefore, a dim_sales dimension table would have indexes such
as dim_sales_idx_x.

Ultimate suffix meaning

 _0 artificial key

_A primary business key

 _B through _Z secondary business keys

 _PR primary index

97

Global Naming of Key Columns
This option enables you to set the Global Naming of Key Columns.

During the drag and drop generation of new tables, WhereScape RED builds an artificial
(surrogate) key for the table if surrogate keys are enabled.

• The naming convention for the surrogate key can be set through the same menu option as
above.

• Prefix and suffix values can also be added.
• There is a choice between the inclusion of the full table name, short name or base name

assigned to each table.
• In the example screen above, which is the default, a dimension table key would use the table

short name and have a suffix of "_key": for example your load_customer table would
generate a key called dim_customer_key if it was dragged into a dimension drop target.

To have a table with non identity columns as surrogate keys, you can set the table's Data Type to
integer. During the procedure generation this will create a logic that associates a sequential
number to the artificial key of the dimension when a new row is inserted into the table.

• The example above displays the defaults for Dimension options but to set these fields on
Fact, Data Store and EDW 3NF tables, expand the fields below Dimension to view and set
your required options.

• For more on Artificial Keys see Dimension Artificial Keys, Data Store Artificial Keys and
EDW 3NF Artificial Keys.

98

Dimension have a Surrogate Key auto added

Set this field if a Surrogate key column is to be added automatically to a table. Default for
Dimension is set. Default for Fact, Data Store and EDW 3NF is not set.

Dimension Key Prefix

Key prefix that can be added to a new Dimension Key.

Dimension Key Name Type

Key name type for new Dimension keys. Select between Short name, Full table name and Base
name.

Dimension Key Suffix

Key suffix that can be added to a new Dimension key.

Dimension Data Type

Default data type for the Dimension surrogate column definition. Set to Integer if you want a non
identity column to be used as the surrogate key.

Dimension Transformation

Transformation where a database compliant SQL statement can be used for the surrogate key on
new Dimension entries.

99

Global Naming of Procedures
This option enables you to set the default naming conventions for generated procedures in RED.

A procedure is generated by selecting the (Build Procedure...) option from the Update
Procedure drop-down list in the table's Properties screen.

Procedure name defaults

The values shown below are the default settings, which can be changed to meet the customer
requirements. The only restriction is on the size of the resultant name, which is database
dependent.

The contents of the prefix and suffix fields must contain characters that are valid in a database
stored procedure name and should preferably not contain spaces.

The Name Type may be either the full table name or the unique short name assigned to each
table. In the case of smaller table names, the short name is usually the same as the table name.

For example, if we have a stage table called stage_product, then from the example screen above,
the two possible generated procedures would be called update_stage_product and
custom_stage_product.

100

Settings - DSS Tables and Columns
When building the data warehouse, WhereScape RED makes use of a number of special tables and
columns. Two tables are used, which are called dss_source_system and dss_fact_table by
default.

The special columns used are defined in the table below.

Column name Description

dss_batch Not used at this stage.

dss_source_system_key

Added to support dimension tables that cannot be fully conformed,
and the inclusion of subsequent source systems. See the section below
for more details.

dss_fact_table_key Used in composite rollup fact tables to identify the source fact table
that contributed the particular row.

dss_create_time Indicates when a record was created.

dss_update_time Indicates when the record was last updated in the data warehouse.
Used in the updating of rollup fact tables and aggregate tables.

dss_start_date Used for dimension history tables as the start date for a particular
version of a row.

dss_end_date Used for dimension history tables as the end date for a particular
version of a row.

dss_count Applied to fact tables. Provides a simple row count variable that can
be used by end user tools.

dss_current_flag Used for dimension history tables. This flag identifies the current
record where multiple versions exist.

dss_version Used for model history tables. This column contains the version
number of a history record. Numbered from 1 upwards with the
highest number being the latest or current version. It forms part of
the unique constraint for the business key of a dimension history
table.

dss_file_name Identifies a table holding files loaded into load tables.

dss_change_hash Used to identify for a Satellite table. This column identifies the
differences in the descriptive columns of a Satellite table which is
used for generating the change hash key for creating a Satellite object.

All of these special columns can be renamed through the Tools>Options>DSS Tables and
Columns menu option. All columns in the sample screen below (except for dss_source_system)
can be renamed. The two tables however, require valid table names that meet certain criteria. See
the appropriate sections below.

101

Note: When using table names other than the defaults for dss_source_system, it is worth
considering the fact that by default the metadata backups will include any table that begins with
"dss_". Therefore, if a table is used it is recommended that it have a name starting with "dss_".
The advantages are that a working meta repository will be established through a backup and
restore, if these tables are included in the backup set.

dss_source_system

This pseudo dimension table is designed to identify a data source for a dimension row. Its
purpose is to handle changes in source systems. If its use is not desired (default) then leave this
field blank.

For example:

An organization has a number of factories. These factories are referenced by all of the operational
systems. The production system has its own code for each factory and this is the unique means of
identifying the factory. The distribution system has a factory short name which it uses for the
unique identifier. The raw materials system simply uses the factory name. It is probably not
practical or even desirable to force these source systems to utilize a standard factory
identification method, so instead we allow the dimension table to be non conformed. We do
however, insist on a standard factory naming convention, so that our reports and queries will join
information when the factory name is used.

In such an example, the dss_source_system_key is used to identify the source of the data for the
dimension table row. It also adds to the unique business key, so that two source systems can
utilize the same code to refer to different entities. This key also provides a degree of future
proofing in the data warehouse, to assist in the possible changing of an underlying source system.

The generated procedure code will always set the key value of this table to 1. Therefore, manual
code changes is required to make use of the functionality that this table offers.

If this table is to be given a different name then it and all its columns can be renamed or the
following steps can be taken:

1 Create a new table by dragging the column dss_source_system_name from dss_source_system
into a dimension target.

2 Rename the dss_source_system_name column to match the new table name.
3 Delete the last two columns.

4 Under the table Properties, change the table type to Mapping table. This prevents the table
from being seen as a dimension table in the documentation.

5 Change the dss_source_system table name shown in the screen below, via the
Tools>Options>DSS Tables to Include and Naming tab.

102

DSS Tables
This option enables users to set the DSS Tables.

Tables

Set the DSS Tables.

103

DSS Columns
This option enables you to set the DSS Columns.

Columns

Set the DSS Columns.

dss_create_time

Column added to all stage, ODS, EDW 3NF, dimension, fact and aggregate tables for information
only. Leave the field blank to disable or add a name for the dss_create_time column, e.g.
dss_create_time.

dss_update_time

Column added to all dimension and stage tables. It is required if the generated code for fact and
aggregate tables is to be used.

dss_start_date

Column used for dimension history tables. It is used to identify when a dimension table row was
replaced. This is a required field.

dss_end_date

Column used for dimension history tables. It is used to identify when a dimension table row was
replaced. This is a required field.

104

dss_version

Column used for dimension history tables. Is it used to store the version of a dimension table
row. This is required for unique constraints.

dss_current_flag

Column used for dimension history tables. It is used to identify the current dimension table row.
This is a required field.

dss_change_hash

Column used to identify the differences in the descriptive columns of a Satellite table which is
used for generating the change hash key for a Satellite object. Refer to Creating Data Vault
Stage Tables (on page 427) for more details.

dss_load_date

Column used to store the date when the value in this row was loaded into the metadata
repository. This column and the dss_record_source column below is added to new Load tables
that have the option Add meta data columns to table selected. Refer to the Data Vaults
chapter (see "Data Vaults" on page 413) for more details.

dss_record_source

Column used to store a descriptive term to identify the source of this record. This column and
the dss_load_date column above is added to new load tables that have the option Add meta data
columns to table selected. Refer to the Data Vaults chapter (see "Data Vaults" on page 413)
for more details.

105

DSS Columns for Custom Targets
Note: These settings are only available/displayed if your WhereScape RED license includes
support for custom target databases.

This option enables you to set the DSS Columns for custom database targets.

Data types for Custom Database Targets

Enables you to set the data types that are used in the DSS columns added to new table objects.

Notes:
1. The Hash Key Generation wizard (on page 416) creates new hub and link hash keys in a Data
Vault Stage table with the same data type defined for the dss_change_hash column, if the table
is in a Custom database target.
2. If the table is not in a Custom database target, the data type CHAR(32) is used.
3. Changing this data type has no impact on any existing hash key columns.

Default values for Custom Database Targets

Enables you to set the default values that are used when generating update procedures for Slowly
Changing Dimension tables and Load tables.

Start Date for Initial Member

Default date function to use for the start date of rows added to a slowly changing dimension
table.

106

End Date for Current Member

Default date function to use for the end date of current rows in a slowly changing dimension
table.

Start Date for New Member Entry

Default date function to use for the start date of current rows in a slowly changing dimension
table.

End Date for Expiring Member Entry

Default date function to use for the end date of expiring rows in a slowly changing dimension
table.

Note: Refer to the Change Detection section of Generating the Dimension Update Procedure (on
page 303) for more information.

Load Date Transformation

Default date function to use for populating the new records inserted in load tables.

107

Settings - Check-Out and Check-In
This option enables users to set up for the Check-out or Check-In of Procedures.

Check out

Enabled: This option is selected by default to enable procedures to be checked-in or checked-
out.

Mandatory Reason: Select this option if a reason is mandatory for checking out or checking in
procedures, else deselect.

Retention Period

Set the length of time; Years and Months, for which procedures may be checked-out.

108

Code Generation

General
This option enables users to set some general Code Generation settings.

General

Include WsWrkTask Procedure

This option is selected by default and results in a call to the WsWrkTask function being placed at
the end of most of the generated update procedures. These calls to WsWrkTask result in counters
being set in the meta table ws_wrk_task_log. These counters can be viewed via a query on the
view ws_admin_v_task.

Generate Procedures By Default

Set this option to generate Procedures by default.

Enable Legacy File Load Routine (FastLoad, MulitLoad)

Set this option to enable FastLoad and MultiLoad legacy file load routines in RED. This option is
not selected by default, e.g. FastLoad and Multiload options are not available in the Default File
Loader drop-down field.

Note: This setting also controls the options available in the File Load Routine drop-down list in
the Source tab of the Load table Properties screen.

109

Default File Loader

Options for the default file loader are:

• Load TPT (default)
• Update TPT
• Stream TPT
• No Load

Notes:
-When importing a Model from 3D to RED, select Load TPT instead of Fastload as the Default
File Loader method. FastLoad is not a valid option for loading Linux files to Teradata.
- The Enable Legacy File Load Routine option is not enabled by default. The Default File
Loader is set to Load TPT by default.

"End of Statement" Indicator

Set the indicator to separate multiple SQL statements in a SQL block. If left blank the default
value of <EOS> is used.

SQL Server Integration Services

SSIS Version

Available version of SQL Server Integration Services. SSIS is not enabled by default for Teradata.
To use SSIS to load data, the relevant version of SSIS needs to be selected on this drop-down list.

110

Default Update Procedure Options
This option enables you to set default update procedure settings for specific object types.

Process in Batch - enables users to select a column to drive data processing in a loop based on
the distinct ordered values of the selected column.

Include Initial Load Insert - enables users to include an additional insert statement to the
update procedure. If the target table is empty, the new insert statement is run in place of the
standard generated code.

Insert Zero Key Record - enables users to add an insert statement for an unknown record with
an artificial key of zero. Only applicable to tables with an artificial key.

Parallel DML - enables users to add all code required to the update procedure for enabling
Oracle parallel inserts. Note: Oracle only.

Distinct Data Select - enables users to ensure duplicate rows are not added to the table.

Select Hint - enable users to enter a database-compliant hint to be used in the SELECT
statement. Parameters $TABLE$ and $INDEXS is automatically replaced at procedure generation
time.

Delete before Insert - enables users to add a delete statement to the update procedure before
any update or insert statement.

111

Truncate - performs a DDL operation to delete all records from a table, rather than a predicate
based DML operation to delete individual rows. This option is automatically enabled when Delete
before Insert is enabled, but can be deactivated separately.

Include Update Statement - enables users to include an update statement in the procedure to
update changing rows in the table.

Update Changed Rows Only - enables users to use change detection to work out what rows
require updating.

Update Hint - enables users to enter a database hint to be used in the UPDATE statement.

Include Insert Statement - enables users to include an insert statement in the procedure to
insert new rows in the table.

Insert New Rows Only - enables users to use change detection to work out what rows require
inserting.

Insert Hint - enables users to enter a database hint to be used in the INSERT statement.

Include Merge Statement - enables users to include a merge statement in the procedure to
merge new/changed rows in the table.

112

Settings - Storage

Target Usage
This option enables you to force use table target locations defined in the Connection Properties
screen, and prevents the use of legacy local targets when creating new table objects in RED.
This option is enabled by default for new repositories—it is recommended to define targets for
the data warehouse objects that is separate from the metadata.

The Force Target Usage setting removes the option to use local targets in the Default Target
drop-down list of the Target Location (on page 113) option and also hides the Table Storage (on
page 116) option, which is used to set the storage locations for each table object type created in
RED.

Notes:
- Existing RED objects or objects loaded into RED with local set as their target retains the local
target setting.
- If the target location is changed from local to a specific target, then there is no option to set it
back to local without deactivating the Force Target Usage setting.
- If table target(s) has not been defined, a message is displayed to warn users that this setting will

113

have no effect until a target is created.

 To see more about creating target locations see Connection to the Data Warehouse (see
"Database - Data Warehouse/Metadata Repository" on page 147).

Target Location
Target Location options enables users that are placing objects across multiple databases to set
default target locations for new tables.
Default table target locations can be set for the following objects:

• Load
• Stage
• Dimension
• Kpi Fact
• Fact
• Aggregate
• Join Index
• Data Store
• EDW 3NF
• View
• Hub Table
• Satellite
• Link
• Custom

114

Target Action

Set Target

This option enables you to set a default target location for new tables to be created. It enables the
Default Target drop-down list where a specific target location for new tables can be defined.

Note: If the Force Target Usage setting is enabled in the Target Usage (on page 112) option,
selecting Set Target automatically sets the Default Target field with the first target location
value available from drop-down list. The option to use local target is also removed.

Same as Source

This option is selected if the table's default storage must be the same as the original source,
where the table is coming from. This option cannot be selected for Load tables.

115

Default Target

A default target location can only be entered if the Set Target action has been selected in the
Target Action drop-down list.
With this option, users can choose between setting a table's default location:

• (local) if the Force Target Usage setting is not enabled in the Target Usage (on page 112)
option, or

• to any other target locations that have been defined in the relevant connection Properties.

To set a default target location on a table by table basis:

1 Select the Set Target>Same as Source option from the Target Action drop-down list.

2 To have tables located in a specific target location, select a default target where the new
object should be placed as the object is dragged and dropped to the middle work pane.

To see more about creating target locations see Connection to the Data Warehouse (see
"Database - Data Warehouse/Metadata Repository" on page 147).

Even though the default target location can be set in the Target Location options, this setting
can also be changed after the table has been created via the Storage tab of each table's Properties
screen.
To see more information about changing the target location after a table has been created, see
Storage (on page 202).

116

Table Storage
Note: The Table Storage option is only available/visible if the Target Usage > Force Target
Usage (see "Target Usage" on page 112) setting is not enabled.

This option enables you to set the Storage locations for each table object type created in RED.

Set the Storage locations for each table type.

These defaults are applied when a table is created. They can be changed by selecting the Storage
tab on the Properties screen of a table.

117

Default Optional CREATE Clause
This option enables you to define a default value for the "Optional CREATE Clause" property of
each object type, which is populated when the object is first created.

The Optional CREATE Clause text is appended to the DDL CREATE statement when the table is
generated.

TIP: This option is only used to set the default optional create clause for new objects. To edit
the Optional CREATE Clause of an existing object or edit the clause on a table by table basis, go
to the object's Properties screen, click the Storage tab and edit the Optional CREATE Clause
field.

118

Index Type
This option enables you to set the default type of primary index type for each table type.

Set the default primary index type for each table type.

The options are:

• Non-Unique Primary Index (NUPI)
• Unique Primary Index (UPI)
• No Primary Index (NOPI)

These defaults are applied when an index definition is created. They can be changed by selecting
the Storage tab on the Properties screen of an index.

119

Settings - Metadata Versioning
This option enables you to alter the Metadata Versioning settings.

Metadata Versioning

Select or clear the corresponding check box to set when to auto-version the metadata. All
settings are selected by default.

120

Settings - Documentation
This options enables you to alter the documentation settings.

The Documentation Name sets the name of the appropriate tab in the properties dialog.

The Documentation Label sets the the label or description of the appropriate documentation
tab.

The Documentation User defines if the documentation information is visible to end users and
included in end user documentation.

The Documentation Before Columns defines if the documentation tab information is shown in
the documentation before or after the column information.

The Documentation Order defines the field order on the Properties screen tabs.

121

Settings - Available Load Types
This option enables you to activate or deactivate the various load types available in RED, based
on Target and Source database.

Select from the combination of load types supported by target and source databases, to control
the default load type options that can be set by users from the Connection and the Load table
Properties screens.

Note: The following load types are not enabled by default for newly created Teradata
repositories:
- Integration Services (SSIS) load in Database, ODBC and Windows connections.
- Native ODBC load in an ODBC connection.
- XML file load in a Windows connection.

122

Settings - Other
This option enables you to add or remove shadows in the diagrams.

Remove Diagram Shadow

Set to prevent a shadow appearing on all printable diagrams produced in the diagrammatic
window.

123

Settings - User Preferences
Select User Preferences from the Tools menu.

124

Settings - Common

Look and Feel

General

This option enables you to set the look and feel in general.

General

The Reset Look And Feel option enables you to reset all window tab positions for Builder and
Scheduler panes. Reset scheduler and report headings.

The Maximize WhereScape RED on Startup option starts WhereScape RED in full screen mode.

The Show Window Tabs At Top option displays the window tabs at the top of the screen.

The Scheduler Results in Color option turns on job status color coding in the scheduler.

The Maximum rows returned for Display Data option sets the maximum number of rows that
are returned when displaying data.

The Update Column then Previous/Next Wraps to End/Start option controls the behavior of
the directional Update buttons on the Column Properties dialogs. When enabled, the '<-Update'
button will wrap to the last column when it moves beyond the first column; and the 'Update ->'
button will wrap to the first column when it moves beyond the last column. When disabled
(default), the dialog closes after an attempt to navigate before the first column or after the last
column.

125

Panes

The Show Grid Lines in the Middle Pane option when selected, shows grid lines in the main
work area.

The Show Grid Lines in the Results Pane option when selected, shows grid lines in the results
area.

The Show Grid Lines in the Reports Pane option when selected, shows grid lines in the reports
area.

Object Lists

The List Projects for Object list option when selected, shows the projects for each object in the
middle pane object list.

The List Storage for Object list option when selected, shows the storage for each object in the
middle pane object list.

The Tree Item Padding option enables you to select the number of pixels used to pad tree items
when the tree items represent an Object; for example, in the Object Pane and the Browser Pane.
Padding is added to the top and bottom of each tree item. Padding can be set from 0-10 pixels,
default value is 2.

Warning: Both these options impact on the speed lists are generated. Since they are enabled
by default, both options can be deactivated to speed up the process or if considered irrelevant
according to user's preferences.

Code Editor

This option enables you to set the look and feel in code editor.

126

Code Editor

The Show Code as Word Wrapped option enables you to have word wrapping applied to code by
default.

The Code Editor Font option enables you to select the font used in code editors.

The Code Editor Background Color option enables you to select the background color when
editing code.

The Code View Background Color option enables you to select the background color when
viewing code.

The Procedure Indent Size option enables you to specify the number of spaces that are
generated when a TAB character is used within the Procedure editor. Permitted range is 2
through 10.

The Script Indent Size option enables you to specify the number of spaces that are generated
when a TAB character is used within the Script editor. Permitted range is 2 through 10.

The Template Indent Size option enables you to specify the number of spaces that are
generated when a TAB character is used within the Template editor. Permitted range is 2 through
10.

127

Confirmation Prompts

This option enables you to set the look and feel in confirmation prompts.

Confirmation Prompts
• Prompt to Regenerate Indexes when Rebuild Procedures - If set, always prompts for

index regeneration whenever an update procedure is rebuilt.
• Prompt when Truncate Table via Context Menu - If set, always pops up a confirmation

message before the truncate command is executed.

128

Diagrams

This option enables you to set the look and feel in the diagrams.

Diagram

The Diagram Column Details option shows the columns as the initial diagram.

When set, the Tracking Report Indentation output includes tabs to show dependency level.

129

Property Grids

This option enables you to set the look and feel in the property grids.

Property Grid

The Show Property Grid Item Description option shows the property grid item description. The
default is selected.

The Show Property Grid Toolbar option shows the property grid toolbar. The default is
selected.

The Show Property Grid Inplace Buttons option shows the property grid buttons for all items.
The default is selected.

The Default Property Grid Sort Order option enables you to select the default property grid sort
order for items. The options are Categorized, Alphabetical and No Sort and the default is
Categorized.

The Display Property Grid Boolean as option enables you to select how boolean items are to be
displayed. The options are Text and Check box and the default is Text.

The Text for Boolean True option enables you to enter the text for the boolean value True.

The Text for Boolean False option enables you to enter the text for the boolean value False.

The Highlight Property Grid Changes option enables you to highlight changed items in the
property grid. The default is True.

The Minimum displayed lines for Multiple-Line items option sets the minimum display lines
for multi-line inputs.

The Maximum displayed lines for Multiple-Line items option sets the maximum display lines
for multi-line inputs.

130

Local Naming Conventions
The various options are described below.

General

This option enables you to set the local naming conventions.

Local Naming General

Set this option if you want to Use Local Naming Conventions. If this option is set, the Local
Naming of Tables, Key Columns and Indexes options is enabled in the object tree.

Note: If this option is set, it can overwrite short names and object prefixes.

131

Local Naming of Tables

This option enables you to set the Local Naming of Tables.

Define the prefix and suffix used in the default naming convention for each table type.

132

Local Naming of Source Mappings

This option enables users to set the Local Naming of Source Mappings options.

The Source Mapping Prefix option enables you to set the prefix used in the default source
mapping naming convention.

The Source Mapping Name Type enables you to set the basis for the source mapping naming.

The Source Mapping Suffix enables you to set the suffix used in the default source mapping
naming convention.

133

Local Naming of Key Columns

This option enables you to set the Local Naming of Key Columns.

The Key Prefix option sets the prefix used in the default key naming convention.

The Key Name Type option sets the basis for the key naming.

The Key Suffix option sets the suffix used in the default naming convention.

134

Local Naming of Indexes

This option enables you to set the Local Naming of Indexes.

The Index Prefix option enables you to set the prefix used in the default index naming
convention.

The Index Name Type enables you to set the basis for the index naming.

The Index Suffix enables you to set the suffix used in the default index naming convention.

135

Local Paths
This option enables you to set the local paths for documentation, backup and restore and for
versioning to disk.

Documentation Path

Sets the local documentation directory.

Backup And Restore

The Backup Executable option sets the override for backup executable. By default, WhereScape
RED tries to find the path of the backup executable. This is bcp.exe for SQL Server, exp.exe for
Oracle and db2cmd.exe for IBM DB2. This edit box provides the ability to specify the exact
location and name of the executable. This is useful when WhereScape RED cannot find the
program or if there are multiple versions of the program on the PC.

The Restore Executable option sets the override for restore executable. By default, WhereScape
RED tries to find the path of the restore executable. This is bcp.exe for SQL Server, imp.exe for
Oracle and db2cmd.exe for IBM DB2. This edit box provides the ability to specify the exact
location and name of the executable. This is useful when WhereScape RED cannot find the
program or if there are multiple versions of the program on the PC.

Version to Disk

Set the locations and names for Versions to disk. If any of the three version to disk paths are set,
WhereScape RED will automatically create ascii files containing the applicable ddl or code each
time an automated version occurs in the entered directory.

136

Outputs
This option enables you to set the Output user preferences.

File Output

The Output File Directory option enables you to set the path for output files created from the
middle pane.

The Output File Extension option enables you to set the file extension for output files created
from the middle pane. This value determines the program that will auto open files.

The Output File Auto Open option enables you to automatically open the results in files created
from the middle pane.

The Output File Delimiter option enables you to set the characters that separate each field
within each record of output files created from the middle pane. Common values are , and |.

The Output File Delimiter String Replace option enables you to set the characters that will
replace the delimiter character if it occurs inside a field.

The Output File String Encapsulation option enables you to set the characters that are used to
enclose string values of files created from the middle pane. Common values are " and '.

The Output File String Encapsulation Replace option enables you to set the characters that
will replace the encapsulation string if it occurs inside a field.

The Output File End Of Line option enables you to set the characters saved at the end of each
record of files created from the middle pane. Common values are \n, \r and \t.

The Output File End Of Line Replace option enables you to set the characters that will replace
the end of line string if it occurs inside a field.

137

Middle Pane Clipboard Output

The Clipboard Delimiter option enables you to set the characters that separate each field within
each record of clipboard output created from the middle pane. Common values are , and |.

The Clipboard Delimiter String Replace option enables you to set the characters that will
replace the delimiter character if it occurs inside a field.

The Clipboard String Encapsulation option enables you to set the characters that are used to
enclose string values of clipboard output created from the middle pane. Common values are " and
'.

The Clipboard String Encapsulation Replace option enables you to set the characters that will
replace the encapsulation string if it occurs inside a field.

The Clipboard End of Line option enables you to set the characters saved at the end of each
record of clipboard output created from the middle pane. Common values are \n, \r and \t.

The Clipboard End of Line Replace option enables you to set the characters that will replace
the end of line string if it occurs inside a field.

138

Other
This option enables you to set the Other user preferences.

Other

The Trace Unix Sessions option traces all Unix activity undertaken by WhereScape RED until it
is terminated. The file WslMedTelnet.txt is created in the program directory for WhereScape
RED. This option is intended for debugging of specific Unix problems and the setting of this
switch would normally be done at the request of WhereScape when attempting to solve a Telnet
issue. This setting is only relevant for the PC on which the setting is made (e.g. it is not a global
setting for the repository).

Note: When set to true, the following warning appears:

139

Settings - Current Repository

Look and Feel
This option enables you to set the look and feel for the current repository.

Repository Color Schemes

Set the primary and background color schemes for the current repository.

140

Settings - Language Options
Select Language Options from the Tools menu.

Languages can be defined via the Tools>Language Options menu. This option is only available
for SQL Server databases and applies only to dimension, fact and OLAP objects. A blank entry
means that no languages have been defined and thus no translations can be saved.

To add a language

Click the Add Language button; enter the new language ID and click OK.

To delete a language

First select the language from the drop-down list and then click the Delete Language button.

Note: All translations for the selected language will also be deleted.

141

Language

The language Reference/ID.

Language Description

The language Description.

Analysis Services Language

Used to identify the language ID as used in Analysis Services.

143

Parameters are a means of passing information between two or more procedures and between the
RED environment and procedures. They can be edited within the RED environment by selecting
the Tools>Parameters menu option. A list of parameters is displayed as per the example below:

A parameter can be added, edited, copied or deleted by using the right-click menu in the
Parameter column:

Typical parameter usage may be the global definition of how many days should be looked back for
change data, a month or processing period etc.

C h a p t e r 6

Parameters

144

Parameters can be used in load tables to place limits in a 'Where' clause, etc. See Database Link
Load - Source Mapping (see "Database Link Load - Source Screen" on page 223) for more
information.

They are also used by stage table procedures as variables. See Generating the Staging Update
Procedure (on page 337) for more information.

Two procedures are provided to enables procedures to read and write parameters. These
procedures are WsParameterRead (on page 921) and WsParameterWrite (on page 925). Using
these procedures, a procedure can load and use the contents of a parameter, modify an existing
parameter, or add a new parameter.

145

Connection objects serve several purposes in WhereScape RED:

1 They are used to browse potential source data in source systems and to acquire metadata.
Potential source data includes database tables and flat files.

For database tables, WhereScape RED:
• Uses the ODBC Source set on each connection to browse the source system.

• Acquires the metadata for new load tables built from the source system using drag and
drop.

For files, WhereScape RED:
• Connects directly to Windows, UNIX/Linux or Hadoop to analyze the source file for the

new load table and acquire its metadata.

• Prompts for user input for any metadata not available in the source file.

NOTE1: ODBC connections must be either User DSN or System DSN. File DSN connections
are not supported.

NOTE2: Windows and UNIX connections do not have an ODBC Source property. UNIX
connections are use for UNIX and Linux systems.

2 Load tables with a connection of Connection type ODBC extract data from source systems
using ODBC. The ODBC Source of the connection is the ODBC DSN used for the extract.

NOTE: If a Teradata TPT compliant ODBC DSN is defined in the Connection Properties
menu, the TPT DSN is used for TPT ODBC Loads.

3 Each data warehouse metadata repository must have a Data Warehouse connection to use
drag and drop to create new objects (other than load tables) in the data warehouse.
WhereScape RED:
• Uses the ODBC Source set on the Data Warehouse connection to browse the Data

Warehouse database.

• Acquires the metadata for any tables built from existing data warehouse tables.

NOTE: This connection always has a Connection type of Database.

C h a p t e r 7

Connections

146

4 Cube objects require a connection to define the Analysis Services server used to create and
load cubes. This is a connection with a Connection type Microsoft Analysis Server 2005+.

5 Export objects require a connection to define the target environment where exported data is
written. This is a connection with a Connection type of UNIX or Windows.

In This Chapter

Connection Types ... 147
Browsing a Connection ... 184
Changing a Connection's Properties ... 188
Reset Meta Database Connections .. 188
Connection Settings for BDA .. 189
Connection Extended Properties .. 195

147

Connection Types
Connections can be set up via the following methods:

• Connections to the Data Warehouse/Metadata Repository (see "Database - Data
Warehouse/Metadata Repository" on page 147)

• Connections to Another Database (see "Database" on page 155)
• ODBC Based Connections (see "ODBC" on page 159)
• Connections to Windows (see "Windows" on page 163)
• Connections to UNIX/Linux
• Connections to Hadoop
• Connections to Microsoft Analysis Servers (see "Microsoft Analysis Server 2005+" on page

178)

148

Database - Data Warehouse/Metadata Repository
This section describes the connection to the Data Warehouse. It describes in greater detail the
connection Properties as they apply to Database type connections and specifically to a Data
Warehouse or Metadata repository connection.
The Data Warehouse connection is the connection that stores the metadata repository and it is
the connection that is used in the drag and drop functionality to create the dimension, stage, fact
and aggregate tables. This connection is also used to create cubes.

Connection types also impact the available load methods.

TIP: The Data Warehouse connection must exist, if you wish to use drag and drop to create
dimensions, stage tables, fact tables, aggregates and cubes.

Data Warehouse connection example
• A User ID and Password must be specified or
• As below a Teradata Wallet User ID and TD Wallet String.

149

General

Connection Name

Name used to label the connection within WhereScape RED. Typically this is Data Warehouse

Connection Type

Indicates the connection source type or the connection method such as Database, ODBC,
Windows, Unix. Here the connection type is Database.

Database Type

Type of database such as DB2, Greenplum, Hive, Netezza, Oracle, SQL Server, Teradata. Default is
(local).

ODBC Data Source Name (DSN)

ODBC Data Source Name (DSN) as defined in the Windows 32-bit ODBC Data Source
Administrator.

Note: The ODBC Source Name defined in RED must be the same on all machines that use the
corresponding connection.

WhereScape RED Metadata Connection Indicator

Distinguishes the special connection that identifies the WhereScape RED data
warehouse/metadata repository. This option must be enabled for Data Warehouse/Metadata
Repository type connections.

Note: There should only be one data warehouse/metadata connection in a WhereScape RED
repository.

Source System

Database ID

Database Identifier (e.g. Oracle SID or TNS Name, Teradata TDPID) or Database Name (e.g. as in
DB2 or SQL Server).

Database Link Name

Optional name of a Database Link that is used to access the database. Only required field for
Database type connections where the database is not on the same server as the data warehouse. If
the server is on the same database the link doesn't need to be defined and the field can be left
blank.

For connections to databases located in different servers where a database link load is required:

• if the database link already exists to this source database then enter that link name in this
field

• if the link doesn't exist then enter a link name

150

Big Data Adapter Settings

JDBC Connection String (JDBC URL)

Connection string used by the WhereScape Big Data Adapter to access this database. This is
required for Apache Sqoop loads involving this connection.
The token $OBJECT_DATABASE$ will be replaced by the name of the database containing the
object (e.g. load table) being operated on.
Users loading into Teradata from a Hive or Hadoop connection using the Teradata connection
manager for Sqoop, who need to load into more than one database, will need to add
DATABASE=$OBJECT_DATABASE$ into their JDBC URL on the DataWarehouse connection (e.g.
jdbc:teradata://192.168.60.226/DATABASE=$OBJECT_DATABASE$).
BDA will replace $OBJECT_DATABASE$ with the database containing the load table when loading
into this connection, and with the source schema defined on the load table when loading from
this connection.

JDBC Driver Class Name

JDBC driver class to be used by the WhereScape Big Data Adapter. This field must be set if the
JDBC URL is set.
Select the appropriate JDBC Driver class name from the drop-down list. If this is left empty this
will not be specified in generated commands.

Omit Sqoop Driver Option

If set, the --driver option to Sqoop will be omitted. This is required for certain connection types
such as Oracle connections.
If you select the Omit Sqoop Driver Option check-box, the driver parameter will not be used in
sqoop command line. This is a requirement for Oracle at the moment, as suggested by Sqoop
documentation for 1.4.5.

Sqoop Connection Manager Class

Custom Sqoop connection manager class. Corresponds to the --connection-manager command
line argument. Leave blank of this is not required.

Include Database/Schema Name in Sqoop Table Option

If set, the --table option to Sqoop will include the database/schema name of the destination table
when performing Apache Sqoop loads into this connection. This is incompatible with some
connection managers, for example the Cloudera Connector Powered by Teradata. If this is not
set, users must ensure that the database/schema is otherwise communicated to Sqoop, for
example by using the $OBJECT_DATABASE$ token in the in the JDBC Connection String.

Include Sqoop Columns Option

If set, the --columns option to Sqoop will be included when performing Apache Sqoop loads into
this connection. This is incompatible with some connection managers, for example the Cloudera
Connector Powered by Teradata. If this is not set, users must ensure that the order of columns in
the loads match the order in the metadata.

151

Database Credentials

Extract User ID

Database User that has access to SELECT from the source system tables to extract data.

Extract User Password

The password of the data warehouse user. For SQL Server, this field can be left blank if using a
trusted login, or the server login password.

Administrator User ID

Left blank.

Administrator User Password

Left blank.

Teradata Wallet User ID

Database User ID that has access to SELECT from the source system tables to extract data.

Teradata Wallet String

The Teradata Wallet String is the string replacing the username and password for your
connection. Teradata TD Wallet is a Teradata product part of the TTU (Tools and Utilities). Refer
to Teradata documentation if you don't have a TD Wallet created already.

JDBC User ID

User ID to login as using JDBC via WhereScape Big Data Adapter (optional).

JDBC Password

Password to login with when using JDBC via WhereScapeBig Data Adapter (optional).

ODBC User Default

Select either Extract User ID or Teradata Wallet from the drop-down menu as the default log on
method.

Other

Default Schema for Browsing

Optional comma-delimited list of schemas for the browser pane filter. Enter the schema(s) you
want the connection to browse by default on the right browser pane.

New Table Default Load Type

The default Load Type for new Load tables created using this connection.

Note: The available options in this drop-down list is configured from Tools>Options>Available
Load Types (see "Settings - Available Load Types" on page 120).

152

New Table Default Load Script Connection

The default Script Connection used for new Load Tables, created using this connection.

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this
connection.

SSIS Connection String

Connection string to be used by Microsoft SQL Server Integration Services (SSIS) to connect to
the data source or destination. The SSIS Connection String is a required field for SSIS based
loads.
For more details on how to create a SSIS Connection String and load data via an Integration
Services Load package, see section SSIS Loader or Loading Data from Flat Files using SSIS.

Note: A connection string is typically composed of multiple property name/value pairs that are
semi-colon delimited.

SSIS Use Column Names

Determines whether to use column names or column titles for SSIS loads. Teradata OLE DB driver
by default returns titles. Leave this option disabled.

Data Type Mapping Set

Mapping Set to use when converting from a source database data type to a destination database
data type.

Default Transform Function Set

Function Set that is selected by default in the Transformation dialogs.

When Connection is an OLAP Data Source

This section of fields is only relevant and will only be visible if the Datawarehouse field is
enabled. These fields are required so that the data warehouse can be used as a source for the
Analysis Services cubes.

MSAS Connection String

Connection string to be used by Microsoft Analysis Services (MSAS) to connect to the data
warehouse.

Note: A connection string is typically composed of multiple property name/value pairs that are
semi-colon delimited.

Connection Provider/Driver

Name of the Connection Provider/Driver to use to connect to the data warehouse database when
it is used as the data source for OLAP cubes. Set to TDOLEDB.

153

Data Warehouse Server

Data Warehouse Server Name, which is used when the data warehouse is used as the data source
for OLAP cubes. Set this to the Teradata TDPID.

Data Warehouse Database ID

Data Warehouse Database Identifier (e.g. Oracle SID or TNS Name, Teradata TDPID) or Database
Name (e.g. as in DB2 or SQL Server), which is used when the data warehouse is used as the data
source for OLAP cubes.

Target Connection Settings

Default Table Create DDL Template

The default Template used for generating DDL for new Tables created on targets of this
connection.

Default View Create DDL Template

The default Template used for generating DDL for new Views created on targets of this
connection.

Enable Automatic Creation of Indexes

This setting enables you to turn ON/OFF the automatic creation of metadata for indexes when
creating new objects. Neither the RED metadata nor the physical index is created, if this setting is
not enabled for objects.

This option is not selected by default. You can turn ON this option for databases that have
indexes, and if you require RED to automatically create metadata indexes for objects.

Notes: This setting only applies when creating metadata indexes for new objects and does not
affect existing metadata index records.
Turning this option OFF does not delete an object's existing metadata records or the physical
index.

Default Update Script Connection

The default Script Connection for new Update Scripts in tables created using this connection.

This setting is only displayed in connections which have a target database type for which Update
Script functionality is enabled, e.g. Custom database type.

Target Table Location [For target enabled licenses]

Add new Target Location

This option enables you to add new target database locations for objects in this connection.

154

1 Click the Add button to add the required target location for this connection.

2 Give the new target location a name and then enter the Target Database and/or Temp
Database.

3 Default target database location(s) for New Tables can also be set from the Tools>Options
menu – See Settings - Storage - Target Location (see "Target Location" on page 113).

4 For more details on setting specific target database locations on a table by table basis see
Storage (on page 202).

Temp Databases specify the location for temporarily created tables used in Load and Export
processes.

 TIP: Once the connection has been set up, you can right-click the connection in the middle
pane or double click the connection name from the left pane to view or edit the connection's
Properties.

155

Database
This section describes connections to another database source inside the same Teradata server,
but not in the WhereScape RED meta repository.

Example

Sample database connection object properties screen:

The connection object Properties window has the following fields:

General

Connection Name

Name used to label the connection within WhereScape RED.

Connection Type

Indicates the connection source type or the connection method such as Database, ODBC,
Windows, Unix. Set to Database.

Database Type

Type of database such as DB2, Greenplum, Hive, Netezza, Oracle, SQL Server, Teradata. Default is
(local).

156

ODBC Data Source Name (DSN)

ODBC Data Source Name (DSN) as defined in the Windows 32-bit ODBC Data Source
Administrator.

Note: The ODBC Source Name defined in RED must be the same on all machines that use the
corresponding connection.

Data Warehouse Connection Indicator

Only required for the Data Warehouse/metadata repository connection. Leave this check box
unselected.

Source System

Database ID

Database Identifier (Teradata TDPID).

Database Link Name

This field is always blank for Teradata.

Database Credentials

Extract User ID

Database User that has access to SELECT from the source system tables to extract data.

Extract User Password

The password of the data warehouse user.

Administrator User ID

Leave blank.

Administrator User Password

Leave blank.

Teradata Wallet User ID and Teradata Wallet String

Enter the relevant credentials when using the Teradata Wallet log on method instead of Extract
User ID and Password for connecting to another database.

157

ODBC User Default

Select either Extract User ID or Teradata Wallet from the drop-down menu as the default log on
method.

Other

Default Schema for Browsing

Optional comma-delimited list of schema(s) for the browser pane filter. Enter the schema(s) you
want the connection to browse by default on the right browser pane.

New Table Default Load Type

The default Load Type for new Load tables created using this connection.

Note: The available options in this drop-down list is configured from Tools>Options>Available
Load Types (see "Settings - Available Load Types" on page 120).

New Table Default Load Script Connection

The default Script Connection used for new Load Tables, created using this connection.

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this
connection.

SSIS Connection String

Connection string to be used by Microsoft SQL Server Integration Services (SSIS) to connect to
the data source or destination. The SSIS Connection String is a required field for SSIS based
loads.
For more details on how to create a SSIS Connection String and load data via an Integration
Services Load package, see section SSIS Loader.

Note: A connection string is typically composed of multiple property name/value pairs that are
semi-colon delimited.

Data Type Mapping Set

Mapping Set to use when converting from a source database data type to a destination database
data type. Setting this field to (Default) makes RED automatically select the relevant mapping
set, otherwise you can choose one of the standard mapping sets from the drop-down list or create
a new set.

Target Connection Settings

Default Table Create DDL Template

The default Template used for generating DDL for new Tables created on targets of this
connection.

158

Default View Create DDL Template

The default Template used for generating DDL for new Views created on targets of this
connection.

Enable Automatic Creation of Indexes

This setting enables you to turn ON/OFF the automatic creation of metadata for indexes when
creating new objects. Neither the RED metadata nor the physical index is created, if this setting is
not enabled for objects.

This option is not selected by default. You can turn ON this option for databases that have
indexes, and if you require RED to automatically create metadata indexes for objects.

Notes: This setting only applies when creating metadata indexes for new objects and does not
affect existing metadata index records.
Turning this option OFF does not delete an object's existing metadata records or the physical
index.

Default Update Script Connection

The default Script Connection for new Update Scripts in tables created using this connection.

This setting is only displayed in connections which have a target database type for which Update
Script functionality is enabled, e.g. Custom database type.

Target Table Location [For target enabled licenses]

Add new Target Location

This option enables you to add new target database locations for objects in this connection.

1 Click the Add button to add the required target location for this connection.
2 Give the new target location a name and then enter the Target Database and/or Temp

Database.

3 Default target database location(s) for New Tables can also be set from the Tools>Options
menu – See Settings - Storage - Target Location (see "Target Location" on page 113).

For more details on setting specific target database locations on a table by table basis see
Storage (on page 202).

Notes:
- The database and schema names for Custom database connections are used as follows:
<database>.<schema>.objectname
Leave database name blank if not required. Leave schema name blank to use the default schema.
- Once the connection has been set up, you can right-click the connection in the middle pane or
double click on the connection name from the left pane to view or edit the connection's
Properties.

159

ODBC
This connection is via an ODBC link. All data movement is performed using the ODBC
connection.

Native ODBC Load Example
• A User ID and Password must be specified or
• As below a Teradata Wallet User ID and TD Wallet String.

General

Connection Name

Name used to label the connection within WhereScape RED.

Connection Type

Indicates the connection source type or the connection method. Set to ODBC.

Database Type

Type of database such as DB2, Greenplum, Hive, Netezza, Oracle, Sql Server, Teradata, etc.

160

ODBC Data Source Name (DSN)

ODBC Data Source Name (DSN) as defined in the Windows 32-bit ODBC Data Source
Administrator.

Note: The ODBC Source Name defined in RED must be the same on all machines that use the
corresponding connection.

Data Warehouse Connection Indicator

Only required for the Data Warehouse/metadata repository connection. Leave this check box
unselected.

Note: There must only be one metadata connection in a WhereScape RED metadata repository.

ODBC

Work Directory

Windows directory used by WhereScape RED to create temporary files for minimal logged
extracts. The directory must exist and allow write access. There must be a different work
directory for each WhereScape RED Scheduler running on the same machine to avoid file
conflicts. Typically C:\Temp or a sub-directory of C:\Temp is used. See Native ODBC Based Load
(on page 225).

Big Data Adapter Settings

JDBC Connection String (JDBC URL)

Connection string used by the WhereScape Big Data Adapter to access this database.

JDBC Driver Class Name

JDBC driver class to be used by the WhereScape Big Data Adapter. This field must be set if the
JDBC URL is set.
Select the appropriate JDBC Driver class name from the drop-down list. If this is left empty this
will not be specified in generated commands.

Omit Sqoop Driver Option

If set, the --driver option to Sqoop will be omitted. This is required for certain connection types
such as Oracle connections.
If you select the Omit Sqoop Driver Option check-box, the driver parameter will not be used in
sqoop command line. This is a requirement for Oracle at the moment, as suggested by Sqoop
documentation for 1.4.5.

Sqoop Connection Manager Class

Custom Sqoop connection manager class. Corresponds to the --connection-manager command
line argument. Leave blank of this is not required.

161

Database Credentials

Extract User ID

Database User that has access to SELECT from the source system tables to extract data.

Extract Password

Database Password to use with the Extract User ID to login to the source system to extract data.

Administrator User ID

Leave blank.

Administrator Password

Leave blank.

Teradata Wallet User ID and Teradata Wallet String

Enter the relevant Teradata Wallet credentials instead of the Extract user and password for the
ODBC connection.

JDBC User ID

User ID to login as using JDBC via WhereScape Big Data Adapter (optional).

JDBC Password

Password to login with when using JDBC via WhereScape Big Data Adapter (optional).

ODBC User Default

Select either Extract User ID or Teradata Wallet from the drop-down menu as the default log on
method.

Other

Default Schema for Browsing

Optional comma-delimited list of schema(s) for the browser pane filter. Enter the schema(s) you
want the connection to browse by default on the right browser pane.

New Table Default Load Type

The default Load Type for new Load tables created using this connection. Set to the desired type
of ODBC load—Native, ODBC, TPT, TPT Script load, Integration Services load or Externally
Loaded.

Note: The available options in this drop-down list is configured from Tools>Options>Available
Load Types (see "Settings - Available Load Types" on page 120).

New Table Default Load Script Connection

The default Script Connection used for new Load Tables, created using this connection.

162

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this
connection.

SSIS Connection String (OLEDB)

Connection string to be used by Microsoft SQL Server Integration Services (SSIS) to connect to
the data source or destination. The SSIS Connection String is a required field for SSIS based
loads.
For more details on how to create a SSIS Connection String and load data via an Integration
Services Load package, see section SSIS Loader.

Note: A connection string is typically composed of multiple property name/value pairs that are
semi-colon delimited.

TPT ODBC Data Source Name (DSN)

The Teradata TPT compliant ODBC Data Source Name (DSN) that is to be used in the TPT Read
Operator for TPT ODBC Loads. If not populated, this defaults to the DSN defined above for this
Connection.

Data Type Mapping Set

Mapping Set to use when converting from a source database data type to a destination database
data type. Setting this field to (Default) will cause RED to automatically select the relevant
mapping set.

Target Connection Settings

Default Table Create DDL Template

The default Template used for generating DDL for new Tables created on targets of this
connection.

Default View Create DDL Template

The default Template used for generating DDL for new Views created on targets of this
connection.

Enable Automatic Creation of Indexes

This setting enables you to turn ON/OFF the automatic creation of metadata for indexes when
creating new objects. Neither the RED metadata nor the physical index is created, if this setting is
not enabled for objects.

This option is selected by default. You can turn OFF this option for databases that do not have
indexes, and if you do not require RED to automatically create metadata indexes for objects.

Notes: This setting only applies when creating metadata indexes for new objects and does not
affect existing metadata index records.
Turning this option OFF does not delete an object's existing metadata records or the physical
index.

163

Default Update Script Connection

The default Script Connection for new Update Scripts in tables created using this connection.

This setting is only displayed in connections which have a target database type for which Update
Script functionality is enabled, e.g. Custom database type.

Once the connection has been set up, you can right-click on the connection in the middle pane or
double click on the connection name from the left pane to view or edit the connection's
Properties.

164

Windows
This connection is back to the PC that you are working on, or to a host Windows PC.

General

Connection Name

Name used to label the connection within WhereScape RED.

Connection Type

Indicates the connection source type or the connection method, such as Database, ODBC,
Windows, Unix. Set to Windows.

Windows Host

Windows Host Name

IP address or host name that identifies the Windows machine. Leave blank to connect to the local
machine.

165

Work Directory

Windows directory used by WhereScape RED to create temporary files for minimal logged
extracts. The directory must exist and allow write access. There must be a different work
directory for each WhereScape RED Scheduler running on the same machine to avoid file
conflicts. Typically C:\Temp or a sub-directory of C:\Temp is used.

Database ID

Database Identifier (Teradata TDPID).

Database Server/Home Directory

Optional to specify the Database Home Directory if it is different from the standard home
directory.

Credentials

Windows User ID and Password

Leave this blank if you are connecting to your own PC. Enter details if you are connecting
remotely to another Windows system.

Dss User ID and Password/ Teradata Wallet User ID and Teradata Wallet String

Enter the relevant details for connecting to the Data Warehouse. Enter either DSS User ID and
Password or Teradata Wallet credentials depending on the log on method selected.

166

Other

Default Path for Browsing

Optional default Path for browser pane filter. When a path has been selected in this field, it
becomes the initial point for browsing and it is also expanded on open in the right hand browser
pane.

New Table Default Load Type

The default Load type for new tables created using this connection.

Notes:
The available options in this drop-down list is configured from Tools>Options>Available Load
Types (see "Settings - Available Load Types" on page 120).
The following load types are not enabled by default for newly created Teradata repositories:
- Integration Services (SSIS) load in Database, ODBC and Windows connections.
- Native ODBC load in an ODBC connection.
- XML file load in a Windows connection.

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this
connection.

Data Type Mapping Set

Mapping Set to use when converting from a source database data type to a destination database
data type. Setting this field to (Default) makes RED automatically select the relevant mapping
set, otherwise you can choose one of the standard mapping sets from the drop-down list or create
a new set.

Once the connection has been set up, you can right-click the connection in the middle pane and
view the Properties for that connection.

To test the connection
• Select Browse > Source Tables from the top menu.
• In the right pane you should be able to drill down to the area required.

167

UNIX
This section describes the connection properties as they apply to UNIX connections. From a UNIX
connection you can only process flat file loads.

Note: If the UNIX/Linux connection returns a blank screen or an error message in the Results
pane after the connection is browsed, take necessary action through the Server (SSH) tab next to
the main Builder and Scheduler tabs.

. This tab is displayed after browsing
the UNIX connection.

Sample UNIX connection screen:

General

Connection Name

Name used to label the connection within WhereScape RED.

Connection Type

Indicates the connection source type or the connection method such as Database, ODBC,
Windows, Unix. Set to UNIX.

168

UNIX/Linux Host

UNIX/Linux Host Name

IP address or host name that identifies the UNIX machine.

Script Shell

Path to the POSIX-compliant UNIX/Linux shell to use for generated scripts. For UNIX hosts, set
to /bin/ksh. For Linux hosts set to /bin/sh.
If this field is left blank, a default will be chosen based on the name of the connection and the
type of database used for the WhereScape RED metadata repository.

Loader Host Identification

IP Address or host name(s) that identifies the Loader/ Multiple hosts can be entered with using a
comma (,) to delimit.

Work Directory

Windows directory used by WhereScape RED to create temporary files for minimal logged
extracts. The directory must exist and allow write access. There must be a different work
directory for each WhereScape RED Scheduler running on the same machine to avoid file
conflicts. Typically C:\Temp or a sub-directory of C:\Temp is used.

Database ID

Source Database Identifier (Teradata TDPID).

Database Server/Home Directory

Optional to specify the Database Home Directory if it is different from the standard home
directory.

Connection Protocol

Telnet or Secure Shell (SSH) protocol to use to connect to the UNIX/Linux machine. For SSH, the
'Secure Shell (SSH) Command' property is enabled to specify how to connect.

Secure Shell (SSH) Command

Command to execute to connect to a UNIX/Linux machine using the Secure Shell (SSH) protocol
such as C:\Program Files(x86)\PuTTY\plink.exe -ssh $HOST$ -l $USER$ -pw $PASSWORD$

169

Pre-Login Action, Login Prompt, Password Prompt, Post-Login Action, and Command
Prompt.

These fields are only used to create a Telnet connection to the host machine. WhereScape RED
uses the Telnet connection in the drag and drop functionality. It is not used in the actual
production running of the Data Warehouse, and is only necessary if you wish to use the drag
and drop functionality.

Pre-Login Action

Response or command to send BEFORE logging in to the UNIX/Linux machine. Typically this is
NOT necessary but it can be used to indicate that the UNIX/Linux Login Prompt is preceded by a
line-feed (\n). However it is preferable that the UNIX/Linux login displays the Login Prompt
without anything preceding it. [Optional]

Login Prompt

The UNIX login prompt, or the tail end of the login prompt, e.g, ogin as:

Password Prompt

The UNIX password prompt, or the tail end of the password prompt, e.g, ssword:

Post-Login Action

Not often used but may be necessary to respond to a login question. It is preferable that the UNIX
login goes straight to the command prompt.

Command Prompt

Enter the UNIX/Linux command prompt, or the tail end of that prompt, typically $

Note: In order to ascertain some of the above fields you have to log in to the UNIX system.

Credentials

UNIX/Linux User ID

User Account to login to the UNIX/Linux Host.

UNIX/Linux User Password

Password to login to the UNIX/Linux Host.

DSS User ID

Database User to connect to the WhereScape RED metadata repository.

DSS User Password

Database Password to connect to the WhereScape RED metadata repository.

Teradata Wallet User ID and Teradata Wallet String

Enter the relevant Teradata Wallet credentials instead of the DSS User and Password for the Unix
connection if using the Teradata log on method.

170

Other

Default Path for Browsing

Optional default Path for browser pane filter. When a path has been selected in this field, it
becomes the initial point for browsing and it is also expanded on open in the right hand browser
pane.

New Table Default Load Type

The default Load type for new tables created using this connection. Select from the File Load,
Script based load or Externally loaded options.

Note: The available options in this drop-down list is configured from Tools>Options>Available
Load Types (see "Settings - Available Load Types" on page 120).

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this
connection.

Data Type Mapping Set

XML files have been created to store mappings from one set of data types to another. Setting this
field to (Default) makes RED automatically select the relevant mapping set, otherwise you can
choose one of the standard mapping sets from the drop-down list or create a new one.

To validate the fields
• Right-click on the connection name
• Select Telnet window

This will provide a telnet window that can be used to log on to the UNIX server.

To test the drag and drop functionality
• From the top menu select Browse>Source Tables
• Drill down to the area required
• Select an object from left pane and drag it to the middle pane

Connection Failures

In the event that a telnet connection cannot be established to the UNIX host the following result
box will normally appear after approximately 30 seconds.

Attempt the connection again, and using the Window menu option select the Telnet window.
This displays the login session, and provides an insight as to why the connection is not being
completed.

171

If the situation cannot be resolved a telnet trace can be acquired. Select the Tools>Options menu
and click the Trace all Unix sessions check box. Try to do the connection or browse again. A log
file called WslMedTelnet.log will be created in the WhereScape program directory. Edit the log
file and ensure there are no passwords visible and then contact WhereScape support, using the
WhereScape forum at http://www.wherescape.com.

Closing the Connection

To close the collection, right-click in the browser pane and select Close UNIX/LINUX session:

172

Hadoop
This section describes in greater detail the Connection Properties as they apply to Hadoop
connections.
Hadoop as a source enables RED users to connect to the Hadoop System and process two load
types from a Hadoop source into a Teradata repository. These connections must always be set via
a Secure Shell (SSH) protocol.
Please note that WhereScape RED only fully supports HDFS as the underlying file system.

The two load types that can be processed from RED are:

• Native SSH Load - connections to Hadoop on UNIX/Linux from which users do flat file loads.
To process a Native SSH load, select Hadoop as the connection type set the remaining
connection properties.

• TPT Load - connections to Hadoop from which users can do TPT script-based loads. To
process Hadoop TPT loads, select Hadoop as the connection type and set the remaining
connection properties.

For Hadoop TPT Loads, users will need to have the following system prerequisites before setting
up a connection within RED:

• Install Hadoop
• Include Hadoop Client Jar files in Classpath

Example for an Apache Hadoop environment setup
#Hadoop
export PATH=$PATH:/opt/hadoop-2.4.1/bin:/opt/hadoop-2.4.1/sbin

#For Teradata TPT Load (Hadoop)
export CLASSPATH=$(find /opt/hadoop-2.4.1/share/hadoop/hdfs -name *.jar -printf '%p:' | sed
's/:$//')
export CLASSPATH=$CLASSPATH:$(find /opt/hadoop-2.4.1/share/hadoop/common -name *.jar -
printf '%p:' | sed 's/:$//')

Tip: When the Big Data Adapter settings are populated in Hadoop connections, RED can
load data from Hadoop into Hive and/or Datawarehouse tables and also perform loads from
Hadoop directly into the Datawarehouse using Sqoop through WhereScape RED's Big Data
Adapter (BDA).
For more information about these settings, see the Big Data Adapter Settings fields description
below and see also Connection to the Data Warehouse (see "Database - Data
Warehouse/Metadata Repository" on page 147), Configuring your database for use by BDA and
Apache Sqoop Load.

173

Note: If the Hadoop connection returns a blank screen or an error message in the Results pane
after the connection is browsed, take necessary action through the Server (SSH) tab next to the
main Builder and Scheduler tabs.

 This tab is displayed after
browsing the Hadoop connection.

Sample Hadoop TPT connection screen:

General

Connection Name

Name used to label the connection within WhereScape RED.

Connection Type

Indicates the connection source type or the connection method such as Database, ODBC,
Windows, Unix. Set to Hadoop.

174

Apache Hadoop

UNIX/Linux Host Name

Enter the IP address or host name that identifies the Hadoop server.

Script Shell

Path to the POSIX-compliant UNIX/Linux shell to use for generated scripts. For UNIX hosts, set
to /bin/ksh. For Linux hosts set to /bin/sh.
If this field is left blank, a default will be chosen based on the name of the connection and the
type of database used for the WhereScape RED metadata repository.

Work Directory

Windows directory used by WhereScape RED to create temporary files for minimal logged
extracts. The directory must exist and allow write access. There must be a different work
directory for each WhereScape RED Scheduler running on the same machine to avoid file
conflicts. Typically C:\Temp or a sub-directory of C:\Temp is used.

Database ID

Enter the Source Database Identifier (Teradata TDPID).

Database Server/Home Directory

Optional to specify the Database Home Directory if it is different from the standard home
directory.

Connection Protocol

Telnet or Secure Shell (SSH) protocol to use to connect to the Hadoop machine. For SSH, the
'Secure Shell (SSH) Command' property is enabled to specify how to connect.

Secure Shell (SSH) Command

Command to execute to connect to a Hadoop machine using the Secure Shell (SSH) protocol, such
as C:\Program Files\PuTTY\plink.exe -ssh $HOST$ -l $USER$ -pw $PASSWORD$.
In-built variables $HOST$, $USER$ and $PASSWORD$ can be used here for the required host,
user and password fields.

Pre-Login Action, Login Prompt, Password Prompt, Post-Login Action, and Command
Prompt.

These fields are only used to create a Telnet connection to the host machine. WhereScape RED
uses the Telnet connection in the drag and drop functionality. It is not used in the actual
production running of the Data Warehouse, and is only necessary if you wish to use the drag
and drop functionality.

175

Pre-Login Action

Response or command to send BEFORE logging in to the host machine. Typically this is NOT
necessary but it can be used to indicate that the host Login Prompt is preceded by a line-feed
(\n). However it is preferable that the host login displays the Login Prompt without anything
preceding it. [Optional]

Login Prompt

The host login prompt, or the tail end of the login prompt, e.g, ogin as:

Password Prompt

The host password prompt, or the tail end of the password prompt, e.g, ssword:

Post-Login Action

Not often used but may be necessary to respond to a login question. It is preferable that the UNIX
login goes straight to the command prompt.

Command Prompt

Enter the host command prompt, or the tail end of that prompt, typically >.

Note: In order to ascertain some of the above fields you will have to log in to the host system.

TPT HadoopHost

IP address or host name (and optional port number) that identifies the Hadoop Host to a TPT load
routine, in order to connect to the Hadoop file system from the machine you run TPT. e.g,
HadoopHost:9000 or 127.0.0.1:9000.
If this is not specified, then the UNIX/Linux Host Name will be used as the Hadoop Host to the
TPT load routine.

Big Data Adapter Settings

Set the two fields below to enable RED to communicate with BDA and enable loading data from
Hadoop into Hive and/or into data warehouse tables using Sqoop.
For further information about setting these fields, see Connection to the Data Warehouse (see
"Database - Data Warehouse/Metadata Repository" on page 147) and Configuring the BDA
Server/Configuring your database for use by BDA.

Big Data Adapter Host

Host machine on which the Big Data Adapter is running its web-server.

Big Data Adapter Port

Port that Tomcat is running. Default is 8080.

176

Credentials

UNIX/Linux User ID

User Account to login to the UNIX/Linux Host.

UNIX/Linux User Password

Password to login to the UNIX/Linux Host.

DSS User ID

Database User to connect to the WhereScape RED metadata repository.

DSS User Password

Database Password to connect to the WhereScape RED metadata repository.

Teradata Wallet User ID and Teradata Wallet String

Enter the relevant Teradata Wallet credentials instead of the DSS User and Password for the Unix
connection if using the Teradata log on method.

Other

Default Path for Browsing

Optional default Path for browser pane filter. When a path has been selected in this field, it
becomes the initial point for browsing and it is also expanded on open in the right hand browser
pane.

New Table Default Load Type

The default Load type for new tables created using this connection. Select from the File Load,
Native SSH or Externally loaded options.

Note: The available options in this drop-down list is configured from Tools>Options>Available
Load Types (see "Settings - Available Load Types" on page 120).

New Table Default Load Script Template

The default Template used for generating Scripts for new Load Tables created using this
connection.

Data Type Mapping Set

XML files have been created to store mappings from one set of data types to another. Setting this
field to (Default) makes RED to automatically select the relevant mapping set, otherwise you can
choose one of the standard mapping sets from the drop-down list or create a new one.

177

To test the drag and drop functionality
• From the menu strip select Browse>Source Tables
• Drill down to the area required
• Select the object from the left pane and then drag it to the middle pane

Closing the Connection

To close the collection, right-click in the browser pane and select Close UNIX/LINUX session:

178

Microsoft Analysis Server 2005+
A Connection to an Analysis Services Server provides the location for cubes defined in the
metadata repository.
This connection is used in the creation and processing of cubes. An example screen follows:

Connection Name

Enter a name to identify the connection to the Analysis Services server.

Connection Type

The connection type is chosen from the drop-down list. Select "Microsoft Analysis Server 2005”.

Analysis Server

Enter the name of the Analysis Services server you wish to connect to. This must be a valid server
name. Contact your system administrator if you do not have a valid server name.

User ID and Password

Not used, leave blank.

179

Microsoft Analysis Server 2005+ - OLAP Cubes
A Connection to an Analysis Services server provides the location for cubes defined in the
metadata repository. This connection is used in the creation and processing of cubes.

A sample screen follows:

General

Connection Name

Enter a name to identify the connection to the Analysis Services server

Connection Type

Indicates the connection source type or method. Select Microsoft Analysis Server 2005+.

Server Mode

The operational mode that Microsoft Analysis Services will use. Select Multidimensional from
the drop-down list.

180

SSAS Client Version

Microsoft Analysis Services Client version available for connecting to the SSAS database. It is
recommended that the client version matches your database version.

If a 'Fail - missing AMO data provider' message is displayed in the Results pane when attempting
to execute the OLAP action, check that the correct SSAS client version is specified and that the
respective version of the data provider is installed on the client workstation.

Note: If you have SSAS client version 2008 installed on your computer, WhereScape recommends
selecting 2012 for the SSAS client version.

If the required SQL Server Analysis Management Objects (AMO) are missing, see the following
article for more information: https://msdn.microsoft.com/en-us/library/dn141152.aspx.

Online Analytical Processing (OLAP)

Analysis Services Server Name

Enter the name of the Analysis Services server you wish to connect to.

Credentials

Analysis Services (SSAS) User ID and Password

User Name used to connect to Analysis Services when using SQL Server Authentication. Can be
left blank for a trusted connection using Windows Authentication.

Analysis Services (SSAS) User ID and Password

Password used to connect to Analysis Services when using SQL Server Authentication. Can be left
blank for a trusted connection using Windows Authentication.

181

Microsoft Analysis Server 2005+ - Tabular Mode
A Connection to an Analysis Services server in Tabular Mode provides the location for Tabular
cubes defined in the metadata repository. This connection is used in the creation and processing
of Tabular cubes.

NOTE: Relationships must be created manually for tables stored on a Tabular target, for more
information see Relationship Maintenance (on page 983).

A sample screen follows:

General

Connection Name

Enter a name to identify the connection to the Analysis Services server

Connection Type

Indicates the connection source type or method. Select Microsoft Analysis Server 2005+.

Server Mode

The operational mode that Microsoft Analysis Services will use. Select Tabular from the drop-
down list.

182

SSAS Client Version

Microsoft Analysis Services Client version available for connecting to the SSAS database. It is
recommended that the client version matches your database version. If the required SQL Server
Analysis Management Objects (AMO) are missing, see the following article for more information:
https://msdn.microsoft.com/en-us/library/dn141152.aspx.

Online Analytical Processing (OLAP)

Analysis Services Server Name

Enter the name of the Analysis Services server you wish to connect to. You may need to specify
the port number of the Analysis Services instance. To find your port number, follow the
procedure documented in this Microsoft article: https://support.microsoft.com/en-
us/kb/2466860.

An example of your Analysis Server (SSAS) Server Name using the port number in RED would be:
VH1D-REDSQL:49449\TABULAR

Credentials

Analysis Services (SSAS) User ID and Password

User Name to connect to Analysis Services with when using SQL Server Authentication. Can be
left blank for a trusted connection using Windows Authentication.

Analysis Services (SSAS) User ID and Password

Password to connect to Analysis Services with when using SQL Server Authentication. Can be left
blank for a trusted connection using Windows Authentication.

183

Target Table Location

Add new Target Location

Click the Add new Target Location button to specify the name of the database associated with the
targets to be used with this connection. To use the Tabular Mode functionality, it is required to
create targets in the Tabular connection.

• The Target Name will be the relevant Tabular Database's name displayed in RED.
• The Target Database will be the relevant Tabular Database's name displayed in Analysis

Services.

184

Browsing a Connection
The tables or files associated with a connection can be displayed in the Browser Pane by:

1 selecting the Browse>Data Warehouse menu option to browse for the data warehouse
connection.

2 selecting the Browse>Source Tables menu option to browse a source system connection.

3 right-clicking on a Connection in the Object Pane and selecting Browse Connection, or
4 clicking on one of the two browser buttons on the toolbar:

The orange button is used to browse the data warehouse connection and the blue button is used
to browse a source system connection.

Each button remembers the last connection it browsed, so in this way one button can be used for
the Data Warehouse and one for a source system.

Clicking on one of the buttons will display the source tables without first displaying the source
browser dialog box. To change the connection, click the small black down arrow next to one of
the browser buttons on the toolbar and select Change Connection.

The current connection being browsed is shown in the status bar at the bottom right of the
screen.

185

Browser Icons

When browsing a connection the following legend applies for the source tables and objects.

This legend is displayed via the Help>Source Legend menu.

186

Connection Browse Properties

TIP: When browsing to a connection leave the schema field blank in order to see all
schemas.
To have RED browsing a specific schema or schemas by default, go to a Connection's Properties
screen and enter the schema(s) to browse on the Default Schema for Browsing field.

To change the properties of the connection in the Browser Pane:

• Right-click on a connection in the Object Pane and select Browse Connection, or

• Click the down arrow next to one of the Browser buttons on the toolbar and select Change
Connection.

187

The List Source Tables Connection is displayed:

The dialog enables you to change the properties of the connection you are browsing.

The User ID and Password fields can be changed in order to browse the connection as a different
user. A TDWallet string can be supplied as the password by using the Password is TDWallet
string check-box.

Selecting the Include Rowcount check-box displays a row count in brackets next to each source
table in the Browser Pane. This is only available for databases which update table statistics.

A filter can also be applied when browsing a connection. Filters can be applied to any
combination of:

• One or more Schema names (separated by commas),
• a standard SQL table name,
• specific Object Types (Tables, Views or System Objects),
• a Group, or
• a Project

The Data Type Mapping Set drop-down can be used to change the data type conversion used
during drag and drop operations. If set to (Default) the Data Type Mapping to use for each drag
and drop operation is set based on the source and the Target Location selected, but can be
changed in the Add New Metadata Object dialog if needed.

188

Changing a Connection's Properties
Whenever a Connection's properties are changed, the impact on the objects that use that
connection must be considered. Load tables have information from the connection stored within
their properties.
This information is stored in the load objects to minimize the complexity of the scheduled tasks.
The database link and database name are stored locally in each load table.
When either the database link or database name are changed on a connection, WhereScape RED
displays the Update Associated Load Tables dialog box.
Click Yes to automatically update the database link and/or database name on all associated load
tables.

This can also be done manually:

1 Double-click on the Load Tables object group in the left pane. This displays all Load tables
in the middle pane.

2 Select those load tables that use the connection that has changed. Use standard Windows
selection.

3 Right-click to bring up a menu and select Change Connect/Schema.

4 Select a different connection (e.g. Data warehouse) to change all the selected load tables.
5 Repeat step (3) and now change the tables back to the altered connection. This updates all the

Load tables with the new connection information.

Note: Whenever a load connection's properties are changed. All load tables that use the
connection must be changed. See above. You will be asked if you wish to perform this action
when changing the connection.

189

Reset Meta Database Connections
From the Help menu, on RED's main top bar, users can select the Reset Meta Database
Connections option.

This option disconnects and frees most connections that RED has to any existing ODBC
connections. This option can be useful for users that are already connected to existing ODBC
sources but want to alter the credentials used.
When this option is used, RED attempts to release most existing ODBC connections so the next
time an ODBC Connection is used, RED will attempt to reestablish a link.

NOTE: At this stage, not all RED connections are handled via this mechanism and therefore not
all connections will be reset when this option is used.

1 To reset meta database connections, click the Help menu in the main top bar and then click
Reset Meta Database Connections.

2 Click OK on the following reset connection dialogs.

190

Connection Settings for BDA
This topic describes the required settings for connections using the WhereScape Big Data Adpater
(BDA).

The WhereScape Big Data Adpater (BDA) is designed as an adapter to RED, focused on executing
ELT related processing within the Hadoop/Hive eco-system.
For more information about the initial BDA setup, overview of BDA, the prerequisites and step-
by-step instructions to set up BDA, please refer to section 18. BDA of the RED Setup
Administrator Guide.

The BDA connection settings are always visible on both Hive and Hadoop connection types,
which include the BDA server settings.

BDA settings are also displayed for any other database connection types if there is a Hive or
Hadoop connection in the Datawarehouse, but these will only have the JDBC settings displayed.

Important: A Hive connection must exist before BDA settings (Connection>Properties>Big
Data Adapter Settings) appear in other database connections.

BDA enables RED to use Sqoop as a load method to load data from Hive and HDFS into the
Datawarehouse and also to load data into Hive as a target.

Only one BDA server connection is supported per Metadata repository.

191

Configuring the BDA Server
This topic explores the configuration of the BDA server in Hadoop connections to enable loading
data from Hadoop into Hive and/or Datawarehouse tables as a source database into RED
Datawarehouse tables using Sqoop.

For RED to be able to load data from Hadoop into Hive and/or Datawarehouse tables and also
perform loads from Hadoop directly into the Datawarehouse using Sqoop, the Big Data Adapter
settings need to be populated in Hadoop and Hive connections.

For more information about what is required for loading data into RED using Sqoop, see the Big
Data Adapter Settings fields description below and see also Connection to the Data Warehouse
(see "Database - Data Warehouse/Metadata Repository" on page 147), Connections to Hadoop
and Apache Sqoop Load.

Hadoop connection example

192

Big Data Adapter Settings

Big Data Adapter Host

Host machine on which the Big Data Adapter is running its web-server.

Big Data Adapter Port

Port that Tomcat is running. Default is 8080.

Configuring your database for use by BDA
Connections using BDA enable loading data into Hive as a target database and they also enable
loading data from Hive into Datawarehouse tables as a source, using the Apache Sqoop load
method.

This connection type needs to include the JDBC connection string (JDBC URL) and related
attributes (username, password) for the Hive database. The JDBC User and Password is usually
the same as the Extract User ID but users can specify different credentials if necessary.

The Big Data Adapter settings will also need to be populated in the Datawarehouse connection.
For more details, see Connection to the Data Warehouse (see "Database - Data
Warehouse/Metadata Repository" on page 147).

RED can also load data directly into Hive from any database source. This load can also be
processed via an Apache Sqoop load and the JDBC settings on the Hive connection will need to be
populated. Please see the connection example and field description below for more details about
this.
When loading data into Hive as a target, users can also add specific target locations in their Hive
ODBC connections, if they have a Hive target license enabled.

Hive connection properties will be the same for any database sources.

Note: When creating objects in a Hive target database from a Teradata repository, artificial keys
must be of type ‘int’, not ‘integer’. To correct this, go to Tools -> Options -> Global Naming
Conventions -> Global Naming of Key Columns and change the relevant Data Types to ‘int’.

193

Example of a Hive ODBC connection

Big Data Adapter Settings

Big Data Adapter Host

Host machine on which the Big Data Adapter is running its web-server.

Big Data Adapter Port

Port that Tomcat is running. Default is 8080.

Base Target Directory for Sqoop Loads

HDFS directory in which to create target directories for Sqoop loads using the Big Data Adapter.

JDBC Connection String (JDBC URL)

Connection string used by the WhereScape Big Data Adapter to access this database.

JDBC Driver Class Name

JDBC driver class to be used by the WhereScape Big Data Adapter. This field must be set if the
JDBC URL is set.
Select the appropriate JDBC Driver class name from the drop-down list. If this is left empty this
will not be specified in generated commands.

194

Omit Sqoop Driver Option

If set, the --driver option to Sqoop will be omitted. This is required for certain connection types
such as Oracle connections.
If you select the Omit Sqoop Driver Option check-box, the driver parameter will not be used in
sqoop command line. This is a requirement for Oracle at the moment, as suggested by Sqoop
documentation for 1.4.5.

Sqoop Connection Manager Class

Custom Sqoop connection manager class. Corresponds to the --connection-manager command
line argument. Leave blank of this is not required.

195

Example connection from a source database to Hive

The full JDBC connection string is:
jdbc:sqlserver://192.168.60.100/DATABASE=SQL_Hive,DBS_PORT=1025

Connection Extended Properties

Note: These settings enable you to assign extended property values for a connection. Refer to the
Extended Properties (on page 1065) chapter for more information.

196

197

Various properties can be set on all table objects in WhereScape RED. The screens available in the
Table Properties Dialog depend on the object type selected and can be a subset of:

• Properties (on page 197)
• Storage (on page 202)
• Override Create DDL (on page 209)
• Source (on page 210)
• Documentation Fields (on page 210)
• Notes (on page 212)

In This Chapter

Properties ... 197
Storage ... 202
Override Create DDL .. 209
Source ... 210
Documentation Fields .. 210
Table Extended Properties ... 211
Notes .. 212

C h a p t e r 8

Table Properties

198

Properties
The fields available on the Properties screen depend on the Object Type selected. More specific
information is available in the respective chapters describing each Object Type. Rebuilding
Tables using Update Procedures and templates is applicable to the objects listed and described in
the table below.

Fields Description

Table Name The user-name of the selected table.

Unique Short Name The short name is derived from the Table Name and is used internally
by RED.

Table Type The drop down list provides a list of the available sub types for the
selected table type.

Description Optional, free text.

Update Procedure The name of the procedure to be used when updating the table.

Custom Procedure The name of the procedure to be used for custom updates of the
table.

Edit Edit the content of the displayed update procedure.

199

Fields Description

Rebuild Rebuild the Update Procedure. See Rebuilding Update Procedures (on
page 199) for more details.

Regenerate Regenerate the selected Update Procedure using the responses to
previously provided information.

200

Rebuilding Update Procedures
The update procedure for a data warehouse object can be generated by RED using parameters
provided by the user, or it can be generated using a prepared template. Templates appropriate to
the table type must first be created before they can be selected and used to generate update
procedures. The option to select a template is only available if RED detects the presence of an
appropriate template.

Note: Update procedures for Data Vault and Source Mapping objects can only be generated
using a template. Refer to Generating Update Procedures for the Data Vault Stage Table (on
page 436) and Generating Update Procedures for Source Mapping Objects (on page 1115)
respectively for details.

Generating an Update Procedure without a template

If RED does not detect a template, the drop-down option is not be displayed. RED manually
regenerates the update procedure when Rebuild is clicked, by prompting the user to respond to a
series of input requests. Refer to the Generating Update Procedure topic in the each of the data
warehouse object chapters for further information and the steps to manually generate update
procedures.

Generating an Update Procedure via a Template

If RED detects the presence of a template, the Rebuild button provides additional options, in a
drop down list, for rebuilding the selected update procedure. Two possible rebuild options are
provided:

• Rebuild - RED rebuilds the procedure using the last selected option as a default when the
Rebuild button is clicked. If a template has not been previously used then RED prompts you
for inputs as required for the rebuild.

• Rebuild without template - RED rebuilds the update procedure, but ignores any previously
used template. RED prompts you for inputs as required for the rebuild.

• Rebuild with template - Prompts you to select from a list, a template that is appropriate to
the current object type. Depending on the selected template, the user is prompted to provide
responses that will be used by the parameters within the template.

Notes:
1. If a template has been previously used, RED uses this template by default when Rebuild is
clicked. The name of this template is displayed below the Update Procedure field of the table
Properties screen.
2. During procedure generation, a message prompt is displayed if any source tables are missing in
the Source Join property of the Source tab on the Update Build Options screen. Select from the
following options:
- Yes to return to the Source Join screen and edit the Source Join property.
- No to continue with the procedure generation.
- Cancel to cancel the procedure generation.

201

The following table summarizes the conditions that will display the drop-down options in the
Rebuild button or that require a template. All other conditions will require a manual rebuild.

Table
Object

SQL
Server

Oracle Teradata DB2 Greenplu
m

Netezza Hive/PDW/
Custom

Stage Both Both Both Both Both Both Template
Only

Data Vault
Stage

Template
Only

Template
Only

Template
Only

Templat
e Only

Template
Only

Template
Only

Template
Only

Fact Both Both Both Both Both Both Template
Only

Fact Rollup Both Both Red
Automatio
n Only

Both Red
Automatio
n Only

Red
Automatio
n Only

Template
Only

Fact Kp1 Both Both Red
Automatio
n Only

Both Red
Automatio
n Only

Red
Automatio
n Only

Template
Only

Aggregate Both Both Both Both Red
Automatio
n Only

Red
Automatio
n Only

Template
Only

Dimension Both Both Both Both Both Both Template
Only

Data Store Both Both Both Both Both Both Template
Only

Normal,
Hub, Link,
Satellite,
Custom1 or
2

Both Both Both Both Both Both Template
Only

Both This object type / database combination supports both RED automation
for code generation and template based code generation.

RED Automation only This object type / database combination uses RED automation for code
generation and template based code generation is not currently available.

Template only This object type / database combination only supports template based
code generation.

202

Storage
The Storage tab of the table Properties window displays the options applicable for storing data in
the associated RDBMS.

The fields available on the Storage tab depend on the RDBMS on which you are storing the data:

For a Teradata example, see Table Storage Screen - Teradata.

For a Tabular example, see Table Storage Screen - Tabular (on page 205).

For information on changing storage locations for multiple tables at once, see Bulk Table Storage
Change (on page 206).

203

Table Storage Screen - Teradata
Typical Storage screen for a Teradata Table:

Location

Target Location

The target location that defines the path to the location for the table. Select (local) for a local
table (see note below) or select the target schema, if you are placing tables in different schemas.

Note: The Force Target Usage setting in the Tools>Options>Storage>Target Usage removes
the local target option from the drop-down list. See Target Usage (on page 112) for details.

To add another database/schema to the list see more details on Connections to the Data
Warehouse/Metadata Repository (see "Database - Data Warehouse/Metadata Repository" on
page 147). To set default target locations for tables see Settings - Storage: Target Location (see
"Target Location" on page 113).

Database Type

The database type for a connection that is used for target Data Warehouse tables.

204

Database

The database where the table is located. Leave blank to use the default for the connection or local
environment.

Temp Database

The database where temporarily created tables are located. Leave blank to use the default for the
connection or local environment. This field is only used in Load and Export processes.

Create DDL Template

Optional. Specify the template to use when creating a new DDL procedure script. This option is
only visible if a DDL template is available for this database type. Default value is None.

NOTE: Since Teradata does not support the moving of tables, all affected tables will also need to
be manually recreated after any storage changes.

WARNING: Please note that changing the Storage for Dimension and Fact tables will need to be
handled very carefully as artificial key relationships between Dimension and Fact could become
out of sync.
Recreating Fact Tables and large Dimension tables might take a considerable amount of time.

Storage

Primary Index

Select the Primary Index Type.

Primary Index Name

Name of the Primary Index.

Primary Index Columns

Columns of the Primary Index.

MultiSet

This options makes this table multiset. A Multi Set table allows for duplicate rows.

Fallback

This option enables Fallback. A fallback table is a duplicate copy of a primary table. Each fallback
row in a fallback table is stored on a different AMP to the one used for the corresponding row in
the primary table. The default is no fallback.

Data Block Size

The block size for the table. Default is blank.

205

Enable Free Space

Use Database default Free Space setting. Disabling this will enable setting of the Free Space.
Default is blank.

Free Space

The amount of free space to leave in the table for future update. Enter a value between 0 and 75
for a percentage or to use the Database default set the above option.

Other

Optional CREATE Clause

Database-specific-and-compliant DDL to append to the generated CREATE TABLE statement.

Table Storage Screen - Tabular
Typical Storage screen for a Tabular Table:

206

Location

Target Location

The path for the MSAS target. To add another MSAS target see Microsoft Analysis Server 2005+ -
Tabular Mode (see "Microsoft Analysis Server 2005+ - OLAP Cubes" on page 179) . To set
default target locations for tables see Settings - Storage: Target Location (see "Target Location"
on page 113).

Note: The Force Target Usage setting in the Tools>Options>Storage>Target Usage removes
the local target option from the drop-down list. See Target Usage (on page 112) for details.

Database Type

For information purposes only, this displays Tabular, for MSAS Tabular targets.

Database

For information purposes only, this displays the database name.

Other

Hidden

Specifies whether the table is hidden from reporting client field lists.

Processing

Processing Type

Set the database reporting tools processing to Regular or LazyAggregations in the target Analysis
Services database.

Bulk Table Storage Change
Table Storage locations can be changed through the Storage tab on a table's Properties screen
but they can also be changed in bulk by using the following process:

207

1 Double-click on the desired object group in the left pane. This displays all the tables in that
group in the middle pane.

2 Select the tables that you wish to change the storage for using standard Windows selection.
3 Right-click to bring up a menu and select Storage.

4 On the Target Location Selection screen, select the new target location from Target
Location drop-down list to change the location of all the selected tables in bulk.

Note: The Force Target Usage setting in the Tools>Options>Storage>Target Usage
removes the local target option from the drop-down list. See Target Usage (on page 112)
for details.

208

5 Follow the next dialogs to complete the bulk storage change.
Please note that all procedures from the affected tables need to be manually changed or
regenerated after a bulk storage change.

6 Since Teradata does not support the moving of tables, all affected tables also need to be
manually recreated after any storage changes.

WARNING: Please note that changing the Storage for Dimension and Fact tables need to be
handled very carefully as artificial key relationships between Dimension and Fact could
become out of sync.
Recreating Fact Tables and large Dimension tables might take a considerable amount of time.

209

Override Create DDL
WhereScape RED allows to create tables using a specific DDL statement instead of the RED
generated DDL.
You can override and edit the created DDL on load, stage, data store, EDW 3NF, dimension, fact,
aggregate, user defined view and retro table's Override Create DDL tab.

Creating a table using a specific DDL statement:
1 If you are creating a new table, drag and drop the table from the right pane to the middle

pane.

• On the Properties dialog, click on the Override Create DDL tab.
• Click on the Derive DDL button at the bottom of the dialog to get the generated DDL as

your starting point.

• Edit or clear the generated DDL and enter the desired DDL..

2 If you are editing an existing table, double click on the table object on the left pane to open
the Properties dialog.

• Click on the Override Create DDL tab.
• Click on the Derive DDL button at the bottom of the dialog to get the generated DDL as

your starting point.

• Edit or clear the generated DDL and enter the desired DDL.

210

3 The "end of statement" indicator is <EOS> by default but can be configured in
Tools>Options>Code Generation>General.

TIP: To revert to RED deriving the original generated DDL at runtime, leave the Override
DDL text box blank or clear out the contents.
Clicking the Derive DDL button at the bottom of the screen pops-up a warning message, asking if
you want to replace the current DDL definition with new DDL.

Source
The Source tab is only available for Load Tables. More information is available in the Loading
Data (on page 215) chapter, or more specifically:

• Database Link Load - Source Screen (on page 223)
• Native ODBC Based Load - Source Screen (on page 226)
• TPT Load - Source Screen (on page 235)
• Loading Data into RED Load Tables using SSIS (on page 245)
• Flat File Load - Source Screen

Documentation Fields
Each table has a set of associated documentation fields. These are used to store descriptive
metadata about the tables and how they are used.
The contents of each field appears in the generated documentation. Their order and placement
can be customized in the generated documentation using the Tools>Options menu.

The following fields are available to store additional metadata information that will appear in the
generated WhereScape RED documentation:

• Purpose
• Concept
• Grain
• Examples
• Usage

NOTE: The names of these fields are completely arbitrary and can be changed in the generated
documentation in the Tools>Options>Documentation menu.
By default, these fields are not enabled for Load and Stage tables, but can be enabled using the
Tools>Options>Documentation menu.

211

Up to 4000 characters of information can be stored in each field.
Some or all of these fields can be removed from the documentation via the
Tools>Options>Documentation menu.

Documentation Fields Screen

212

Table Extended Properties

Note: These settings enable you to assign extended property values for a table object. Refer to
the Extended Properties (on page 1065) chapter for more information.

213

Notes
The Notes screen is used to enter notes against WhereScape RED objects.
The notes on an object are included in the generated documentation. Up to 4000 characters of
information can be stored in the Notes field.
By default, the Notes field is enabled for all object types.
The Notes field can be removed from the documentation via the
Tools>Options>Documentation menu.

215

Load tables are the first entry point for all information coming into the data warehouse. There are
multiple ways of getting data into load tables.

• Database link load - loaded from another database.
• Externally loaded - the load table is populated by some external process, e.g. an ETL (Extract,

Transform and Load) tool or EAI (Enterprise Application Integration) tool, putting the data
directly into the load tables.

• ODBC based load - the data is loaded via an ODBC connection, either directly by reading and
inserting each row (a Load Type of ODBC load), or via a file by reading from the source
system using ODBC and writing to a file and then loading the file (a Load Type of Native
ODBC). ODBC connections require a Windows scheduler.

• File load - a flat file load where most of the processing is managed and controlled by the
scheduler.

• Script-based load - a flat file load where a host system, e.g. UNIX or Windows script file is
executed to perform the load. Script-based loads on Windows supports both DOS Batch and
PowerShell scripts (see "Windows PowerShell Scripts" on page 653).

• XML file load - loading an XML file from a Windows directory.

Notes:
The following load types are not enabled by default for newly created Teradata repositories:
- Integration Services (SSIS) load in Database, ODBC and Windows connections.
- Native ODBC load in an ODBC connection.
- XML file load in a Windows connection.
Refer to Tools>Options>Available Load Types (see "Settings - Available Load Types" on page
120) for details.

C h a p t e r 9

Loading Data

216

In This Chapter

Choosing the Best Load Method ... 217
Load Drag and Drop .. 218
Database Link Load ... 221
ODBC Based Load ... 225
Native ODBC Based Load .. 225
TPT Load ... 233
TPT UNIX/Linux Script Load... 240
SSIS Loader ... 243
Flat File Loads ... 253
XML File Load ... 277
External Load .. 281
Apache Sqoop Load ... 281
Handling Missing Source Columns ... 288
Load Table Transformations ... 290
Changing Load Connection and Schema .. 291

217

Choosing the Best Load Method
Several different factors need to be considered when choosing the best type of load table to use:

• Source and target database types
• Locations of source and target databases
• Available connectivity options and performance
• Amount of data being loaded
• Is the data delivered or fetched?
• For delivered data, what format is it in and does it require processing to make it loadable?

Load Table Decision Tree

The following decision tree can be used when selecting the best type of load table:

218

Load Drag and Drop
The simplest way to create a load table is to use the drag and drop functionality of WhereScape
RED.

Drag and drop can be used for all connection types and the process is the same in all cases.

1 Browse to the source system connection (Browse>Source Tables).
2 Create a drop target by double-clicking on the Load Table object group in the left pane. The

middle pane should have a column heading of Load Table Name for the leftmost column.

3 Select a table or file in the right pane and drag it into the middle pane. Drop the table or file
anywhere in the middle pane.

4 Answer the resulting prompts to create the load table. See the tutorials for examples on how
to create load tables using drag and drop.

5 When using targets, you can also change the predefined Target Location settings in
Tools>Options>Storage (see "Target Location" on page 113). At the time of the table's drag
and drop, the Add a New Metadata Object dialog enables editing the Target Location and
Data Type Mapping, so the table's location can be changed on a table by table basis.
The Data Type Mapping field is automatically set, based on the source and the Target
Location selected, but can be changed if needed.

NOTE: The option Add meta data columns to table is used for creating load tables that are
used in creating Data Vault objects. If this option is selected, two DSS columns
(dss_record_source and dss_load_date) are included in the meta data for the table and are
populated by transformations. These two DSS columns could equally be applied to other load
tables not used in a Data Vault system but are particularly important to comply with the Data
Vault standards. Please refer to the Data Vaults chapter (see "Data Vaults" on page 413) for
more details.

219

WhereScape RED supports loading tables of up to 2048 columns, however this maximum number
of column loading restriction can in fact be lower than the target database or tools permit.
The target database will provide users the appropriate warning if the maximum number of
columns loaded is breached at runtime.

Notes: When creating a load table in WhereScape RED by dragging over a source table, RED will
read the structure of the table on the source system and attempt to construct an equivalent load
table in the data warehouse. There are occasions when the load table creation will fail due to
incompatible data types in the target data warehouse. The remedy is to change the data types of
the particular attributes which are causing the load failure. Once corrected the load table should
create. It is important that the table load is tested to ensure that data can be INSERTED into the
load table from the source table. If the load fails then the data may need to be explicitly
converted to the destination data type using a column transformation that is executed during the
load (see Load Table Column Transformations (on page 597)). Incompatible data types that
cause load table creation errors are typically caused by:
1. User defined data types in the source database.
2. Incorrect data type mapping during load table definition in WhereScape RED.
3. Data types that cannot be inserted into (e.g. identity columns on SQL Server)

220

Data Type Mappings
In Tools>Data Type Mappings, the first menu option enables you to maintain the data type
mappings.

The user interface for maintaining data type mappings is as follows:

See Data Type Mappings (on page 991) for a detailed explanation of Data Type Mappings.

221

Database Link Load
Database Link Load would have the data loaded from another database located on the same
Teradata server into the data warehouse. This load type is used infrequently on Teradata.

Database Link Load - Properties
The fields of the Load Table Properties screen for database link loads are described below:

Load Table Name

The table name is limited by Teradata to a maximum of 30 characters and must be unique. Table
name defaults can be set in Tools > Options to define a prefix or a post fix that can be added in
order to identify clearly that this is a load table. Example: load_customer.

By default, RED uses the prefix load_ for load tables.

Unique Short Name

The table short name is limited in size to 22 characters and must be unique. The short name is
used in the naming of indexes, keys and procedures.

222

Description

Enter here a description of the table. This description appears in the documentation that can be
generated once the data warehouse is built.

Connection

Enter the connection being used to get the data. The connections for load tables can be changed
on bulk see Changing load Connection and Schema (on page 291).

Load Type

The load type is typically defined by the connection, and should not normally be changed. This
drop-down shows all valid load types for the connection.

Database Link

This field is not active in WhereScape RED for Teradata.

Script Template

The script template used for a script based load.

Script Name

This field is only active for script based loads.

Pre-load Action

Select an action to be performed on the table before the load occurs. Options are:

• Truncate
• Execute pre-load Sql
• Both Truncate and Execute pre-load Sql
• No action

Pre-load Sql

If a Pre-load Action of Execute pre-load Sql was selected, then the Sql statement to execute
before the load takes place should be entered in this box.

The contents of pre-load sql can be an SQL statement or a procedural block. If using a procedural
block, then the final semi-colon is required. The following examples illustrate the possible values
in this field. Note the trailing semi-colon on the procedural block example.

Example of pre-load statements:

delete from load_customer where code < 23

delete table load_customer all

Table Properties clauses (e.g. Partition)

These are clauses that are added to the end of the table create statement. Typically used for
putting partition information on the table in Teradata.

223

Post Load Procedure

A procedure that is executed immediately following the load. If you execute an externally loaded
table, no load occurs, but a post load procedure can still be executed.

Post load procedures can either be manually generated from a RED provided procedure outline or
generated leveraging a RED template—refer to Rebuilding Update Procedures (on page 199) for
details.

The three fields at the bottom of the Load Table Properties screen display date information:
1. Date table structure last updated
2. Date created in database
3. Date last updated in database

Database Link Load - Source Screen
The fields on the Load Table Source screen for database link loads are described below:

Load Type

Method of loading data into the table. The available options are dependent on the Source
Connection. Defaults to the 'Default Load Type' of the Source Connection. Can be specified via
the Properties screen.

224

Source Connection

The connection that identifies the source database. Can be specified via the Properties page.

General

Select Distinct Values

Include the DISTINCT keyword in the SQL SELECT statement.

Source Schema

Schema within the source database where the source table resides.

Derive Source Tables(s) and Source Columns

Derive the Source Table(s) and Source Column(s) properties (of this dialog) from the source
details of this table's columns.

Note: The existing property values will be overwritten.

Source Table(s)

Name of the table or tables that the data is sourced from.

Override Source Column/Transformations

Ignore the source and transformation details of this table's columns and instead use the override
details specified below. See the section on Load Table Transformations (on page 290) below for a
fuller explanation.

Where and Group By Clauses

Optional SQL SELECT WHERE-clause and/or GROUP BY-clause. Parameter names can be
specified using $Pparameter_name$ (with leading $P and trailing $), which are replaced at run-
time by the parameter's value.

TIP: This is where you can build a statement to handle change data.

Parameter values can be in-line replaced and included in the 'Where' clause. Prefix the parameter
name with a '$P' and add a trailing '$'. For example, if we have a parameter called
SALES_LOCATION_CODE we could construct a statement, such as WHERE location_code =
'$PSALES_LOCATION_CODE$' AND region_code = 'NY'. When this statement is executed, the
value of the parameter will replace the parameter name. For example if the parameter was set to
'New York' then the statement would execute as: WHERE location_code = 'New York' AND
region_code = 'NY'.

Override Load SQL

Optional SQL statement to load data into the table, which overrides all other properties. The
specified SQL will be executed instead of generated SQL. For a linked database specify a complete
INSERT statement. For an ODBC source specify only the SELECT statement.

225

ODBC Based Load
An ODBC based load provides an extensive option for acquiring data from many sources. It is
slower than most other forms of load, but may still be a viable option, depending on the volume
of data being loaded.

An ODBC based 'interactive load' when using the WhereScape RED tool will use the established
ODBC connection to pull the data back to the local PC, and then push the data to the data
warehouse database via a sql ODBC statement.

A scheduler load will perform in the same way, however the data is loaded into the server that is
running the scheduler and then pushed to the data warehouse database.

The obvious disadvantage in an ODBC based load is the two network transactions required, and
the overhead placed on the Scheduler Server.

The properties screens for an ODBC based load are the same as those of a database link load.
Refer to Database Link Load - Properties and Database Link Load - Source Screen (on page 223)
for more details.

Native ODBC Based Load
A Native ODBC based load is similar to an ODBC load, except it provides a faster method to move
data from another database into Teradata.

A Native ODBC based 'interactive load' when using the WhereScape RED tool will use the
established ODBC connection to pull the data back to a delimited file on the local PC, and then
push the data to the data warehouse Teradata database via a Fastload session.

A scheduler load will perform in the same way, however the data is loaded into the server that is
running the scheduler and then pushed to the data warehouse database.

For fastload loading to work all dates and times must be a character string of the form 'YYYY-
MM-DD HH24:MI:SS'. This is normally achieved via a 'During' load transformation, using the
correct casting function for the source database.

The Properties and Storage screens for a Native ODBC based load are the same as those of a
database link load. Refer to Database Link Load - Properties for more details.
Details of the Native ODBC Source screen follow.

Notes:
- The Native ODBC load in an ODBC connection is not enabled by default for newly created
Teradata repositories. Refer to Tools>Options>Available Load Types (see "Settings - Available
Load Types" on page 120) for details.
- If you are doing Native Loads using UNIX and LINUX, see section Native Loads using UNIX
and LINUX for more details about this type of load.

226

Native ODBC Based Load - Source Screen
The fields on the Source tab of the properties screen for Native ODBC loads are described below:

Load Type

Method of loading data into the table. The available options are dependent on the Source
Connection. Defaults to the 'Default Load Type' of the Source Connection. Can be specified via
the Properties screen.

Source Connection

The connection that identifies the source database. Can be specified via the Properties screen.

Select Distinct Values

Include the DISTINCT keyword in the SQL SELECT statement.

Source Schema

Schema within the source database where the source table resides.

Derive Source Tables(s) and Source Columns

Derive the Source Table(s) and Source Column(s) properties (of this dialog) from the source
details of this table's columns.

Note: The existing property values will be overwritten.

227

Source Table(s)

Name of the table or tables that the data is sourced from.

Override Source Column/Transformations

Ignore the source and transformation details of this table's columns and instead use the override
details specified below.

Where and Group By Clauses

Optional SQL SELECT WHERE-clause and/or GROUP BY-clause. Parameter names can be
specified using $Pparameter_name$ (with leading $P and trailing $), which are replaced at run-
time by the parameter's value.

TIP: This is where you can build a statement to handle change data.

Override Load SQL

Optional SQL statement to load data into the table, which overrides all other properties. The
specified SQL will be executed instead of generated SQL. For a linked database, specify a
complete INSERT statement. For an ODBC source, specify only the SELECT statement.

Native ODBC Load Routine

File Loader utility/mechanism to use to load the generated extract file.

Field Delimiter

Character that separates the fields within each record of the generated extract file. The default
value is a | character (pipe). This should be changed if pipes are possible in the source data.

UTF-8 Extract File

Data will be loaded via a UTF-8 format file. The default is unselected.

Populate Load Parameters

Populate any load-related WhereScape RED parameters, which may be used for validation
purposes.

Insert into dss_load_file Table

Populate the metadata table dss_load_file in any generated post_load procedure.

228

File Actions
A file action defines a ftp or copy step that happens to files before or after they are loaded.

Creating a File Action

Before creating a ftp file action, ensure a connection exists to the remote server where the files
will be transferred.

To create a file action:

1 Click on the File Actions tab of the load table properties dialog.

2 Click the Add New Action button.

3 Choose the Action Type from the drop-down list.

4 Enter the Action Description.

5 Choose the Action Program from the drop-down list.
6 For a ftp action:

• Choose the Action Connection for the remote server where the file will be transferred.

• Enter the ftp commands in ftp command 1 thru ftp command 9.
7 For a copy action:

• To move the data file, enter the copy to location into File Directory. If the file is to be
renamed at the same time, enter a new name into File Name, otherwise enter
%FILE_NAME%.

• To move the trigger file, enter the copy to location into Trigger Directory. If the trigger
file is to be renamed at the same time, enter a new name into Trigger Name, otherwise
enter %TRIG_NAME%.

8 Click on Save (Update) Action.

9 Repeat if necessary for additional file actions.
10 Click OK.

229

Sample ftp file action:

230

Sample copy file action:

231

Native Loads using UNIX and LINUX
Sometimes the Teradata database server has a LINUX non-tpa node or a MP-RAS UNIX non-tpa
node used for loading data from files. This can provide significantly better platform for loading
files into Teradata than a network connected Windows Scheduler server.

Native ODBC loads need to extract data from the source system using ODBC on a Windows
machine. An additional feature in WhereScape RED can be enabled to transfer the extract file to
LINUX or MP-RAS and then load the file on the remote non-tpa node.

The following steps enables this functionality when Native ODBC loads are scheduled:

1 Create a unix connection for the non-tpa node (see Connections (on page 145) for more
information on creating connections).

The "Unix user id" and "Unix password" are used to sign in to the remote machine specified by
"Host name".

The work directory is the default location extract files will be transferred to.

The following shows the minimum fields that need to be completed:

2 Create a new file action on each load table (see File Actions (on page 228) for more
information on file actions).

232

The file action should be look something like this:

Note: The variables $WORKDIR$ and $UNIXDIR$ refer to the work directories of the Native
ODBC connection and Unix connection respectively. The variable $FILE$ represents the
extract file being transferred to LINUX or MP-RAS.

3 Ensure ws_sched_tera_550.sh script has been set up on the MP-RAS or LINUX non-tpa node

and is scheduled to run on the machine every 5 or 10 minutes using cron or any other
scheduling software on the non-tpa node (see the appropriate section in the WhereScape
RED Installation and Administration Guide for more information on ws_sched_tera_550.sh).

233

TPT Load
A TPT ODBC based load is similar to an ODBC load, except it provides a faster method to move
data from another physical database server into your Teradata database. This includes moving
data from one Teradata server to another and moving data from any other relational database
into Teradata.

NOTE: The TPT Load type can only be used with a Windows scheduler. If using a UNIX/Linux
scheduler, refer to section 9.7 which also includes details for using the TPT Script Load type for
UNIX/Linux.

WhereScape RED runs a TPT ODBC load, by generating a TPT script based on your metadata. The
TPT script includes the following steps:

1 Extract from the source database, using the TPT ODBC operator.

2 Import into the Teradata database, using either the TPT LOAD or TPT UPDATE operator.

Cross database platform TPT ODBC loads present some challenges due to incorrect assumptions
made by TPT from time to time. You may need to add 'During' load transformations to your Load
tables and/or modify numeric data types from their apparent equivalent data type for a load to
complete successfully. This is because TPT assumes a data type with the same name in another
database is the same size in Teradata; of course this is not always the case.

234

The Properties and Storage screens for a TPT ODBC based load are the same as those of a
Database Link Load (on page 221).

NOTE: TPT Loads from ODBC connections in a Teradata repository must have ODBC connections
set up, using the appropriate DataDirect ODBC driver.
TPT Loads from ODBC Connections will not work if an non-DataDirect driver is used.

Refer to the previous section for details. Details of the Source mapping screen is provided in the
next section.

235

TPT Load - Source Screen
The fields on the Source tab of the Properties screen for TPT loads are described below:

Load Type

Method of loading data into the table. The available options are dependent on the Source
Connection. Defaults to the 'Default Load Type' of the Source Connection. Can be specified via
the Properties screen.

Source Connection

The connection that identifies the source database. This can be specified via the Properties
screen.

Select Distinct Values

Include the DISTINCT keyword in the SQL SELECT statement.

Source Schema

Schema within the source database where the source table resides.

236

Derive Source Tables(s) and Source Columns

Derive the Source Table(s) and Source Column(s) properties (of this dialog) from the source
details of this table's columns.

Note: The existing property values will be overwritten.

Source Table(s)

Name of the table or tables that the data is sourced from.

Override Source Column/Transformations

This ignores the source and transformation details of this table's columns and uses the override
details specified below instead.

Allow Missing Source Columns

Allow the load to occur when one or more of the source columns do not exist. (see the section on
Handling missing source columns (on page 288)).

Fail when incomplete Load

Controls whether the load reports failure when all the rows extracted are not loaded. The
specified exit status impacts any remaining tasks in the currently running job. When fail is
specified, the WhereScape RED Scheduler will stop/fail the job and hold any remaining tasks
when the load fails. In contrast, when fail is disabled the scheduler will continue to run any
dependent tasks in the job that is running.

Where and Group By Clauses

Optional SQL SELECT WHERE-clause and/or GROUP BY-clause. Parameter names can be
specified using $Pparameter_name$ (with leading $P and trailing $), which are replaced at run-
time by the parameter's value.

 WhereScape RED TIP: This is where you can build a statement to handle change data.

Override Load SQL

Optional SQL statement to load data into the table, which overrides all other properties. The
specified SQL will be executed instead of generated SQL. For a linked database, specify a
complete INSERT statement. For an ODBC source, specify only the SELECT statement.

TPT Load Type

Load TPT, Update TPT or Stream TPT.

NOTE: When importing a Model from 3D to RED, select Load TPT instead of Fastload as the
Default File Loader method. FastLoad is not a valid option for loading Linux files to Teradata.
To change the Default File Loader, go to Tools->Options->Code Generation->General.

TPT Character Set

Teradata-compliant Character Set Name to use when loading, such as ASCII, UTF8, UTF16.

237

TPT ODBC Operator Attributes

Optional comma-delimited list of TPT ODBC operator Attributes, e.g. INTEGER DataBlockSize =
2048.

TPT Load/Update Operator Attributes

Optional comma-delimited list of TPT Load Operator or TPT Update Operator Attributes.

TPT Job Name

Job Name for TPT. If not set, will default to Load Name.

TPT Build Command Options

Additional options included as part of the TBuild call.

TPT Shared Memory Size

Shared memory size can be specified in bytes, kilobytes or megabytes. Examples include
2091752,2048K,2M.

TPT Minimum Sessions

Optional minimum number of sessions[1-99]. The default is one session.

Set TPT Maximum Sessions

Enables the 'TPT Maximum Sessions' property. Optional maximum number of sessions[1-99]. The
default is one session per available Access Module Processor (AMP). The maximum value cannot
exceed the number of available AMP's.

Load Read Instances

Optional number of TPT read instances[1-99]. The default is one instance.

Load Write Instances

Optional number of TPT write instances[1-99]. The default is one instance.

TPT LogView Command Options

Additional options included as part of the TLOGVIEW call. -f'*' can be added to this field to get
enhanced logging to diagnose issues in the event of a failure.

238

Cleanup after TPT Load Failure
Note: If the cause of the failed load persists (for example, an outage of the source database) then
the Reset Failed TPT Load function from the Load table's context menu can be used. This
option uses TPT functionality to clear the checkpoint file and release the database lock on the
Load table. See Working with Objects > Load Tables (see "Working with Objects" on page 15)
for details.

TPT runs all jobs in checkpoint mode by default; and if any one of these jobs fail, it can restart
based on the last checkpoint taken for the job.

Automatic Restart

An automatic restart means that a job can restart on its own, without you manually having to
resubmit the job. With the Start-of-Data and End-of-Data checkpoints, a job can automatically
restart itself when a "retry-able" error occurs (such as a database restart or deadlock) before,
during, or after the loading of data. You need to consider the following when dealing with
automatic restarts:

Jobs can automatically restart as many times as specified by the value of the RETRY option of the
TPT job-launching command. By default, a job can restart up to five times.

If no checkpoint interval is specified for a job, and the job fails during processing, the job restarts
either at the Start-of-Data checkpoint or at the End-of-Data checkpoint, depending on which one
is the last recorded checkpoint in the checkpoint file.

To avoid reloading data from the beginning, you should specify a checkpoint interval when
launching a job so that the restart can be done based on the most recent checkpoint taken.

Manual Restart

If a job fails and terminates, a manual restart can be accomplished by resubmitting the same job
with the original job-launching command. By default, all TPT jobs are checkpoint restartable,
using one of the two checkpoints at Start-of-Data and End-of-Data.

TPT also provides recovery across job steps within a job, thus if a job has multiple steps, a
checkpoint will be created for each successful step. This will allow a job to restart from the failed
step by skipping the successful steps. If, for example, you have a step to create or drop tables
before a data loading step begins, and the job fails in the data loading step; a restart of the job
would resume from the data loading step without recreating or dropping the tables. This can be
contrasted with some of the utilities, such as Fastload, where the script might contain the
statements DROP TABLE and CREATE TABLE. Such a script could not be used across restarts
because those DDL statements would be re-issued.

239

Removing Checkpoint Files

Job checkpoint files are automatically created by TPT and they are deleted if the job completes
without an error. You will however need to remove these checkpoint files before they are
automatically deleted if you wish to:

• Rerun an interrupted job from the beginning, rather than restarting it from the last
checkpoint taken before the interruption occurred.

• Abandon an interrupted job and run another job, but the new checkpoint files will have the
same names as the existing checkpoint files, due to the use of the same job name (or the
default checkpoint files created based on the logon user ID).

TPT provides a special command for users to remove checkpoint files, based on either the user ID
or the job name.

If the "tbuild" command specifies a job name, the "twbrmcp <job name>" command can be used.
If the "tbuild" command does not specify a job name, the "twbrmcp <user ID>" can be used. For
z/OS, the deletion of checkpoint files can be done through the MVS/ISPF facility.

If you want to delete checkpoint files manually, you can use one of the following commands:

• del %TWB_ROOT%\checkpoint\<job-name>.*
• del %TWB_ROOT%\checkpoint\<user-id>.*

If you want to delete checkpoint files from a user-defined directory, you can use one of the
following commands:

• del <user-defined directory>\<job-name>.*
• del <user-defined directory>\<user-id>.*

Note: If a manual restart is necessary and the checkpoint files have been removed, the simplest
method to clear the load lock on a table is to recreate the table.

240

TPT UNIX/Linux Script Load

Note: If a TPT script load is attempted where RED detects that the previous load failed, then the
pre-load truncate/delete action is not performed and a TPT restart action is performed.

Create a Unix connection as in the example below:

241

TPT UNIX Script Load - Properties
The fields on the TPT UNIX Script Load Properties screen are the following:

TIP: When doing TPT Script based loads, it is easy to use the Regenerate button to the
right of the Script Name field to regenerate the scripts.

Load Table Name

The table name is limited by Teradata to a maximum of 30 characters and must be unique. Table
name defaults can be set up (Tools>Options then Naming local or global) to define a prefix or a
post fix that can be added in order to identify clearly that this is a load table. Example:
load_customer. By default RED uses the prefix load_ for load tables.

Unique Short Name

The table short name is limited in size to 22 characters and must be unique. The short name is
used in the naming of indexes, keys and procedures.

Description

Enter here a description of the table. This description appears in the documentation that can be
generated once the data warehouse is built.

242

Connection

Enter the connection being used to get the data. The connections for load tables can be changed
in bulk. See section on Changing load Connection and Schema (on page 291).

Load Type

The load type is typically defined by the connection, and should not normally be changed. This
drop-down lists all valid load types for the connection.

ODBC Script Connection

Choose the Unix Connection.

Script Template

The script template used for a script based load.

Script Name

This field is only active if this is a script based load.

TIP: Use the Rebuild button after selecting the relevant script to be rebuilt on the the Script
Name drop-down menu.

Pre-load Action

Select an action to be performed on the table before the load occurs. Options are:

• Truncate
• Execute pre-load Sql
• Both Truncate and Execute pre-load Sql
• No action

Pre-load Sql

If a Pre-load Action of "Execute pre-load Sql" was selected, then the Sql statement to execute
before the load takes place should be entered in this box.

The contents of pre-load sql can be a sql statement or a procedural block. If using a procedural
block, then the final semi-colon is required. The following examples illustrate the possible values
in this field. Note the trailing semi-colon on the procedural block example.

Example of pre-load statements:

delete from load_customer where code < 23

delete table load_customer all

243

Post Load Procedure

A procedure that is executed immediately following the load. If you execute an externally loaded
table, no load occurs, but a post load procedure can still be executed.

Post load procedures can either be manually generated from a RED provided procedure outline or
generated leveraging a RED template—refer to Rebuilding Update Procedures (on page 199) for
details.

The three fields at the bottom of the Load Table Properties screen display date information:
1. Date table structure was last updated
2. Date created in database
3. Date last updated in database

244

SSIS Loader
Microsoft SQL Server Integration Services (SSIS) is an Extract Transform and Load (ETL) utility
that is supplied and licensed as part of Microsoft SQL Server 2005+. SSIS is built to extract data
from data sources, using extraction technologies such as OLEDB, transform the data using its
own .NET based language and then load it into data destination. SSIS is primarily used for
loading data from various sources into SQL Server, but it can be used to extract from most
databases and load into any other database.

Note: The SSIS file load in Database, ODBC and Windows connections is not enabled by default
for newly created Teradata repositories.
Refer to Tools>Options>Available Load Types (see "Settings - Available Load Types" on page
120) for details.

WhereScape RED manages the extraction and load of data into the data warehouse as part of data
warehouse processing. WhereScape RED attempts to utilize the optimum loading technology for
each supported database platform. Optimal loading performance from a database source into
Teradata can be achieved, using SSIS. WhereScape RED provides the ability to leverage the
extract and load performance available from SSIS as part of the WhereScape RED processing.
WhereScape RED does this by generating and executing an SSIS package dynamically at run time.
Any errors or messages resulting from execution are passed back into the WhereScape RED
workflow metadata to drive subsequent workflow actions. In the event of an error during
execution of the SSIS package, the package will be persisted to disk to assist the developer with
problem resolution.

To use SSIS to load data, select the relevant version of SSIS in Tools>Options>Code
Generation>General.

245

Loading Data into RED Load Tables using SSIS
To use SSIS loading, ensure that SSIS loads are enabled and that the SSIS version is set correctly
in Tools>Options>Code Generation>General.

If you are loading from a Flat File source, see Loading Data from Flat Files using SSIS.

RED can extract and load data using SSIS from database tables or flat files from a Windows
connection. As with any load into RED a connection to the source data needs to be created to
provide extraction details.
The SSIS Connection String is a valid SSIS connection string that can be used to connect to the
data source or destination.

Loading Data via SSIS from a database

If the connection is a database load then there is additional connection information that should
be supplied to use SSIS as a loading option.
This additional information needs to be supplied on both the source connection and the data
warehouse connection.

NOTE: SSIS Loads in Teradata can only be processed with a Windows Scheduler.

Creating the SSIS Connection String
1 Click on the ellipsis button to the right of the SSIS connection string field of the relevant

connection:

246

2 On the Provider tab, select the relevant OLE DB Provider and click Next.

3 On the Connection tab, select the server name, enter the information to log on to the server
and select the database on the server. Click Test Connection.

Notes: When using a specific user name and password to connect to the server instead of
using Windows integrated security, the Allow saving password check-box must be selected.
It is also recommended that the password on the SSIS connection string field that is displayed
in the connection properties is replaced with the $PASSWORD$ token that is substituted at
runtime.

247

4 Click OK.

248

5 Click OK on the Data Link Properties dialog to save the connection string settings.

249

6 The SSIS connection string is displayed.

7 Click OK to save the connection.

• Right-click on Sales SSIS and select Browse Connection.
• Accept the defaults and click OK.

250

8 In SSIS terms, you have now defined your Source in SSIS Connection Manager.
Using the same process, you need to add the SSIS Connection String to the data warehouse
connection so you can specify your Destination connection:

• Double-click on the DataWarehouse connection in the object explorer to open up the
Properties dialog.

• Follow the process above to create the SSIS Connection String, this time selecting the
OLE DB Provider for Teradata.

• Click OK to save your connection.

Note1: If the connection string is already set, then the ellipsis button will open up an editor
dialog.
Edit the connection string and click OK.
Note2: For connections that require a username and password, the connection string can also
be edited to replace the password with the $PASSWORD$ token that is substituted at
runtime. If the $PASSWORD$ token is used, RED uses the contents of the masked "Extract
User Password" property when making the connection.
E.g. "Provider=TDOLEDB.1;Password=$PASSWORD$;.."

251

9 Once the connection is defined then a load table needs to be created to hold data loaded into
the data warehouse by dragging a source table or a flat file to create a load table – (see
Loading Data (on page 215) or Loading Data from Flat Files using SSIS).
On the load table properties the Load type can be set to Integration Services load. This will
create and execute a SSIS package at run time to load data into the data warehouse load table.

252

10 The configuration options available on an SSIS load are available on the Source tab of the
load table’s Properties. These options are:

• SSIS Source-Identifier Encapsulation - Characters that are used to enclose source
column names. Options are (None), "", [], '', ``

• SSIS Source-Identifier Case Conversion - Case-sensitivity conversion applied to Source
Object Identifiers (such as table, view, and column names) in RED-generated SSIS
packages. If no conversion is applied then the exact case of the identifier defined in the
RED metadata is used in SSIS.

• SSIS Destination-Identifier Case Conversion - Case-sensitivity conversion applied to
Destination Object Identifiers (such as table, view, and column names) in RED-generated
SSIS packages. If no conversion is applied then the exact case of the identifier defined in
the RED metadata is used in SSIS.

• SSIS Destination-AlwaysUseDefaultCodePage - Forces the use of the DefaultCodePage
property value when describing character data.

• SSIS Set Destination-Code Page - Enables the SSIS destination code page property.

• SSIS Row Count Log - During an SSIS Load include Row Count logging.

253

Flat File Loads
Flat file loads can be processed from either a UNIX/Linux, Windows or Hadoop connection. As
with all other load types, it is easier to use the drag and drop functionality to create load tables.
Flat files can also be loaded using SQL Server Integration Services (SSIS). For Flat File load
instructions using SSIS, see the next section–Loading Data from Flat Files using SSIS.

The drag and drop process for flat files is as follows:

1 Browse to the directory and file via the appropriate UNIX/Linux Connection, Windows
Connection (see "Windows" on page 163) or Hadoop Connection.

2 Double click the Load Table object in the left pane to create a drop target.
3 Drag the file from the right pane and drop it into the middle pane.

4 The following dialog appears. Rename the file if necessary and click the ADD button.

NOTE: The option Add meta data columns to table is used for creating load tables that are
used in creating Data Vault objects. If this option is selected, two DSS columns
(dss_record_source and dss_load_date) are included in the meta data for the table and are
populated by transformations. These two DSS columns could equally be applied to other load
tables not used in a Data Vault system but are particularly important to comply with the Data
Vault standards. Please refer to the Data Vaults chapter (see "Data Vaults" on page 413) for
more details.

254

5 The following screen displays for file loads from Windows, UNIX/Linux and Hadoop
connections.

6

NOTES: First Row is a Header - To make changes in database tables after a table has been
defined, users can edit the First Row is a Header option in the Source tab of the relevant
table.

Hive: For File loads into Hive tables, the First Row is a Header option is a table option.
Please ensure this option is checked in the file load wizard if you want to load files with
header rows.
To make any changes after Hive tables have been defined, the First Row is a Header option
can be found in the Storage tab of the relevant Hive table.

7 The load type set in the New Table Default Load Type field of the Connection Properties

screen, is the pre-selected option in the Load type drop-down list of the wizard.

To change the desired load type and file parsing, use the Load type and File parsing drop-
down list options.

255

Load type options

• The File based load options results in a load where the bulk of the load management is
handled by the scheduler.

• The Script based load option will make WhereScape RED generate a host script and the
load table will be a Script based load. This host script is executed by the scheduler to
perform the load. For further details about Scrip based loads see section Script based
loads.

• The XML file load option will only be an available load option from a Windows
connection. To see more details about specific XML loads, see section XML File load .

• The Integration Services load option will load the file via an Integration Services
Package that is generated and executed dynamically at run time. This option is only
available from a Windows connection. For specific details about this load option, see
section Loading Data from Flat Files using SSIS.

• The Externally loaded option will not execute an actual load into the table but will
process the actions specified in the Post Load procedure property. Any After
transformations recorded against any of the columns in an Externally loaded table will
also be processed.

Post load procedures can either be manually generated from a RED provided procedure
outline or generated leveraging a RED template—refer to Rebuilding Update Procedures (on
page 199) for details.

256

File parsing options

• Single data column - with this option, the majority of the work in terms of parsing the
file must occur in a subsequent procedure within the data warehouse. The data is dumped
into a single column. The task of coding a procedure to parse the data must then be
undertaken. Three columns are created under Oracle. These include the data column, a
sequence column (row_sequence) and the file name column (row_file_name). The file
name and sequence columns can be deleted if they are not required for a File based load.

• Columns parsed - with this option, RED will attempt to parse the columns. You will be
asked for details and for the column delimiter. You then step through the columns
providing names and data types. RED attempts to guess the data type, but it needs to be
checked and the field length will probably need to be adjusted.
The following screen shows the initial file parsed screen.

NOTE: The Decimal Code button shows the decimal value of each character in the lines
retrieved from the source file. These decimal codes is shown below each line and are green.

8 Once the screen above is completed, another screen displays to enable the breakdown of the
source data into columns.
If no delimiter is entered then width based parsing is assumed and an addition width size
field is prompted for.

257

If this is a Fixed Width file loaded via TPT, the source file format can be specified later in
the File Load Source Screen of the Load table's Properties dialog.

This following screen is an example of the file parsing technique.

Use the Back button to revert to the previous column if an incorrect width or delimiter is
entered.

Conversion

During the parsing of the columns a date format conversion string can be used for date data
types only.
Any other Teradata function can be used with Multi Load or TPT Update for After Load
Transformations only. Refer to the Multi load and TPT manuals for syntax.
For example, if we are loading a column called 'product_name' we could use the following
syntax to bring over only the first 30 characters.
substr(product_name,1,30)

A special variable %FILE_NAME% can be used in a File based script load. This will be
substituted with the actual source file name.
For example, a transformation such as: '%FILE_NAME%' can be used to store the full file
name and path in a database column.

For After Load transformations, the conversion string can also entered in the relevant
column conversion field during the parsing of the columns.

258

However, to process the column conversion, users will need to do the following after the table
is created and loaded:

1. Go into the Properties of the loaded table's relevant column(s) by double-clicking on
the column(s) in the middle pane.

2. Click the Transformation tab.
3. Select the After load option in the Transformation Stage drop-down list.

4. Recreate the load table.

259

Loading Data from Flat Files using SSIS
Flat files can be loaded into RED from a Windows connection using SQL Server Integration
Services (SSIS).

The instructions below detail how to add the SSIS connection string to the data warehouse
connection and load flat files, using the drag and drop functionality to create Load tables.
To load files via SSIS, the SSIS connection string must be defined in the DataWarehouse
connection.

NOTE: SSIS Loads for Teradata only work with a Windows Scheduler.

To use SSIS loading, ensure that SSIS loads are enabled and that the SSIS version is set correctly
in Tools>Options>Code Generation>General.

260

1 To load files via SSIS, the SSIS connection string must be defined in the DataWarehouse
connection for the Destination connection to be specified:

• Double-click the DataWarehouse connection in the object explorer to launch the
Properties screen.

• Click the ellipsis button to open the wizard and define the SSIS connection string.

261

2 On the Provider tab, select the OLE DB Provider for Teradata and click Next.

3 On the Connection tab, enter the destination data source name, enter the information to
log on to the server and select the Allow saving password option. Click Test Connection.

NOTE: When using a specific user name and password to connect to the server, instead of
using Windows integrated security, the Allow saving password check box must be selected.
It is also recommended that the password on the SSIS connection string field that is displayed
in the connection properties is replaced with the $PASSWORD$ token that is substituted at
runtime.

262

4 Click OK.

263

5 Click OK on the Data Link Properties dialog to save the settings.

264

6 Click OK to save your connection.

NOTE: It is recommended that the password on the SSIS connection string field that is
displayed in the connection properties is replaced with the $PASSWORD$ token that is
substituted at runtime.

7 Browse to the directory and file from the Windows connection.
8 Double-click on the Load Table object in the left pane to create a drop target.

265

9 Click the ADD button, the following screen appears:

10 Configure the settings and click OK to continue. See the previous section for details about

these settings.

Note: The Decimal Code button shows the decimal value of each character in the lines
retrieved from the source file. These decimal codes are shown in green below each line.

266

11 The next screen enables you to breakdown the source data into columns. If no delimiter is
entered then width based parsing is assumed and an addition width size is prompted.
The following screen is an example of the file parsing technique.

Use the Back button to revert to the previous column if an incorrect width or delimiter is
entered.

12 On the Properties screen for the new load table, select Integration Services Load as the
Load Type. Click OK.

267

This creates and executes a SSIS package at run time to load data into the data warehouse
load table.

NOTES: If the table is changed to an Integration Services load and has been set up using the
wizard for the "File load (columns parsed)" flow, some columns might have transformations
set up that will not work.

In RED 6.8.4.0 date/time fields have transformations that are invalid for SSIS and will make
the load fail.
Since SSIS does not provide any configuration for the parsing of date/time fields, if users have
any date/time field special requirements, file or script-based loads provide a better load
option instead.

13 Click Yes to Create and Load the table.

268

Flat File Load - Source Screen
The fields for the Flat File Source Screen are described below:

TIP: If the file has been dragged and dropped (see "Flat File Loads" on page 253) into the
load table (middle pane) then some of the fields on this tab are automatically populated.

Load Type

Method of loading data into the table. The available options are dependent on the Source
Connection. Defaults to the 'Default Load Type' of the Source Connection. Can be specified via
the Properties page.

Source Connection

Connection to the data source (database or file system). Can be specified via the Properties page.

Load Script Template

Available for script loads only and only if there is a valid template available. Select the template
to use when generating a load script, or select (None) to use RED's built-in load script generator.
Only templates with the correct Type and Target DB will appear in this drop-down list. For more
information, see Templates (on page 673).

269

Source File Details

Source File identification and definition information.

Source Directory

The full path (absolute path) of the folder/directory containing the Source File on the Windows or
UNIX/Linux system.

Source File Name

The name of the source file containing the data to be loaded.

Source File Field Delimiter

Optional character that separates the fields within each record of the Source File. The delimiter
identifies the end of each field. Common field delimiters are tab, comma, colon, semi-colon, pipe,
tilde.
If no field delimiter is specified the record is regarded as fixed-width.

Note: If an ASCII character value is used this field may show as an unprintable character. To
enter a special character enter the uppercase string CHAR with the ASCII value in brackets (e.g.
CHAR(9)).

Source Fixed Width File Format

Source File format to be set for TPT loads of Fixed width files. This option is only available for
TPT Flat File or Script based loads from Windows and UNIX/Linux connections.
The default option for all Fixed width files is Text. To change the file format, select from Text,
Binary, Formatted or Unformatted.

Source File Record Terminator

Optional string to identify how each line/record in the Source File is
ended/terminated/delineated. The system default is used when not specified. On UNIX/Linux
systems, end-of-line is typically line-feed (ASCII 10). On Windows systems, end-of-line is
typically carriage-return (ASCII 13) and line-feed (ASCII 10).

Source File has Field Headings/Labels

Indicates whether the first line of the Source File contains a heading/label for each field, which is
not regarded as data so it should not be loaded.

270

Trigger File Details

Optional Trigger File identification and definition information. If a Trigger File is specified the
Source File will not be loaded until the Trigger File is available.

Trigger File Path

The purpose of the trigger file is to indicate that the copying/loading of the main file has
completed and that it is now safe to load the file. Secondly the trigger file may contain control
sums to validate the contents of the main load file. This field should contain the full path name
to the directory in which a trigger file is located on the Windows or UNIX systems. If this field
and/or the Trigger Name field is populated then the scheduler will look for this file rather than
the actual load file.

Trigger File Name

Refers to the name of the file that is used as a trigger to indicate that the main load file is
available. A trigger file typically contains check sums. If the trigger file exists then this is the file
that is used in the Wait Seconds, and Action on wait expire processing. (see notes under Trigger
Path above).

Trigger File Field Delimiter

If the trigger file provides control information then the delimiter identifies the field separation,
e.g, or \n for a return. The data found will be loaded into parameter values whose names will be
prefixed by the prefix specified and numbered 0 to n.

Trigger Parameter Name Prefix

If a trigger file and delimiter have been specified then the contents of the trigger file are loaded
into parameters. The parameters will be prefixed by the contents of this field and suffixed by an
underscore and the parameter number. These parameters can be viewed under
Tools>Parameters from the WhereScape RED menu bar. The checking of these parameters can
be achieved by generating a Post Load procedure. An example set of parameters may be
budget_0, budget_1 and budget_2 where there are 3 values in the trigger file and the prefix is set
to 'budget'.

Load Configuration

Configuration details to control the load processing.

Check existence of Source File

This field controls whether the load process checks if the file exists before performing the load.
This check can only be disabled when doing script-based TPT Loads from Windows and
UNIX/Linux connections, which can improve the use of built-in TPT functionality to wait for the
arrival of the file.

Wait for Source File or Trigger File

Controls whether the load process waits for the file to arrive when it is NOT available to load.
This is disabled by default but enabling this allows the wait-related properties to be specified.
When a Trigger File is specified the load waits for it rather than the Source File. Expand to set the
Wait Limit and the Action when Wait Limit Reached.

271

Wait Limit (in seconds)

Maximum duration to wait when no file is available, which is specified in seconds e.g. 1800
seconds to wait up to 30 minutes. A value of 0 equates to no wait. If the wait time expires and the
specified file cannot be found, then the load will exit with the status defined in Action, e.g.
Default Action = Error

Action when Wait Limit Reached

Action to take when the Wait Limit has been reached and no file is available. The specified action
impacts any remaining tasks in the currently running job. When 'Success' or 'Warning' is
specified, the WhereScape RED Scheduler will continue to run any dependent tasks in the
running job. In contrast, specifying the 'Error' or 'Fatal Error' actions will cause the scheduler to
stop/fail the job and hold any remaining tasks when the "Wait Limit" is reached.

File Load Routine

File Loader utility/mechanism used to load the Source File. Select MultiLoad, FastLoad, Load
TPT, Update TPT or Stream TPT. If the 'No Load' option is specified the file does not load. This
can be useful for a Script Load that has "File Actions".

Note: The MultiLoad and FastLoad options are only available, if the Enable Legacy File Load
Routine option is set in the Tools>Options>Code Generation>General (on page 108).

MultiLoad/FastLoad Options

If MultiLoad or FastLoad is selected, optional comma-delimited list of TPT Operator Attributes.
e.g. INTEGER DataBlockSize =2048.

Character Set

Teradata-compliant Character Set Name to use when loading such as ASCII, UTF8, UTF16.

TPT HadoopHost

Field that identifies the Hadoop host to the TPT load routine. This is set to the TPT HadoopHost
property of the Hadoop connection if specified there. If this not specified in the connection, the
field will display the UNIX/Linux Host name property of the Hadoop Connection.

TPT Job Name

Job name for TPT. If this is not set it will default to Load Name.

TPT Build Command Options

Additional options included as part of the TBuild call.

TPT LogView Command Options

Additional options included as part of the TLogView call. For example, adding "-f '*'" can be
added to prove greater diagnostics.

TPT Shared Memory Size

Shared memory size can be specified in bytes, kilobytes or megabytes. Examples include
2091752, 2048K, 2M.

272

TPT Load Routine Minimum Sessions

Optional minimum number of TPT sessions [1-99]. The default is one instance.

Set Load Routine Maximum Sessions

Enables the "Load Routine Maximum sessions" property.

Load Read Instances

Optional number of TPT read instances [1-99]. The default is one instance.

Load Write Instances

Optional number of TPT write instances [1-99]. The default is one instance.

Only Load Latest File

Controls whether only the latest file (or all matching files) is loaded when the "Source File Name"
includes a wildcard and multiple matching files are available.

Script Load supports File Name Wildcards

This option is only available for Update TPT or Stream TPT load routines.
It controls whether the RED generated script supports loading multiple files based on a file name
wildcard. When enabled and the "Source File name" contains a wildcard, the RED generated script
will loop to load each matching file while preserving the contents of the load table as each file is
loaded. In addition the "Archived Source Path" and/or "Archived Source File Name" properties
must be specified to allow each successfully loaded file to be archived before loading a
subsequent file.
When doing Hadoop Native TPT loads where the file load routine is Update TPT, users can
load multiple files from a Hadoop connection by adding * to the Source File Name. e. g.
hadoop_customer.csv*

Fail when incomplete load

Controls whether the load reports failure when ALL the rows in the file are not loaded. The
specified exit status impacts any remaining tasks in the currently running job. When fail is
specified, The WhereScape RED Scheduler will stop/fail the job and hold any remaining tasks
when the load fails. In contrast when fail is disabled, the scheduler will continue to run any
dependent tasks in the running job.

Validate using Header/Trailer Data

Controls whether a RED-generated Post-Load procedure validates the integrity of the Source File
and the load processing using control totals &/or counts ("check sums") from the FIRST and/of
LAST line(s) of the Source File. When enabled, any subsequently RED-generated Post-Load
procedure for this table will used the HEADER and/or TRAILER rows as a source of validation
information. Alternatively, A Trigger File can be used for the same validation purpose.

Populate Audit Log with File Actions

Controls whether details of any "File Actions" processing are recorded in the WhereScape RED
Audit Log.

273

Populate Detail Log when Successful

Controls whether additional details from the Teradata "File Load Routine" are recorded in the
WhereScape RED Error/Detail Log when the load processing is successful.

Insert into dss_load_file Table

Populate the metadata table dss_load_file.

Archived File Details

Optional Archived file identification and definition information. Once a file has been successfully
loaded or processed it can be optionally archived by moving it and/or renaming it.

Compress Source File when Archive

Optionally compresses the successfully loaded Source File if it is archived.

Archived Source File Path

Optional full path (absolute path) of the folder/directory to MOVE the successfully loaded Source
File on the Windows or UNIX/Linux system.

Archived Source File Name

Optional new name to RENAME the successfully loaded Source File to. By default, the original file
name is used it is optional to rename it. However, the in-built variable $SEQUENCE$ can be used
to include a unique sequence number in the new name. Likewise, the in-built variables $YYYY$,
MM, DD, HH, MI and/or SS can be used to include the number of the current year,
month, day, hour, minute and/or second respectively. The date/time components can be used
separately or can be combined together using one set of enclosing $ such as $YYYYMMDD$.

Archived Trigger File Path

Optional full path (absolute path) of the folder/directory to MOVE the successfully processed
Trigger File on the Windows or UNIX/Linux system.

Archived Trigger File Name

Optional new name to RENAME the successfully processed Trigger File to. By default, the original
file name is used it is optional to rename it. However, the in-built variable $SEQUENCE$ can be
used to include a unique sequence number in the new name. Likewise, the in-built variables
$YYYY$, MM, DD, HH, MI and/or SS can be used to include the number of the current
year, month, day, hour, minute and/or second respectively. The date/time components can be
used separately or can be combined together using one set of enclosing $ such as $YYYYMMDD$.

SQL Server Integration Services (SSIS)

SQL Server Integration Services (SSIS) Attributes.

274

SSIS Destination-Identifier Case Conversion

Case-sensitivity conversion applied to Destination Object Identifiers (such as table, view, and
column names) in RED-generated SSIS packages. If no conversion is applied then the exact case
of the identifier defined in the RED metadata is used in SSIS.

SSIS Set Source-Code Page

Enables the SSIS source code page property.

SSIS Destination-AlwaysUseDefaultCodePage

Forces the use of the Default CodePage property value when describing character data.

SSIS Set Destination-Code Page

Enables the SSIS destination code page property.

SSIS Row Count Log

During an SSIS Load include Row Count logging.

275

Script based loads
A script based load table must have a Host Script defined. During the load process this host script
is executed and the results returned.

During the 'drag and drop' creation of a load table from a Windows file, a script can be generated
by selecting one of the 'Script based' load options.

This script can then be edited to fully meet any requirements.

There are a number of conventions that must be followed if these host scripts are to be used by
the WhereScape scheduler.

1 The first line of data in 'standard out' must contain the resultant status of the script. Valid
values are '1' to indicate success, '-1' to indicate a Warning condition occurred but the result
is considered a success, '-2' to indicate a handled Error occurred and subsequent dependent
tasks should be held, -3 to indicate an unhandled Failure and that subsequent dependent
tasks should be held.

2 The second line of data in 'standard out' must contain a resultant message of no more than
256 characters.

3 Any subsequent lines in 'standard out' are considered informational and are recorded in the
audit trail. The normal practice is to place a minimum of information in the audit trail. All
bulk information should be output to 'standard error'

4 Any data output to 'standard error' will be written to the error/detail log. Both the audit log
and detail log can be viewed from the RED tool under the scheduler window.

5 When doing Script based loads, it is easy to use the Regenerate button on the Script Name
field to regenerate the scripts.

276

Note: Script-based loads on Windows supports both DOS Batch and PowerShell scripts (see
"Windows PowerShell Scripts" on page 653).

277

XML File Load
XML file loads are only supported from a Windows connection. There are multiple formats for
data exchange when using XML. See the following section for details on how an XML file is
handled.
For more details about XML File load Properties and Source screen fields, please see Flat File
Loads and File Load - Source Screen.

Note: The XML file load in a Windows connection is not enabled by default for newly created
Teradata repositories.
Refer to Tools>Options>Available Load Types (see "Settings - Available Load Types" on page
120) for details.

To load an XML file located in a Windows directory proceed as follows:
1 Create a connection to the Windows system.

2 Browse to the connection and locate the XML file.

3 Make Load tables the middle pane drop target by double clicking on the Load Table object
group in the left pane.

4 Drag the XML file into the middle pane.

The only rules concerning the xml file are that the data element tags are the column names and
each row of data is a child of the root element.

For example:

<row>
 <dim_customer_key>7</dim_customer_key>
 <code>228</code>
 <name>JOHN AND JOES TOYS</name>
 <address>3700 PARNELL RISE</address>
 <city>BEAVERTON</city>
 <state>OR</state>
 <dss_source_system_key>1</dss_source_system_key>
 <dss_update_time>2003-10-03T10:02:15.310</dss_update_time>
</row>

Supported XML Formats

WhereScape RED supports two types of xml file construct. The normal xml standards have the
data in the xml file and the table definitions in a separate xsd (xml schema definition) file which
is only required when the table is being created or when the xml file is being validated for form.
An alternate standard is used by Microsoft. This second standard is an in line definition which
produces one file which contains a Schema element in the data stream where the column names
and their approximate data types are defined.

278

Separate XML and XSD files

The normal XML standards have the data in the xml file and the table definitions in a separate
xsd (xml schema definition) file which is only required when the table is being created or when
the xml file is being validated for form. The xsd file name is found within the xml file in an xsi
(xml schema instance) statement which can include a namespace definition; e.g.:

<root xmlns="http://www.wherescape.com/wsl-schema"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation="http://www.wherescape.com/load_table.xsd">

or no namespace;e.g.

<root xmlns="http://www.wherescape.com/wsl-schema"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="load_table.xsd">

The xsd file is an xml file and should be found in the same directory as the xml file that calls it.
This xsd file will contain the column definitions for the load table which will be defined during
the drag and drop.

The column definitions within the xsd file must be detailed enough to define a load table that the
xml file can be loaded into.

The data type mapping between the xsd file and the database have been implemented as below:

XSD Teradata

string with length char()

string with maxlength varchar()

integer integer

decimal with precision and scale numeric(x,y)

dateTime (ISO8601) timestamp

i2 integer

i4 integer

r4 varchar(40)

r8 varchar(40)

float varchar(40)

279

These are the ISO-ANSI SQL/XML standards and in the case of integers, dateTime and floats
the column can be defined with one line; e.g.:

<xsd:element name="Policy_ID" type="xsd:integer"/>
<xsd:element name="Quote_Date" type="xsd:dateTime"/>
<xsd:element name="Quote_Price" type="xsd:r4"/>

In the case of strings and decimals the column requires a bit more detail to produce the correct
data type. Strings can be fixed length with padded data by using the length attribute. The
following will produce a char(1) column called Excess_Waiver:

<xsd:element name="Excess_Waiver">
 <xsd:restriction base="xsd:string">
 <xsd:length value="1"/>
 </xsd:restriction>
</xsd:element>

Strings can be of variable length by using the maxLength attribute. The following produces a
column of varchar(8) called Password:

<xsd:element name="Password">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="8"/>
 </xsd:restriction>
</xsd:element>

Decimal numbers are defined with the precision and scale attributes. If the scale attribute is zero
or missing then the column will be a whole number of size precision. The following produces a
column of numeric(6):

<xsd:element name="code" >
 <xsd:restriction base="xsd:decimal">
 <xsd:precision value="6"/>
 <xsd:scale value="0"/>
 </xsd:restriction>
</xsd:element>

The following produces a column of numeric(8,2):

<xsd:element name="code" >
 <xsd:restriction base="xsd:decimal">
 <xsd:precision value="8"/>
 <xsd:scale value="2"/>
 </xsd:restriction>
</xsd:element>

280

An example file with most data types would be as follows:

<xsd:schema xmlns="http://www.wherescape.com/wsl-schema"
 xmlns:xsd="http://www.wherescape.com/XMLSchema">
<xsd:element name="Col_name1" type="xsd:integer"/>
<xsd:element name="Col_name4" type="xsd:dateTime"/>
<xsd:element name="Col_name5">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="100"/>
 </xsd:restriction>
</xsd:element>
<xsd:element name="Col_name6">
 <xsd:restriction base="xsd:string">
 <xsd:length value="100"/>
 </xsd:restriction>
</xsd:element>
<xsd:element name="Col_name7" type="xsd:float"/>
<xsd:element name="Col_name8" >
 <xsd:restriction base="xsd:decimal">
 <xsd:precision value="6"/>
 <xsd:scale value="2"/>
 </xsd:restriction>
</xsd:element>
</xsd:schema>

The column order will be the same as the xsd file.

Any columns which are missing from the row will be NULL in the loaded row.

The dateTime format in the xml file is defined as ISO8601 which looks like this:

2003-10-03T10:02:15.310

WhereScape RED will load this string into Teradata as:

CAST('20031003100215' AS TIMESTAMP FORMAT 'YYYYMMDDHHMISS')

• The xsd file is only required to create the load table, if the load table is only being loaded
then this file is ignored.

• To check that the xml and xsd files are well formed you can open them with any web browser.
If the files display with no errors then they are valid xml files.

281

In line schema definition

The other supported xml construct allows the use of in line schema definitions as produced by
the Microsoft FOR XML AUTO, ELEMENTS, XMLDATA query. This will produce one file which
contains a Schema element in which the column names and their approximate data types are
defined. Because the supplied data types are not concise enough to define the table columns
correctly, this method will produce load tables of data type varchar(4000). The column names are
taken from the <element type="col_name"/> strings within the Schema element. The data
elements will be the same as above with the column names making up the start and end tags and
the rows being the children of the root element. The file that is produced by the FOR XML query
above needs to be changed slightly to comply with the xml standard. Remove everything before
the Schema element and then give the file a starting root element and a closing root element.eg
<root> and </root>

The xml files can optionally start with an xml pre process statement.eg

<?xml version="1.0"?>

They may also contain xml comments.eg

<!— comments -->

External Load
For an externally loaded table the only property that is executed is the Post Load procedure.

Any After transformations recorded against any of the columns in an Externally loaded table will
also be processed.

Post load procedures can either be manually generated from a RED provided procedure outline or
generated leveraging a RED template—refer to Rebuilding Update Procedures (on page 199) for
details.

Apache Sqoop Load
The Apache Sqoop load type enables loading data directly from Hive/HDFS to any (non-Hive)
targets, however, for loading data directly from Hive into Teradata, it is recommended to use the
TPT functionality instead.

When processing Teradata loads from Hive/HDFS using Apache Sqoop, WhereScape recommends
that you use vendor supplied drivers, such as ‘Hortonworks Connector for Teradata’.

Scheduler loads and Apache Sqoop loads from a Hive connection to a Hive target are not
supported.

The following known issues exist when using Sqoop loads with the generic JDBC driver on
Teradata:

1 Sqoop loads from Hive to Teradata fail if column names and titles are different.

2 For Sqoop loads from Hive to Teradata where column names and titles are the same, complete
the following to enable the load to work:

282

In the Load table properties, select the Source tab and on the Generic Hadoop Arguments
field enter the following command: -Dsqoop.export.records.per.statement=1

To load tables directly from HDFS/Hive into Teradata target databases using the Apache
Sqoop load:
1 Ensure the relevant Data Warehouse connection has the following fields set:

• JDBC Connection string (JDBC URL)

• JDBC Driver Class Name

• Omit Sqoop Driver Option - tick this check-box for loads into Oracle target databases

• JDBC User ID

• JDBC Password

NOTE: Users loading into Teradata from a Hive or Hadoop connection using the Teradata
connection manager for Sqoop who need to load into more than one database will need to add
DATABASE=$OBJECT_DATABASE$ into their JDBC Connection String (JDBC URL) field on
their Teradata DataWarehouse connection, e.g.
jdbc:teradata://192.168.60.226/DATABASE=$OBJECT_DATABASE$.
BDA will replace $OBJECT_DATABASE$ with the database containing their load table when
doing an Apache Sqoop load.

283

2 When doing loads from Hadoop connections, please ensure the Hadoop connection has its
BDA server host and port fields set in addition to Hive connections.

284

3 Browse the desired Hadoop/Hive connection.
4 Drag and Drop the table from the Hadoop/Hive connection on the right hand-side into the

middle pane.

• Change the table name if necessary and select the relevant target location to place the
table from the drop-down list.

NOTE: The option Add meta data columns to table is used for creating load tables that are
used in creating Data Vault objects. If this option is selected, two DSS columns
(dss_record_source and dss_load_date) are included in the meta data for the table and are
populated by transformations. These two DSS columns could equally be applied to other load
tables not used in a Data Vault system but are particularly important to comply with the Data
Vault standards. Please refer to the Data Vaults chapter (see "Data Vaults" on page 413) for
more details.

285

5 Select Apache Hadoop Load from the Load Type drop-down list.

6 Click the Source tab to add any Apache Sqoop specific options:

• Temporary HDFS Directory - Loading from a Hive source to the data warehouse is
implemented in two steps. First, the data is extracted from the Hive table into a
temporary HDFS directory. Then, this temporary directory is loaded using "sqoop export".

286

The location of the temporary directory can be configured in RED on the source tab of the
load table. When this field is left blank, the default is "/tmp".

• Generic Hadoop Arguments - This field allows adding additional arguments just after the
Sqoop command keyword, in this case it is import, in the Sqoop command line.

• Additional Tool Arguments - This field allows adding additional arguments after the
generated Sqoop command line.

NOTE: Sqoop loads from Hive to Teradata fails if column names and titles are different.
Please ensure column names and titles are the same and then, on the Load table properties,
go to the Source tab and on the Generic Hadoop Arguments field specify the following
command=: -Dsqoop.export.records.per.statement=1.

287

7 Click Create and Load to create and load the table.

288

Handling Missing Source Columns
By default, a load fails if a source column that is to be loaded does not exist. This default action
can be modified by using the 'Non mandatory source column' feature of a load table. When this
feature is enabled, the load process checks all source columns, and if any are found to be
missing—the missing columns are replaced with a Null value (which can be changed, see below).

On the Source tab of a load tables properties there are two check boxes and a drop down list that
is covered in this section.

See the following example:

Override Source Column/Transformation

When this is enabled the Source Columns edit window is enabled. With this enabled, a load table
uses the contents of the Source Columns to specify which columns are being extracted during a
table load.

When this is unselected the load process builds up the statement to select from the source
table(s) by looking at the two fields source table and source column and any transformations
associated with each column in the load table. If a transformation is present then the
transformation overrides the contents of source table/source column. See the following section
for more information on transformations.

Note: This check box must be unselected to enable Allow Missing Source Columns support.

289

Allow Missing Source Columns

When this check box is selected the load process will examine every column in the load table.
Based on the source table/source column fields associated with each column it will check to see if
the column exists in the source database. If the column exists normal processing will occur. If the
column does not exist then a Null will be substituted for the column, and the load will proceed.

If one or more columns are found to be missing the load process reports this situation. The status
level of this reporting can be set via the Exit Status drop-down. See the following topic. In all
cases the load will be deemed to have been successful, if no other errors occur.

Often Null values are not desirable in a data warehouse. This Null value can be replaced by some
other value by means of a During or After transformation. For example, a During
transformation, as shown below, set on a missing column called 'State' will replace the Null with
the value 'N/A'.

NVL(state,'N/A')

Exit Status When Missing Columns

If columns are found to be missing as a result of a 'Non Mandatory' check then a message is
recorded in the Audit trail and against the task if running in the Scheduler. The drop-down list of
the same name allows the choice of action in the event of a missing column or columns. The
choices are:

Choice Impact

Success The message informing that columns are missing uses an
information status.

Warning The message issued is a warning. The table load will be identified as
successful but with warnings.

Error The message issued is an error. The table load will still complete
successfully albeit with an error message.

This drop-down list is only available if the Non Mandatory Source Columns option is set.

Limitations of Missing Column Check

The check for missing columns only examines and check those columns that are recorded in the
source table and source column fields of a load table's column properties. Therefore, if a source
column is used in a transformation or join, but is not recorded in the two fields mentioned above,
it is not checked.

If a column is used in a transformation, it should have the same usage (name and case) as is
found in the source column and source table fields.

This check has no upper limit on the number of missing columns. All columns can be missing and
the load still succeeds.

290

Load Table Transformations
Each load table column can have a transformation associated with it.

See Transformations (on page 593) and Load Table Column Transformations (on page 597) for
more details.

Post-Load Procedures
If a procedure is specified in the Post Load Procedure drop-down field of a Load table's
Properties, then this procedure will be executed after the load has completed and after any
subsequent transformations have occurred.

Click the Rebuild button to start the process of generating a new procedure. The Regenerate
button is used to regenerate the Load table's existing post load procedure.

See Load Table Column Transformations (on page 597) for more details.

Post load procedures can either be manually generated from a RED provided procedure outline or
generated leveraging a RED template—refer to Rebuilding Update Procedures (on page 199) for
details.

291

Changing Load Connection and Schema
The connection associated with a load table can be changed through the properties of that table.

Connections can also be changed in bulk by using the following process:

1 Double click on the Load Table object group in the left pane. This displays all load tables in
the middle pane.

2 Select those load tables that you wish to change using standard Windows selection.

3 Right-click to bring up a menu and select Change Connect/Schema.

4 Select the new connection to change all the selected load tables.

Note: You cannot change the connection type but it is possible to change from Database to
ODBC connections when the following considerations are taken into account.

292

Switching Connection from ODBC to Database and vice versa
This switch should be successful in most cases, although it may not provide the most performant
load possible.

By default, ODBC connections use the source table/column transformation loading method as
dates and potentially other data types need to be converted.

When switching to a database link load, any transformations still occurs although they may no
longer be necessary.

293

In This Chapter

Dimensions Overview ... 294
Building a Dimension ... 295
Generating the Dimension Update Procedure .. 303
Dimension Artificial Keys ... 314
Dimension Column Properties ... 316
Dimension Column Transformations ... 325
Dimension Hierarchies ... 326
Snowflake .. 330
Dimension Language Mapping ... 332

C h a p t e r 1 0

Dimensions

294

Dimensions Overview
A dimension table is normally defined, for our purposes, as a table that enables us to constrain
queries on the fact table.
A dimension is built from the Data Warehouse connection. Unless you are doing a retro-fit of an
existing system, dimensions are typically built from one or more load tables.

The normal steps for creating a dimension are defined below and are covered in this chapter. The
steps are:

• Identify the source transactional data that will constitute the dimension. If the data is
sourced from multiple tables, ascertain if a join between the source tables is possible, or if a
series of lookups would be a better option.

• Using the 'drag and drop' functionality drag the load table that is the primary source of
information for the dimension into a dimension target. See Building a Dimension.

• If only one table is being sourced and most of the columns are to be used (or if prototyping)
you can select the auto create option to build and load the dimension and skip the next 4
steps. See Building a Dimension.

• Add columns from other load tables if required. See Building a Dimension.
• Create the dimension table in the database. See Building a Dimension.
• Build the update procedure. See Generating the Dimension Update Procedure (on page 303).
• Run the update procedure and analyze the results. See Dimension Initial Build.

Modify the update procedure as required. See Dimension Initial Build.

Dimension Keys

Dimensions have two types of keys that we will refer to frequently. These are the Business Key
and the Artificial Key. A definition of these two key types follows:

Business Key

The business key is the column or columns that uniquely identify a record within the dimension.
Where the dimension maps back to a single or a main table in the source system, it is usually
possible to ascertain the business key by looking at the unique keys for that source table. Some
people refer to the business key as the 'natural' key. Examples of business keys are:

• The product SKU in a product dimension
• The customer code in a customer dimension
• The calendar date in a date dimension
• The 24 hour time in a time dimension (e.g. HHMM) (e.g. 1710)
• The airport short code in an airport dimension.

It is assumed that business keys will never be NULL. If a null value is possible in a business key
then the generated code will need to be modified to handle the null value by assigning some
default value. For example, the 'Where' clause in a dimension update may become:

Where coalesce(business_key,'N/A') = coalesce(v_LoadRec.business_key,'N/A')

Note: Business keys are assumed to never be Null. If they could be null it is best to transform
them to some value prior to dimension or stage table update. If this is not done an unmodified
update will probably fail with a duplicate key error on the business key index.

295

Artificial Key

The artificial key is the unique identifier that is used to join a dimension record to a fact table.
When joining dimensions to fact tables, it would be possible to perform the join using the
business key. For fact tables with a large number of records, this however would result in slow
query times and very large indexes. As query time is one of our key drivers in data warehouse
implementations, the best answer is always to use some form of artificial key. A price is paid in
the additional processing required to build the fact table rows, but this is offset by the reduced
query times and index sizes. We can also make use of database specific features, such as bitmap
indexes in Oracle.

The artificial key is an integer and is built sequentially from 1 upwards. See the section on
artificial keys for a more detailed explanation. An artificial key is sometimes referred to as a
"surrogate" key.

Building a Dimension
Dimensions are often sourced from one table in the base application. In many cases, there are
also codes that require description lookups to complete the de-normalization of the dimensional
data. The process for building a dimension is the same for most other tables and begins with the
drag and drop of the load table that contains the bulk of the dimensional information.

Drag and Drop
1 Create a dimension target by double-clicking on the Dimension group in the left pane.
2 The middle pane displays a list of all existing dimensions, when this list is displayed in the

middle pane, the pane is identified as a target for new dimension tables.

3 Browse to the Data Warehouse via the Browse>Source Tables menu option.

4 Drag the load table, that contains the bulk of the dimensional columns, into the middle pane.

5 Drop the table anywhere in the pane.
6 The new object dialog box appears and identifies the new object as a Dimension and provides

a default name based on the load table name—either accept this name or enter the name of
the dimension.

7 Click OK to proceed.

296

Dimension Type

A dialog appears as shown below. There are four choices for the default generation of the
dimension table and its update procedure.

• The first choice being a normal dimension where a dimensional record is updated and
changed whenever any of the non business key information changes (see more details below).

• The second choice is a slowly changing dimension where new dimension records are created
when certain identified columns in the dimension change (see more details below).

Note: For custom database targets, you can set the initial default values for the DSS columns
that are used in the procedure generation for slowly changing dimensions. Please refer to
the section DSS Columns for Custom Targets (on page 104) for details.

• The third choice is a Previous values dimension, which allows the storing of the last values
of selected fields in secondary columns.

• The fourth choice is a Date Ranged dimension, which supports source systems that provide
start and end dates.

With any dimension, we identify a business key that uniquely identifies the dimension records.

For example in the case of the product dimension, the product code is deemed to be the business
key. The code uniquely identifies each product within the dimension. The product may also have
a name or description and various other attributes that distinguish it. (e.g. Size, shape, color,
etc.).

A common question when handling dimensions is what to do when the name or description
changes:

• Do we want to track our fact table records based only on the product code? or
• Do we also want to track records based on different descriptions?

297

An example :

code description product_group sub_group

1235 15oz can of brussel sprouts canned goods sprouts

This product has been sold for many years and we consequently have a very good history of sales
and the performance of the product in the market. The company does a '20% extra for free'
promotion for 3 months during which time it increases the size of the can to 18oz. The
description is also changed to be '15 + 3oz can of brussel sprouts'. At the end of the promotion
the product is reverted to its original size and the description changed back to its original name.

The question is do we want to track the sales of the product when it had a different description
(slowly changing) , or should the description of the product simply change to reflect its current
name (normal). For this scenario a previous value dimension would not provide much advantage,
so it is not discussed.

The decision is not a simple one and the advantages and disadvantages of each of the two choices
is discussed below.

Slowly Changing
• Allows the most comprehensive analysis capabilities when just using the product dimension.
• Complicates the analysis. Does not allow a continuous analysis of the product called '15oz

can of brussel sprouts' when the description is used. This analysis is however still available
through the code which has not changed.

• Adds considerable additional processing requirements to the building of the fact tables that
utilize this dimension.

• May track data quality improvements rather than real business change.

Normal
• Does not allow specific analysis of the product during its size change. Note, however that this

analysis will probably be available through the combination of a 'promotion' dimension.
• Provides a continuous analysis history for the product called '15oz can of brussel sprouts'. An

analysis via description and code will produce the same results.
• Simplifies analysis from an end user's perspective.

As mentioned above the choice is never a simple one. Even among experienced data warehouse
practitioners there will be a variety of opinions. The decision must be based on the business
requirements. In many cases keeping the analysis simple is the best choice, at least in the early
stages of a data warehouse development. Slowly changing dimensions do have a place, but there
is nearly always an alternate method that provides equal or better results. In the example above a
promotion dimension coupled with the product dimension could provide the same analysis
results whilst still keeping product only analysis simple and easy to understand.

TIP: Do not over complicate the design of an analysis area. Keep it simple and avoid the
unnecessary use of slowly changing dimensions.

298

Dimension Properties
• Once the dimension type is chosen the object Properties screen appears.
• Change the storage options if required.
• If prototyping, and the dimension is simple (i.e. one source table) then it is possible to create,

load and update the dimension in a couple of steps. If you wish to do this, select the (Build
Procedure...) option from the Update Procedure drop-down and answer Create and Load
to the next question.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update
Procedures (on page 199) for details.

299

Create and Load

If you chose to build the update procedure, the following dialog appears after clicking OK on the
Properties screen. This dialog asks if you want to create the Dimension table in the database and
execute the update procedure.

If you are satisfied with the columns that will be used and do not wish to add any additional
columns, you can select the Create and Load button. Alternatively, the Create button creates
the table in the repository but does not execute an update, allowing you to change columns
before loading data into the table.

If Create or Create and Load is selected and a new procedure creation was chosen on the
Properties dialog you can proceed directly to the Generating the Dimension Update Procedure
(on page 303) section.

Note: It is possible to create and load the table via the Scheduler; by selecting this option from
the drop-down list on the Create and Load button:

If you have additional columns to add or columns to delete then select Close and proceed as
follows.

300

Deleting and Changing columns

The columns defined for the dimension is displayed in the middle pane.

• It is possible to delete any unwanted columns by highlighting a column name or a group of
names and choosing the Delete key.

• You can also change the name of a column by selecting the column and using the right-click
menu to edit its properties. Any new name must conform to the database naming standards.

• Good practice is to use alphanumerics and the underscore character. See the section on
column properties for a fuller description on what the various fields mean.

TIP: When prototyping and in the initial stages of an analysis area build, it is best not to
remove columns nor to change their names to any great extent. This type of activity is best left
until after end users have used the data and provided feedback.

Adding additional columns
• With the columns of the dimension table displayed in the middle pane, this pane is

considered a drop target for additional columns.
• It is simple to select columns from other load tables and to drag these columns into the

middle pane.

The following column list is from the product table as supplied in the tutorial data set.

The source table shows where each column was dragged from. Although not the case in the
tutorial, it is often common to have columns of the same name coming from different tables. In
the example above the description column is acquired from the load_product, load_prod_group
and load_prod_subgroup tables. In order that the dimension table be created we need to assign
these columns unique names, so for this example the last two columns in question have been
renamed to group_description and subgroup_description.

301

There are a number of columns that do not have a source table. These columns have been added
by WhereScape RED, and are added depending on earlier choices.

A description of these columns follows.

Column name description

dim_product_key The unique identifier (artificial key) for the dimension. This key is
used in the joins to the fact table. It is generated via a sequence
associated with the table, except for the date dimension where it
has the form YYYYMMDD

dss_start_date Used for slowly changing dimensions. This column provides a date
time stamp when the dimension record came into existence. It is
used to ascertain which dimension record should be used when
multiple are available.

dss_end_date Used for slowly changing dimensions. This column provides a date
time stamp when the dimension record ceased to be the current
record. It is used to ascertain which dimension record should be
used when multiple are available.

dss_current_flag Used for slowly changing dimensions. This flag identifies the
current record where multiple versions exist.

dss_source_system_key Added to support dimensions that cannot be fully conformed, and
the inclusion of subsequent source systems. See the ancillary
settings section for more details.

dss_version Used for slowly changing dimensions. This column contains the
version number of a dimension record. Numbered from 1 upwards
with the highest number being the latest or current version. It forms
part of the unique constraint for the business key of a slowly
changing dimension.

dss_update_time Indicates when the record was last updated in the data warehouse.

dss_create_time Indicates when the record was first created in the data warehouse

302

Manually adding previous value columns

If a Previous value type of dimension is chosen, or in fact if the dimension is converted to this
type, it is possible to manually add any required columns that were not defined as part of the
create. The steps are:

1 Add a new column by dragging in the column that is to have a previous value stored.
2 Change the name to a unique name. Typically by adding the prefix 'prev_' to the column

name.

3 Change the source table, to be that of the dimension we are building.

4 Set the Key Type to 4.

5 Having performed these actions WhereScape RED will detect the column and build the
appropriate code during the procedure generation phase.

Create the table

Once the dimension has been defined in the metadata you need to physically create the table in
the database.

• This is done by right-clicking on the dimension name and selecting Create (ReCreate) from
the pop-up menu.

• The results dialog box display the results of the creation.
• The contents of this dialog are a message to the effect that the dimension table was created.

A copy of the actual database create statement, and if defined the results of any index create
statements is listed. For the initial create, no indexes are defined.

• If the table was not created then ascertain and fix the problem. A common problem is a
'Duplicate column' where a column has the same name in two of the source tables.

• The best way of finding this a column is to double click on the list heading 'Col name'. This
sorts the column names into alphabetic order. Another double click on the heading will sort
the columns back into their create order.

The next section covers the Generating the Dimension Update Procedure (on page 303).

303

Generating the Dimension Update Procedure
Once a dimension has been defined in the meta data and created in the database, an update
procedure can be generated to handle the joining of any tables and the update of the dimension
records.

Notes: You can also generate an update procedure via a template, refer to Rebuilding Update
Procedures (on page 199) for details.

The zero key row

WhereScape RED always inserts a record into the dimension with an artificial key value of zero by
default. This record is used to link any fact records that do not have valid dimension joins.
The values of the various columns in this record are acquired from the contents of the field Zero
Key Value which is set in the properties screen of each dimension column.

Generating a Procedure
1 Double click on the dimension object to edit the properties for the dimension.

2 From the Update Procedure drop-down list, select (Build Procedure...).
3 Click OK to update the properties and start the process of generating the new procedure.

4 The Update Build Options screen displays, requesting you to select the relevant build
options.

5 There are other steps to complete during the procedure generation based on the type of load
information. These steps are described below.

304

Processing tab

Business Key Columns: Columns that define the business key for update processing. This is
required for include Update options. The source table from which the dimension is derived would
normally have some form of unique constraint applied. In most cases, this is the business key. In
the example below product_id is selected as the business key.

• Clicking on the ellipsis button on the rightmost of the Business Key Columns field will
bring up the Business Key selection screen.

• Select the relevant Business Key.
• Click OK on the Update Build Options dialog.

TIP: Use the column name ascending/descending buttons to sort column names. To revert
to the meta column order, click on the meta column order button.

305

A business key uniquely identifies each dimension record and it can be made up of multiple
columns, but it must provide a unique identifier. Where multiple columns uniquely and
separately identify the dimension, choose one to act as the primary business key. For example, a
source table may have a unique constraint on both a product code and a product description.
Therefore the description as well as the code must be unique. It is of course possible to combine
the two columns, but the normal practice would be to choose the code as the business key.

NULL Values: None of the columns chosen as the business key should ever contain a NULL
value. See the note at the start of this chapter.

306

Parameters: Any parameters selected are included in the generated update procedure as
variables. The procedure will include code to retrieve the value of the parameter at run time and
store it in the declared variable.

• Clicking the ellipsis button brings up the Parameters selection screen.

The variables can also be used in column transformations and in the from/where clause for the
update procedure. Some databases have a 30 character limit for variable names. WhereScape RED
ensures the variables added for any parameters are less than 30 characters long by creating
variable names in the form v_ followed by the first 28 characters of the parameter name.

For example, a parameter called MINIMUM_ORDER_NUMBER_SINCE_LAST_SOURCE_LOAD will
be available as the variable v_MINIMUM_ORDER_NUMBER_SINCE_L.

TIP1: WhereScape RED parameters should be unique within the first 28 characters to avoid
conflicting variables names.

TIP2: If the desired parameter doesn't exist in the metadata yet, a new parameter can be
added by clicking the Add New button on the bottom leftmost corner of the Select Parameters
dialog.

See Parameters (on page 143) for more information on WhereScape RED Parameters.

307

Include Initial Load Insert: adds an additional insert statement to the update procedure that
runs if the target Dimension is empty. The benefit of this is improved performance inserting into
an empty table without performing any checks to see if rows already exist. The default for this
field is not set (i.e. an initial insert statement is not added to the procedure).

Process by Batch: enables users to select a column to drive data processing in a loop based on
the distinct ordered values of the selected Business Key columns. The update procedure loops on
this column and performs the delete, update and/or insert for each value. If the column chosen is
a date datatype (date, datetime or timestamp), then the user is able to specify yearly, monthly,
daily or column level looping. The default for this field is not set (do not do batch processing).

Delete Before Insert: enables selecting how to process deletes. It enables a delete statement to
be added to the update procedure before any update or insert statement. This is a particularly
useful option for purging old data and for updates based on a source system batch number. When
this option is selected, it enables the Issue Warning if a Delete occurs and the Delete Where
Clause Fields.

Issue Warning if a Delete occurs: this option sets the procedure to a warning state if any
deletes occur.

Delete Where Clause: the delete where clause is appended to the generated delete statement
to constrain the rows deleted.

Process Method: enables updating the Dimension with either an Insert/Update or a Merge
statement. Merge allows you to use one Merge statement instead of two separate Insert and
update statements.

Source Table Locking: enables a locking request modifier to be specified for each source table.
The specified locking request modifier is applied to each source table during generated update
procedures. By default this is set to 'ACCESS' which locks each row being accessed, a blank
entry will result in no locking clause in the generated procedure. This option may also be
presented in a separate dialog.

Insert Method

Include Insert Statement: set this field to include the insert statement in the procedure. This
allows inserting new rows in the Dimension.

Insert New Rows Only: uses change detection to work out which rows will require inserting.

New Row Identification Method: method used to identify that records in source are not
currently recorded in the target table. Select Join or Minus.

Include Update Statement: set this field to include an update statement in the procedure. This
allows updating the changing rows in the Dimension. If this is set, the Update Changed Rows
Only option is available.

Update Changed Rows Only: uses change detection to work out what rows require updating.
When set, this option enables the Change Row Identification Method.

Change Row Identification Method: method used to identify that records in source have
changed from what is currently recorded in the target table. Select Join or Minus.

308

Merge Method

Merge Changed Rows only: uses change detection to work out what rows require merging.
When the option is set, it enables the New Row Identification Method.

New Row Identification Method: method used to identify which records in the source are not
recorded or are recorded differently in the target table. Select between Join and Minus.

If non identity columns are used as artificial keys the only new row identification method is
Join.

Dimension Update procedures usually perform faster when you use the Join method for
new row identification.

Source tab

Distinct Data Select: ensures duplicate rows are not added to the Dimension. This is achieved by
adding the word DISTINCT to the source select in the update procedure. The default for this field
is not set.

Source Join: The From clause, including Source Join information. See example below for Joining
multiple source tables.

Where Clause: The Where clause. Use as a filter to extract only the necessary records that fulfill
a specified criteria.

Group By: The Group By clause. Use in collaboration with the SELECT statement to arrange
identical data into groups.

309

Joining multiple source tables

If multiple source tables were used to build the dimension, the tables will need to be joined on
the Source tab.

• Select the first two tables from the top drop-down list.
• Select one column for each of the two tables from the bottom drop-down lists to effect the

join between the selected tables.

In the example below, the load_product and load_prod_subgroup tables are joined by two
columns, prod_group and subgroup. In this case, two joins are actioned for these two tables so
both columns can be selected.

Simple Join

Either a 'Where' or from clause join can be generated. A simple join only returns rows where data
is matched in both tables. So for example if table A has 100 rows and table B has a subset of 24
rows. If all the rows in table B can be joined to table A then 24 rows will be returned. The other 76
rows from table A will not be returned.

Outer Join

Either a 'Where' or from clause join can be generated. The ANSI standard ‘from clause’ join is
recommended. The outer join returns all rows in the master table, regardless of whether or not
they are found in the second table. Therefore, if the example above was executed with table A as
the master table, then 100 rows would be returned. 76 of those rows would have null values for
the table B columns. When WhereScape RED builds up a 'Where' clause join, it must place the
outer join indicator next to the appropriate column. As this indicator goes on the master,
WhereScape RED needs to know which table is master and which subordinate. Select the join
column from the master table first.

In the example screen above, the table 'load_product' has had its column chosen and the column
for the table 'load_prod_subgroup' is currently being chosen. This will result in the 'load_product'
table being defined as the master, as per the example statement as shown in the 'Where' clause

310

edit window above. The results of this example select are that a row will be added containing
product information, regardless of whether or not a corresponding prod_subgroup entry exists.

As the join columns are selected, the join statement is built up in the large edit window above.
Once all joins have been made, the contents of this window can be changed if the join statement
is not correct.

• When you are happy with the join clause click the OK button to proceed to the next step. This
clause will be either the 'Where' clause or a combined from and 'Where' clause depending on
the option chosen.

• This clause can be edited in the procedure that is generated if not correct.
• For Teradata, you have the choice between 'Where' statement joins and ANSI standard joins.

Change Detection Tab

Change Detection Fields: if the dimension was defined as a Changing Dimension you have to
select the change detection fields required for the Dimension on the Change Detection Tab.
This enables you to select the columns to be managed as Slowly Changing dimension columns.

Note: For custom database targets, you can set the initial default values for the DSS columns that
are used in the procedure generation for slowly changing dimensions. Please refer to the section
DSS Columns for Custom Targets (on page 104) for details. The default values set are populated
in the corresponding fields of the Change Detection tab.

The advantages and disadvantages of changing dimensions are discussed earlier in this chapter,
but as a general rule try to minimize their usage. They invariably complicate the processing and
end user queries.

311

• Click the Change Detection tab in the Update Build Options dialog.

• Click the ellipsis button at the rightmost corner of the Change Detection field.
• Select the required columns to be managed as slowly changing dimension columns and click

OK to continue.
• In the example below, the product_description is to be managed as a slowly changing column.

Null Support: if this option is set, the change detect column management will cater for Null
values in any changing columns. If this is not set and there are Null values in the changing
columns there may be errors while running the update procedure. The default for this option is
not set (Nulls are not catered for).

Null values are the enemy of a successful data warehouse. They result in unreliable query results
and can often lead to a lack of confidence in the data. If a column is considered important enough
to be managed as a slowly changing column then it should not normally contain null values. It is
often best to ensure that a Null cannot occur by using a Coalesce() transformation when loading
the column.

312

Configuring dss_start_date and dss_end_date for Date Detection Values:

Reset Dates to Initial Values: resets dss_start_date and ds_end_date Values to original values.

Start Date for Initial Member: the start date for initial member field contains the start date for
the first version of a particular business key. The value should be specified in an appropriate
form, taking into account the default date format in the databases. The date may need to be
explicitly cast to the current data type. The default value provided will usually be cast to the
correct database and can be treated as a template. The default for this field is 1 January 1900.

End Date for Current Member: the end date for current member field contains the start date for
the current version (the row with a current flag of Y and the maximum version number) of a
particular business key. The value should be specified in an appropriate form, taking into account
the default date format in the databases. The date may need to be explicitly cast to the current
data type. The default value provided will usually be cast to the correct database and can be
treated as a template. The default for this field is 31 December 2999.

Start Date for New Member Entry: the start date for new member entry field contains the start
date for any subsequent rows added to the history table (not the first row for a particular business
key i.e. not version 1). The value should be specified in an appropriate form, taking into account
the default date format in the databases. The date may need to be explicitly cast to the current
data type. The default value provided will usually be cast to the correct database and can be
treated as a template. The default for this field is the current date and time.

End Date for Expiring Member Entry: the end date for the expiring member entry field
contains the end date for any rows updated no longer to no longer be the current row in the
history table (i.e. rows that are replaced by a new current row). The value should be specified in
an appropriate form, taking into account the default date format in the databases. The date may
need to be explicitly cast to the current data type. The default value provided will usually be cast
to the correct database and can be treated as a template. The default for this field is the current
date and time less an arbitrary small amount (for SQL Server this is 0.00000005 of a day, or about
4 thousandth of a second).

Building and Compiling the Procedure
• When the steps above are completed the procedure is built and compiled automatically. This

will display in the Results pane.
• If the compile fails, an error will be displayed along with the first few lines of error messages.

Compile fails typically occur when the physical creation of the table was not done.
• If the compile fails for some other reason the best approach is to use the procedure editor to

edit and compile the procedure. The procedure editor will highlight all the errors within the
context of the procedure.

• Once the procedure has been successfully compiled it can either be executed interactively or
passed to the scheduler.

313

Indexes

By default a number of indexes will be created to support the dimension. These indexes will be
added once the procedure has been built. An example of the type of indexes created is as follows:

This example shows three indexes being created. They are:

1 A primary key constraint placed on the artificial key for the dimension.

2 A unique index placed on the business key for the dimension.

3 A unique index placed on the business key and a slowly changing column from the
dimension.

This third index is only created when a Slowly Changing dimension is chosen.

Additional indexes can be added, or these indexes changed. See the chapter on indexes for
further details.

314

Dimension Artificial Keys
The artificial (surrogate) key for a dimension is set via an identity column. This artificial key
normally, and by default, starts at one and progresses as far as is required.

A WhereScape standard for the creation of special rows in the dimension is as follows:

Key value Usage

1 upwards The normal dimension artificial keys are numbered from 1 upwards, with a
new number assigned for each distinct dimension record.

0 Used as a join to the dimension when no valid join existed. It is the normal
convention in the WhereScape generated code that any dimension business
key that either does not exist or does not match is assigned to key 0.

-1 through -9 Used for special cases. The most common being where a dimension is not
appropriate for the record. For example we may have a sales system that has
a promotion dimension. Not all sales have promotions. In this situation it is
best to create a specific record in the dimension that indicates that a fact
table record does not have a promotion. The stage table procedure would be
modified to assign such records to this specific key. A new key is used rather
than 0 as we want to distinguish between records that are invalid and not
appropriate.

 -10 backward Pseudo records. In many cases we have to deal with different granularities in
our fact data. For example, we may have a fact table that contains actual
sales at a product SKU level and budget information at a product group level.
The product dimension only contains SKU based information. To be able to
map the budget records to the dimension, we need to create these pseudo
keys that relate to product groups. The values -10 and backwards are
normally used for such keys. A template called 'Pseudo' is shipped with
WhereScape RED to illustrate the generation of these pseudo records in the
dimension table.

Surrogate keys for a Dimension set via a non identity column:

Normal, Slowly Changing and Date Ranged Dimension Tables can have non identity columns
as surrogate keys.
The generation of the update procedure automatically adds logic to the code which will associate
a sequential number to the artificial key of the dimension when a new row is inserted into the
Dimension table.
The order of these sequential numbers is determined by the business key of the source table. The
value of the first newly inserted artificial key will be the value of the highest artificial key in the
dimension table plus 1.
This automatically generated logic can be overwritten by defining a user specific logic on the
Dimension Transformation field on the Tools>Options menu or in the transformation column
of the artificial key.
To have a Dimension with a non identity column as a surrogate key, you can set the Dimension
Data Type to integer in the Tools>Options menu.
The old logic for dimensions can be retained if an identity column is chosen as surrogate key.

315

To allow for non identity surrogate keys on Dimensions:
1 Go to Tools>Options>Global Naming Conventions>Global Name of Key Columns.
2 Set the Dimension Data Type to be integer and click OK.
3 If your tables have been created previously, you have to Recreate the tables after you set this

option in the Tools menu.

316

Dimension Column Properties
Each dimension column has a set of associated properties. The definition of each property is
described below:

TIP: If a database table's definition is changed in the metadata then the table will need to be
altered in the database. Use the Validate>Validate Table Create Status to compare metadata
definitions to physical database tables. The option also provides the ability to alter the database
table, through a pop-up menu option from the validated table name. See the example below.

A sample Properties screen is as follows:

The two special update keys allow you to update the column and step either forward or backward
to the next column's properties. ALT-Left Arrow and ALT-Right Arrow can also be used instead
of the two special update keys.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. A good practice is to only use alphanumerics, and the
underscore character. Changing this field alters the table's definition.

317

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Title

Name that the business uses to refer to the column. It does not affect the physical table
definition, but rather provides input to the documentation and to the view ws_admin_v_dim_col
which can be used to assist in the population of a end user tool's end user layer. As such it is a
free form entry and any characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Description

This field contains the description for the column. It might contain information on where and
how the column was acquired. For example, if the column is sourced from multiple tables or is a
composite or derived column then this definition would normally describe the process used to
populate the column. This field is used in the documentation and is available via the view
ws_admin_v_dim_col. This field is also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The
lowest numbered column will appear first in the table. Although this affects the physical table
definition no action will be taken unless the table is re-created in the database. The columns can
be re-numbered based on the existing order by choosing the Respace order number pop-up
menu option when positioned over any column in the table. This action will number the columns
in increments of 10 starting at 10. In addition to a simple change of the order field, the column
order can be changed by first displaying the columns in the middle pane and then using drag and
drop to move the columns around. This drag and drop process will automatically renumber the
columns as required.

Data Type

Database-compliant data type that must be valid for the target database. Typical Teradata
databases often have integer, numeric(), varchar(), char(), date and timestamp data types. See the
database documentation for a description of the data types available. Changing this field alters
the table's definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always
mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is
specified for the column.

Character Set

Database-compliant table column character-set used for storage. Select Latin or Unicode.

318

Format

Database-compliant table column format. It does not affect the physical table definition, but
rather provides input to the view ws_admin_v_dim_col which can be used to assist in the
population of an end user tool's end user layer. As such it is a free form entry and any characters
are valid. Typically format masks are only used on numeric fields. Example: #,###0.00. It is not
worth the effort of populating this field unless it can be utilized by the end user tools in use.

Character Comparison/Sorting

Determines how the column character values are treated for comparison and sorting operations.
Choose from: case specific, not case specific, uppercase case specific or uppercase not case
specific.

Compress

Indicates whether the table column values are compressed when stored.

Compress/Compress Value

Optional list of values to be compressed. By default, only NULL is compressed if no list of values
is specified.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant
for fact tables. It does not affect the physical table definition, but rather provides input to the
view ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end
user layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column
can be summed when performing data grouping in a query. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may
have an order number, or a invoice number stored in the fact table. Such columns are considered
attributes, rather than facts. This checkbox is therefore normally only relevant for fact tables.
This checkbox does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tools end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

End User Layer display

Indicates whether the table column is available/visible to end users. If set the documentation will
include the column in the glossary and in the user documentation. It is also used to decide what
columns appear in the view ws_admin_v_dim_col. Typically columns such as the artificial key
would not be enabled for end user display.

319

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update
procedure build. [Normally maintained automatically]. Multiple columns can form the primary
business key. This indicator is set and cleared by WhereScape RED during the dimension update
procedure generation process. This checkbox should not normally be altered.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of
any business key. For example: By default the dss_source_system_key is added
to every dimension table. It is considered part of any lookup on that table and
has the key type set to 1. Set when the column is added during drag and drop
table generation.

2 Indicates that this column is a dimensional join. Used on fact tables to
indicate the dimension keys. Results in an index being built for the column
(Bitmap in Oracle). Set during the update procedure generation for a fact
table, based on information from the staging table.

3 Slowly changing column indicator. Used on dimension tables to indicate that
the column is being managed as a slowly changing column within the context
of a slowly changing dimension. Set when a column is identified during the
dimension update procedure generation.

4 Previous value column indicator. Used on dimension tables to indicate that
the column is being managed as a previous value column. The source column
identifies the parent column. Set during the dimension creation.

5 Start date of a date ranged dimension. Used on dimension tables to indicate
that the column is defined as the starting date for a source system date ranged
dimension. Forms part of the business key. Set during the dimension creation.

6 End date of a date ranged dimension. Used on dimension tables to indicate
that the column is defined as the ending date for a source system date ranged
dimension. Forms part of the business key. Set during the dimension creation.

A

Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used
during index generation and not normally set.

Zero Key Value

Determines the value populated for the column in the "Invalid Join" or "Unknown" record. By
default, NULL is used when a value is not specified.

320

Source Table

Identifies the source table where the column's data comes from. This source table is normally a
load table within the data warehouse. If the column was sourced from multiple tables, then the
normal practice is to record one of the tables in this field and a comment listing all of the other
tables in the Source Strategy field. This field is used when generating a procedure to update the
dimension. It is also used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a
load table column, which in turn may have been a transformation or the combination of multiple
columns. For previous value managed columns the source column is the column in the table
whose previous value is being recorded.

Transformation

See Dimension Column Transformations (on page 325). [Read-only].

Join

Indicates whether the table column is used in a table join. Normally this is maintained
automatically but can be optionally changed to override the default logic used in the generated
update procedure. The default for this option is not set.

321

Changing a Column Name

If the Column name or Data type is changed for a column then the metadata will differ from the
table as recorded in the database.

• Use the Validate/Validate Table Create Status menu option or the right-click menu to
compare the metadata to the table in the database.

• A right-click menu option of Alter table is available when positioned on the table name after
the validate has completed. This option will alter the database table to match the metadata
definition.

For example: Analysis Services does not like name as a column name.

For dim_customer it will therefore be necessary to change the column name from name to
cname.

1 Click on the dim_customer object in the left pane to display the dim_customer columns in
the middle pane.

2 When positioned on the column name in the middle pane, right-click and select Properties
from the drop-down menu.

322

3 Change the column name from name to cname as shown below. Click OK to leave the
Properties page.

323

4 Right-click on the dim_customer object in the left pane and select Validate against
Database.

324

5 The results in the middle pane will show that the metadata has changed to cname while the
column name in the database is still name.

6 Right-click on dim_customer in the middle pane and select Alter table from the drop-down
list.

7 A warning appears, displaying the table and column name to be altered. Select Alter Table.

8 A dialog appears confirming that dim_customer has been altered. Click OK.

325

Dimension Column Transformations
Each dimension table column can have a transformation associated with it. The transformation
will be included in the generated procedure and will be executed as part of the procedure update.
The transformation must therefore be a valid SQL construct that can be included in a Select
statement. For example, we could have a transformation of 'load_order_line.qty * 0.125' to
calculate a tax column of 12.5%.

Click the Transformation tab to enter a transformation.

The transformation screen is as follows:

Note: Transformations are only put into effect when the procedure is re-generated.

Microsoft Analysis Services 2005+ Tabular Mode Tables: For Tabular Mode table column
transformations, Default DAX is the only applicable Function Set for after load
transformations.

See Transformations (on page 593) for more details.

326

Dimension Hierarchies
The various hierarchies associated with a dimension can be recorded in the WhereScape RED
metadata. These hierarchies are often not used in any form, except to provide documentary
completeness. They can however be used in conjunction with the WhereScape hierarchy
maintenance utility to allow the maintenance of hierarchy elements externally to a production
source system.

When used in conjunction with the hierarchy maintenance utility, these dimension hierarchies
add a powerful method of enriching the analysis capabilities of the data warehouse. For example,
we may have a source system that has a dimension called sales_person. This dimension has no
information apart from employee_code, name and title. We could add additional columns of
sales_manager, territory, state and region to this dimension. A hierarchy could then be formed
from the salesperson name, sales_manager, territory, state and region. The hierarchy
maintenance utility allows the maintenance of this hierarchy externally to the data warehouse.
This external hierarchy can then become a source system to enrich the data in the warehouse.

Two areas will be covered. Firstly the creation of hierarchies using WhereScape RED, and
secondly the process required to setup and use externally maintained hierarchies as source
systems to the data warehouse.

327

Adding a Dimension Hierarchy
Any number of hierarchies can be created against a dimension. There is no restriction on the
form of the hierarchy.

1 To add a new hierarchy, position on the dimension table in the left had pane and using the
right-click menu select Hierarchies>Add Hierarchy.

The following dialog appears:

2 Enter a meaningful name for the hierarchy.

3 Enter a meaningful description for the hierarchy. This description is carried through into the
Hierarchy Description field of any OLAP Dimensions that are built from the original
Dimension object.

Note: The description text is automatically set to "Added at dimension creation for cube support"
but this can be edited to match the user's intended description.

The hierarchy is built with the highest level at the top; for example a customer dimension may
have state at the highest level, then city, then address and finally code at the lowest level.

328

• To enter the hierarchy elements, select them in the required order, from the left pane and
click the right arrow (>) to add them to the right column.

• Once all the hierarchy elements have been added, click OK.
• A hierarchy and its elements can be edited by listing the hierarchies associated with a

dimension and using the right-click menu options available in the middle pane.

Copying Dimension Hierarchies from Source

Hierarchies are automatically copied from a source table when the source table is dragged into
the middle pane to create a new Dimension.

To copy the hierarchies from the source objects manually, right-click on a dimension in the
Object Pane and select Hierarchies>Copy Hierarchies from Source. This feature is useful when
the source for a Dimension has been updated to contain new hierarchies.

329

Using a Maintained Hierarchy
Once a hierarchy has been added to a dimension, it can be maintained externally by the hierarchy
maintenance utility if the Maintained attribute is set.
The process for maintaining this hierarchy externally and using it as a source system to the data
warehouse is as follows.

1 Grant the user that is to undertake the maintenance select access to the following tables:
ws_dim_tab, ws_dim_col, ws_hie_header, ws_hie_link, ws_meta_tables.

2 Grant the user that is to undertake the maintenance select access to the dimension that has
the hierarchy.

3 Using the hierarchy maintenance utility (see online documentation) log on to the
maintenance area and create and populate/edit the maintenance table.

4 In WhereScape RED, create a connection to the hierarchy maintenance schema/database.

5 Browse the hierarchy connection.

6 Using drag and drop create a load table from the hierarchy maintenance table.
7 Edit the columns in the dimension that are to be sourced from the maintenance table and

change their source table and column to that of the load table and columns created in step 6.

8 Generate a new update procedure for the Dimension and either do a lookup of the
maintenance table or a join based on the business key.

9 Run the update procedure.

330

Snowflake
Snowflake schemas normalize dimensions to eliminate redundancy. That is, the dimension data
has been grouped into multiple tables instead of one large table. For example, a product
dimension table in a star schema might be normalized into a products table, a product_category
table, and a product_manufacturer table in a snowflake schema. While this saves space, it
increases the number of dimension tables and requires more foreign key joins. The result is more
complex queries and reduced query performance.

331

Creating a Snowflake
A snowflake dimensional structure is supported by WhereScape RED. A snowflake can be created
for EDW 3NF or partially EDW 3NF dimension tables. It is created by including the surrogate key
of the parent dimension in the child dimension. In the example below, the dim_state table
represents the parent dimension. The column dim_state_key is added to the child dimension
dim_customer. Any fact tables that include the dim_customer dimension will inherently have a
link to the dim_state dimension.

The process for creating a snowflake is as follows:

1 Build both dimensions (see previous sections).

2 Expand dimensions in the left pane.
3 Click on the child dimension table in the left pane to display its columns in the middle pane.

4 Browse the data warehouse connection in the right pane.

5 Expand the parent dimension table in the right pane.

6 Drag the surrogate key of the parent dimension table from the right pane to the child
dimension's column list in the middle pane.

7 Create/Recreate the child dimension.
8 Rebuild the child dimension's update procedure.

9 A dialog will now appear asking for the business key column(s) in the child dimension that
matches the business key for the parent dimension:

10 Add the business key column(s) and click OK.

332

Dimension Language Mapping
The Dimension Properties screen has a tab called Language Mapping.

1 Select the language from the drop-down list and then enter the translations for the Business
Display Name and the Description in the chosen language.

2 The translations for these fields can then be pushed through into OLAP cubes.

333

Stage tables are used to transform the data to a star schema or third normal form model. A stage
table can be a fact or EDW 3NF table that only contains change data or a work table. In star
schema data warehouses, the stage table brings all the dimensional joins together in preparation
for publishing into the fact table.

A stage table is built from the Data Warehouse connection. Unless you are retrofitting an existing
system, stage tables are typically built from one or more load tables. They can utilize the
surrogate keys from a number of dimension tables.

The normal steps for creating a stage table are defined below and are covered in this chapter. As
the stage table is essentially a subset of the fact table, the design and creation of the stage table is
essentially the design and creation of the model table. The steps are:

1 Identify the source transactional data that will ultimately constitute the model table. If the
data is sourced from multiple tables ascertain if a join between the source tables is possible,
or if a series of passes will be required to populate the stage table. If the latter option is
chosen then bespoke code is needed.

2 Using the 'drag and drop' functionality drag the table with the lowest granular data into a
stage target. See Building the Stage Table (on page 334).

3 Add columns from other source tables. See Building the Stage Table (on page 334).
4 Create the stage table in the database. See Building the Stage Table (on page 334).

5 Build the update procedure. See Generating the Staging Update Procedure (on page 337).

NOTE: If you are building a Data Vault system, a Stage table with sub type of Data Vault Stage
can be created to generate hash keys that are used in building Data Vault objects (Hub, Link or
Satellite tables). Refer to Data Vaults (on page 413) for details.

In This Chapter

Building the Stage Table ... 334
Generating the Staging Update Procedure ... 337
Stage Table Custom Procedure ... 345
Stage Table Column Properties .. 345
Stage Table Column Transformations .. 351
Permanent Stage Tables ... 352
Generating the Permanent Staging Update Procedure ... 352
Set Merge Procedure ... 358

C h a p t e r 1 1

Staging

334

Building the Stage Table
Building the stage table is potentially the most challenging part of the overall task of building a
data warehouse analysis area. Most of the effort required is in the design phase, in terms of
knowing what data needs to come into the model table that will be ultimately built. This section
assumes that the decision as to what to include has been made.

Multiple data sources

A stage table typically contains the change data for a detail fact table. As such it normally maps
to a specific function within the business and in many cases relates back to one main OLTP table.
In many cases however it may be necessary to combine information from a number of tables. One
of the decisions required is whether or not it is practical or even possible to join the data from the
different source tables.

We may have to build a model table containing data from invoice headers, invoice lines, order
headers and order lines source tables. There are three basic options:

1 Join all four tables in one large join in our staging table.

2 Update the staging table in two passes. One pass updating the order information and one pass
updating the invoice information.

3 Generate two stage tables, one for order and one for invoice. Use these two staging tables to
update the one sales_detail model table.

Although all three options are viable and a normal situation in the WhereScape RED
environment, options (2) and (3) will require specific coding and modifications to the generated
procedures from the outset (or the use of a custom procedure). Given the example provided
option (2) would be the normal approach, although in some cases option (3) would be valid.

Drag and Drop

The best approach in creating a stage table is to choose the source table that contains the most
fields that we will be using and drag this table into the stage target. Then drag specific columns
from the other source tables until we have all the source data that is required.

The process for defining the metadata is as follows:

1 Double click on the Stage Table object group in the left pane. This will result in all existing
stage tables being displayed in the middle pane. This also sets the middle pane as a stage
drop target.

2 Browse the DataWarehouse connection to display our load tables in the right pane. This is
achieved via the Browse>Source Tables menu option and then choosing the
DataWarehouse connection.

3 Drag the primary load table (e.g. the one with the most columns, or the lowest data
granularity) from the right pane and drop it in the middle pane. A dialog appears to create the
new staging object. Leave the object type as Stage Table and change the name to reflect what
is being done. For example in the tutorial the load_order_line table is dropped and a stage
table called stage_sales_detail defined.

4 Once a valid name is entered the properties for the new stage table are displayed. Normally
these would be left unchanged except perhaps for storage settings.

5 Once the Properties dialog is closed the columns for the new stage table are displayed in the
middle pane. This middle pane is now considered a drop target for this specific stage table.

335

Any additional columns or tables dropped into the middle pane are considered additions to
this stage table definition. Any columns that are not required can be deleted at this stage.

6 Drag and drop additional columns from other source tables if appropriate. In the tutorial we
would now drag the customer_code, order_date and ship_date from the load_order_header
table.

7 If using surrogate keys, then drag in the model artificial key from each model table that is to
be joined to the stage table. We can only join a model if a business key exists amongst the
stage table columns or it is possible to derive that business key in some way from the columns
or other model tables.

Note: If a column is being used to join information from two or more source tables, that column
must only appear once in the stage table. It is irrelevant which table is used to create the column
in the new stage table.

Once completed our list of columns for the stage table should look something like the list below.
Note the source table for each column.

The source table (src table) reflects where each column was dragged from. In the example above,
the bulk of the columns came from the load_order_header table. Each model artificial key was
dragged from its appropriate table. The final column 'dss_update_time' was generated by RED and
has no source.

336

Create the table

Once the stage table has been defined in the metadata we need to physically create the table in
the database.

1 Right-click on the stage table name and selecting Create (ReCreate) from the pop up menu.
2 A results box will appear to show the results of the creation. The following example shows a

successful creation.

The contents of this dialog are a message to the effect that the table was created followed by a
copy of the actual database create statement, and if defined the results of any index creates. For
the initial create no indexes will be defined.

If the table was not created then ascertain and fix the problem. A common problem is a 'Duplicate
column' where a column has been accidentally added twice.

The best way of finding such a column is to double click on the list heading 'Col name'. This will
sort the column names into alphabetic order.

Another double click on the heading will sort the columns back into their create order. Column
ordering can be changed by altering the column order value against a column's properties.

TIP: Double clicking on the heading of a column in a list sorts the list into alphabetical order
based on the column chosen.

The next section covers Generating the Staging Update Procedure (on page 337).

337

Generating the Staging Update Procedure
Once a stage table has been defined in the metadata and created in the database, an update
procedure can be generated to handle the joining of any tables and the lookup of the model table
artificial keys.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update
Procedures (on page 199) for details.

Generating a Procedure
1 To generate a procedure, right-click on the stage table in the left pane and select Properties.

2 From the Update Procedure drop-down list, select (Build Procedure...).

3 Click OK to update the properties and start the process of generating the new procedure.
4 A series of prompts are displayed during the procedure generation to join the tables and link

in the model tables.

Procedure type
The first dialog box asks for the type of procedure that is to be generated:

338

A number of different types of procedure generation are available. Each type is discussed below.

The check box at the bottom of the dialog box is only visible if advanced procedure building
features are enabled. The check box enables editing of the 'Where' clause when no table joining is
being performed, and hence the 'Where' clause would not be exposed.

Set based procedure

A set based procedure performs one SQL statement to join all the model and source tables
together and then insert this data into the stage table. This is normally the fastest method of
building the stage table. Caution must be taken in regards to NULL values in the business keys
that are used to make the table joins. The generated code deliberately does not handle such null
values.

Set Merge Procedure

This option is to allow the merging of two or more identical tables. The tables to be merged must
have exactly the same number of columns and column names. If necessary, additional blank
columns could be added to one or other of the tables to make them identical. To use this
procedure, you must simply have the tables to be merged mentioned at least once in the Source
Table field of a columns properties. For more details, see Set Merge Procedure (on page 358).

Set Distinct

Essentially the same as Set, except for the DISTINCT key word being added to the SELECT
statement. This option therefore removes duplicate rows.

Set Minus

The Set Minus option can be used to determine change data or for programmatic referential
integrity checking. This option works in a similar way to Set Merge. It generates SQL code in this
form: SELECT ... FROM source_table1 {where} MINUS SELECT ... FROM source_table2
{where}. It requires exactly two source tables to be specified. All source columns must exist in
both source tables.

339

Locking Request Modifier
Source Table: Specify a locking request modifier to be applied to each source table during
generated update procedures. By default, this is set to 'ACCESS' which locks each row being
accessed, a blank entry will result in no locking clause in the generated procedure.

Source Table Mapping
If multiple source tables are present, then the definition of the joins between the various tables is
required. Note that at this stage we are not joining the model tables. These joins only relate to
the source tables.

The joining of the tables will provide part of the construct of the set based update in the update
procedure.

Only two tables may be joined at a time. To join two tables select the two tables in the left box
and click either the outer join or simple join button. Column lists for both tables will appear at
the bottom of the dialog box. Select the column (or one of the columns) that allows the two tables
to be joined. If an outer join is being used, the column for the master table must be chosen first. If
there are multiple columns joining two tables then this action must be repeated for each column.
Continue to perform all joins between all tables. The example below only has two tables with one
join column so is a relatively simple case. An additional option is available to allow either an

340

ANSI standard join or a 'Where' clause based join. The ANSI standard join should be chosen in
most situations. See the example screen in the following section.

Simple Join

A simple join joins the two tables, and only returns rows where data is matched in both tables. So
for example if table A has 100 rows and table B has a subset of 24 rows. If all the rows in table B
can be joined to table A then 24 rows will be returned. The other 76 rows from table A will not be
returned.

Outer Join

An outer join joins the two tables, and returns all rows in the master table regardless of whether
or not they are found in the second table. Therefore, if the example above was executed with
table A as the master table, then 100 rows would be returned. 76 of those rows would have null
values for the table B columns. In the example screen above, the table 'load_order_line' has had
its column chosen and the column for the table 'load_order_header' is currently being chosen.
This will result in the statement as shown in the 'Where' clause edit window. The results of this
select are that a row will be added containing order_line information regardless of whether or not
an order_header exists.

As the join columns are selected, the 'Where' statement is built up in the large edit window on
the right side. Once all joins have been made, the contents of this window can be changed if the
join statement is not correct.

Once satisfied with the 'Where' statement, click the OK button to proceed to the next step. As
indicated in its description, this statement is the 'Where' clause that will be applied to the select
statement of the cursor to allow the joining of the various source tables. It can of course be edited
in the procedure that is generated if not correct.

You have the choice between 'Where' statement joins and ANSI standard joins.

341

Note: 'Where' joins are not available if using outer joins in Teradata.

The example below shows the result of an ANSI standard join which takes place in the 'From'
statement.

342

Parameter selection
The parameter selection dialog is used for choosing WhereScape RED parameters to be included
as variables in the stage table procedure. Each parameter chosen is included in the procedure as
v_parameter_name, limited to the first 30 characters. For example, parameter
THE_DAY_OF_THE_WEEK_FOR_LOADING_MONTH_END_DATA will be available in the
procedure as v_THE_DAY_OF_THE_WEEK_FOR_LOAD. RED automatically declares this variable
and assigns it the current value of the parameter every time the procedure is run. Parameter
variables can be used in column transformations or 'Where' clauses. A sample dialog box follows:

Note: If the desired parameter doesn't exist in the metadata yet, a new parameter can be added
by clicking on the Add New button on the bottom leftmost corner of the Select Parameters
dialog.

343

Dimension Joins
For each dimension key, a dialog appears asking for the business key from the stage table that
matches the business key for the dimension.

In the example below, we are asked for the stage table business key for the customer dimension
table. The dimension name is shown both on the first prompt line and at the lower left side of the
dialog box.

The customer dimension has a unique business key named customer_code.

We must provide the corresponding business key from the staging table. In the case of our
example this is the customer_code column.

Note: The Add Text button and the associated message and edit box are only shown if the user
possesses a full license, thus enabling the advanced procedure build options. When the Add Text
button is clicked any data in the edit box to the right of the button is placed in the stage table
column list. In this way a number or string can be assigned as part or all of a dimension join.

1 Click the OK button after the correct business key has been entered.

2 If the business key does not exist and will be derived from another dimension or from some
form of lookup then enter any column and edit the procedure once produced.

344

Dimension history information
If the dimension table being joined was defined as a dimension history table, then an additional
dialog will appear asking for a date in the dimension table that allows the coordination of the
dimension record changes. This dialog asks for a date field in the dimension table that enables
RED to determine which version of the tracked column (the customer_name field, below) to use
based on the specified date field.

Select the appropriate date field for your business needs and click OK. If you wish to take the last
(or current) version for the tracked column, select No Date.

For Example:

As shown in the screen above, we have defined the customer_name as an column that we expect
to have versions for over time i.e. each time the data warehouse processing sees a new
customer_name value, the dimension table will record the date range for that version's validity—
even though the business key (customer_code in this example) remains the same. This implies we
want to create a new record in the dimension table, whenever a customer name is changed even
though the customer_code remains the same.
Let's say a customer changes their name on the 5th of the month. If the Staging Table Dates
field is set to order_date, any order received before the 5th of the month is identified under the
old customer name and any order received on or after the 5th has the new customer name.
Alternatively, by setting the Staging Table Dates to ship_date, we can specify that any order
shipped on or after the 5th of the month is shipped with the new name.

345

Building and Compiling the Procedure
• Once the above questions are completed the procedure is built and compiled automatically.
• If the compile fails, an error is displayed along with the first few lines of error messages.
• Compilation failures typically occur when the physical creation of the table was not done.
• If the compile fails for some other reason, the best approach is to use the procedure editor to

edit and compile the procedure.
• The procedure editor will highlight all the errors within the context of the procedure.
• Once the procedure has been successfully compiled it can either be executed interactively or

passed to the scheduler.

Stage Table Custom Procedure
A second procedure can be created on every stage table. This is called the custom procedure.
Rather than modifying the generated procedure, it is often more practical to make additions to
the generated code in a separate procedure. This allows for regeneration of the staging table's
update procedure without losing changes (and having to reapply them).

The generated procedure for a custom procedure is template code. That is, a procedure that
declares and initializes variables, does nothing and returns the correct return code and message
for the WhereScape RED scheduler.

Stage Table Column Properties
Each stage table column has a set of associated properties. The definition of each property is
defined below:

If the Column name or Data type is changed for a column then the metadata will differ from the
table as recorded in the database. Use the Validate>Validate Table Create Status menu option
to compare the metadata to the table in the database. A right-click menu option of Alter Table is
available when positioned on the table name after the validate has completed. This option will
alter the database table to match the metadata definition.

TIP: If a database table's definition is changed in the metadata then the table need to be
altered in the database. Use the Validate>Validate Table Create Status to compare metadata
definitions to physical database tables. The option also provides the ability to alter the database
table, through a pop-up menu option from the validated table name.

346

A sample Properties screen is as follows:

The two special update keys allow you to update the column and step either forward or backward
to the next column's properties. ALT-Left Arrow and ALT-Right Arrow can also be used instead
of the two special update keys.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. A good practice is to only use alphanumerics, and the
underscore character. Changing this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Title

Name that the business uses to refer to the column. It does not affect the physical table
definition, but rather provides input to the documentation and to the view ws_admin_v_dim_col
which can be used to assist in the population of a end user tool's end user layer. As such it is a
free form entry and any characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

347

Column Description

This field contains the description for the column. It might contain information on where and
how the column was acquired. For example if the column is sourced from multiple tables or is a
composite or derived column then this definition would normally describe the process used to
populate the column. This field is used in the documentation and is available via the view
ws_admin_v_dim_col . This field is also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The
lowest numbered column will appear first in the table. Although this affects the physical table
definition no action will be taken unless the table is re-created in the database. The columns can
be re-numbered based on the existing order by choosing the Respace order number pop-up
menu option when positioned over any column in the table. This action will number the columns
in increments of 10 starting at 10. In addition to a simple change of the order field, the column
order can be changed by first displaying the columns in the middle pane and then using drag and
drop to move the columns around. This drag and drop process will automatically renumber the
columns as required.

Data Type

Database-compliant data type that must be valid for the target database. Typical Teradata
databases often have integer, numeric(), varchar(), char(), date and timestamp data types. See the
database documentation for a description of the data types available. Changing this field alters
the table's definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always
mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is
specified for the column.

Character Set

Database-compliant table column character-set used for storage. Select Latin or Unicode.

Format

Database-compliant table column format. It does not affect the physical table definition, but
rather provides input to the view ws_admin_v_dim_col which can be used to assist in the
population of an end user tool's end user layer. As such it is a free form entry and any characters
are valid. Typically format masks are only used on numeric fields. Example: #,###0.00. It is not
worth the effort of populating this field unless it can be utilized by the end user tools in use.

Character Comparison/Sorting

Determines how the column character values are treated for comparison and sorting operations.
Choose from: case specific, not case specific, uppercase case specific or uppercase not case
specific.

348

Compress

Indicates whether the table column values are compressed when stored.

Compress/Compress Value

Optional list of values to be compressed. By default, only NULL is compressed if no list of values
is specified.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant
for fact tables. It does not affect the physical table definition, but rather provides input to the
view ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end
user layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column
can be summed when performing data grouping in a query. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example, we may
have an order number, or an invoice number stored in the fact table. Such columns are
considered attributes, rather than facts. This checkbox is therefore normally only relevant for fact
tables. This checkbox does not affect the physical table definition, but rather provides input to
the view ws_admin_v_dim_col which can be used to assist in the population of an end user tools
end user layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update
procedure build. [Normally maintained automatically]. Multiple columns can form the primary
business key. This indicator is set and cleared by WhereScape RED during the dimension update
procedure generation process. This check box should not normally be altered.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested.

The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table generation.

1 Component of all business keys. Indicates that this column is used as part of any
business key. It is considered part of any lookup on that table and has the key type
set to 1. Set when the column is added during drag and drop table generation.

349

Key type Meaning

2 Indicates that this column is a dimension table join. Used on dimension tables to
indicate the dimension keys to other dimension tables. Results in indexes being
defined for the columns. Set during the update procedure generation for a
dimension table, based on information from the staging table.

3 Not used in WhereScape RED for Teradata.

4 Not used in WhereScape RED for Teradata.

5 Indicates a column is a start date column.

6 Indicates a column is a end date column.

7 History column indicator. Used on dimension history tables to indicate that the
column is being managed as a history column within the context of a dimension
history table. Set when a column is identified during the dimension history update
procedure generation.

c Change Hash Key column indicator. Used in Data Vault tables to indicate the
differences in the descriptive columns of a Satellite table. Refer to Data Vaults
(on page 413) for details.

h Hub Hash Key column indicator. Used in Data Vault tables to indicate the hash key
column of a Hub Table. Refer to Data Vaults (on page 413) for details.

l Link Hash Key column indicator. Used in Data Vault tables to indicate the hash key
column of a Link Table. Refer to Data Vaults (on page 413) for details

A Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used during
index generation and not normally set.

Hash Key Sources

This field is only displayed for Hash key types. Displays the hash source columns that are used to
generate the selected Hub, Link or Change hash key.

Hash Key Source For

This field is only displayed for Hash key types. Displays the hash keys columns that use the
displayed hash key sources.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a
load table or a dimension table within the data warehouse. If the column was sourced from
multiple tables, then the normal practice is to record one of the tables in this field and a
comment listing all of the other tables in the Source strategy field. This field is used when
generating a procedure to update the dimension. It is also used in the track back diagrams and in
the documentation.

350

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a
load table column, which in turn may have been a transformation or the combination of multiple
columns. This may also be a dimension table key where a dimension is being joined.

Transformation

See Stage Table Column Transformations (on page 351). [Read-only].

Join

Indicates whether the table column is used in a table join. [Normally maintained automatically
but can be optionally changed to override the default join logic used in the generated update
procedure]. The Source table and Source column fields will provide the dimension table's side
of the join. The options for this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the dimension table is looked up during the staging
table update procedure build. It allows you to join the dimension manually in the Cursor mapping
dialog (where the 'Where' clause is built). The usual dialog for matching the dimension business
key to a column or columns in the staging table is not displayed if this option is enabled.

Setting this field to Pre Join activates the Pre Join Source Table field and allows you to select a
table from the drop-down list.

Pre Join Source Table

Indicates the table from which the pre joined column was sourced. When the Join option is set to
False, this field becomes inactive. When the Join option is set to True or Manual, this field is set
to the current table name. When the Join option is set to Pre Join, then you can select the
required table from the drop-down list.

351

Stage Table Column Transformations
Each stage table column can have a transformation associated with it. The transformation will be
included in the generated procedure and will be executed as part of the procedure update.

The transformation must therefore be a valid SQL construct that can be included in a Select
statement.

For example we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax
column of 12.5%. Click the Transformation tab to enter a transformation.

The transformation screen is as follows:

Note: Transformations are only put into effect when the procedure is re-generated.

See Transformations (on page 593) for more details.

352

Permanent Stage Tables

Note: WhereScape RED version 8.1.1.0 and above no longer supports the Permanent Stage table
object sub type. However, users that have existing Permanent Stage table objects in their data
warehouse can retain and continue to use them.

Normally Stage tables have all data removed from them at the start of their update procedure.

Sometimes it's necessary to hold more than a single set of data in a stage table. Permanent Stage
tables allow this.

By default, a Permanent Stage table update does not start with all data being removed. However,
options are available to selectively remove data.

For example, a Permanent Stage table may be used to hold the last three months source data
provide functionality to remove all data for a day if new data for that day arrives.

Generating the Permanent Staging Update Procedure
Once a permanent stage table has been defined in the metadata and created in the data base an
update procedure can be generated to handle the joining of any tables.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update
Procedures (on page 199) for details.

Generating a Procedure
1 To generate a procedure, right-click on the permanent stage table name in the left pane and

select Properties.

2 From the Update Procedure drop-down list select (Build Procedure...).

3 Click OK to update the properties and start the process of generating the new procedure.
4 A series of prompts are displayed during the procedure generation to join the tables and link

in the model tables.

353

Procedure type

The first dialog box asks for the type of procedure that is to be generated:

A number of different types of procedure generation are available. Each type is discussed below.
A check box appears at the bottom of the dialog if advanced procedure building features are
enabled in the Tools>Options screen. This check box enables the editing of the 'Where' clause
when no table joining is being performed, and hence the 'Where' clause would not be exposed.

Set based procedure

A set based procedure performs one SQL statement to join all the source tables together and then
insert this data into the stage table. This is normally the fastest method of building the stage
table. Caution must be taken in regards to NULL values in the business keys that are used to make
the table joins. The generated code deliberately does not handle such null values.

Set Merge Procedure

This option is to allow the merging of two or more identical tables. The tables to be merged must
have exactly the same number of columns and column names. If necessary additional blank
columns could be added to one or other of the tables to make them identical. To use this
procedure you must simply have the tables to be merged mentioned at least once in the Source
Table field of a columns properties.

Set Distinct

Essentially the same as Set, except for the DISTINCT key word being added to the SELECT
statement. This options therefore removes duplicate rows.

354

Set Minus

The Set Minus option can be used to determine change data or for programmatic referential
integrity checking. This option works in a similar way to Set Merge. It generates SQL code in this
form: SELECT ... FROM source_table1 {where} MINUS SELECT ... FROM source_table2
{where}. It requires exactly two source tables to be specified. All source columns must exist in
both source tables.

Business Key definition

A dialog will appear asking for the business key that will uniquely identify each permanent stage
record.

The source table from which the permanent stage is derived would normally have some form of
unique constraint applied. In most cases this will be the business key.

In the example below order_number and order_line_no are selected as the business key.

A business key can be made up of multiple columns, but it must provide a unique identifier.
Where multiple columns uniquely and separately identify the permanent stage, choose one to act
as the primary business key. For example a source table may have a unique constraint on both a
product code and a product description. Therefore the description as well as the code must be
unique. It is of course possible to combine the two columns, but the normal practice would be to
choose the code as the business key.

355

NULL Values: none of the columns chosen as the business key should ever contain a NULL value.
See the note at the start of this chapter.

The Include delete before insert check will display an additional dialog wizard for building the
'Where' clause of the delete statement; at the start of the update procedure.

Note: If a business key is specified, the generated procedure includes both the update and insert
statement; otherwise only an insert statement is supplied.

Source table joins

If multiple source tables are present then the definition of the joins between the various tables is
required.

The joining of the tables will provide part of the construct of the set based update in the update
procedure.

Only two tables may be joined at a time. To join two tables select the two tables in the left box
and click either the outer join or simple join button. Column lists for both tables will appear at
the bottom of the dialog box.

Select the column (or one of the columns) that allows the two tables to be joined. If an outer join
is being used, the column for the master table must be chosen first. If there are multiple columns
joining two tables then this action must be repeated for each column. Continue to perform all
joins between all tables.

The example below only has two tables with one join column so is a relatively simple case. An
additional option is available to allow either an ANSI standard join or a 'Where' clause based join.
The ANSI standard join should be chosen in most situations. See the example screen in the
following section.

356

Simple Join

A simple join joins the two tables, and only returns rows where data is matched in both tables. So
for example if table A has 100 rows and table B has a subset of 24 rows. If all the rows in table B
can be joined to table A then 24 rows will be returned. The other 76 rows from table A will not be
returned.

Outer Join

An outer join joins the two tables, and returns all rows in the master table regardless of whether
or not they are found in the second table. Therefore, if the example above was executed with
table A as the master table, then 100 rows would be returned. 76 of those rows would have null
values for the table B columns. In the example screen above the table 'load_order_line' has had its
column chosen and the column for the table 'load_order_header' is currently being chosen. This
will result in the statement as shown in the 'Where' clause edit window. The results of this select
are that a row will be added containing order_line information, regardless of whether or not an
order_header exists.

As the join columns are selected, the 'Where' statement is built up in the large edit window on
the right. Once all joins have been made, the contents of this window can be changed if the join
statement is not correct.

Once satisfied with the 'Where' statement click OK to proceed to the next step. As indicated in its
description, this statement is the 'Where' clause that will be applied to the select statement of the
cursor to allow the joining of the various source tables. It can of course be edited in the procedure
that is generated if not correct.

You have the choice between 'Where' statement joins and ANSI standard joins.

Note: 'Where' joins are not available if using outer joins in Teradata.

357

The example below shows the result of an ANSI standard join which takes place in the 'From'
statement.

Building and Compiling the Procedure
• Once the above questions are completed the procedure is built and compiled automatically.
• If the compile fails an error will be displayed along with the first few lines of error messages.
• Compilation failures typically occur when the physical creation of the table was not done.
• If the compile fails for some other reason the best approach is to use the procedure editor to

edit and compile the procedure.
• The procedure editor will highlight all the errors within the context of the procedure.
• Once the procedure has been successfully compiled it can either be executed interactively or

passed to the scheduler.

358

Set Merge Procedure
The set merge procedure type allows the merging of two or more identical tables. The tables to be
merged must have exactly the same number of columns and column names.

If necessary additional blank columns could be added to one or other of the tables to make them
identical.

To use this procedure you must simply have the tables to be merged mentioned at least once in
the Source Table field of a columns Properties.

In this example, we will merge three load tables into a single stage table.

1 The browser pane shows the three load tables:

1 Double click on the stage table object group and then drag one of these load tables from the
source pane, into the Stage Object work area.

2 Name the stage table, for example stage_ordersMaster.

3 Next, modify the source table column to include one instance of each of the three load tables;
the order does not matter.

359

You can do this either by typing in the table directly, or by going to each of the column's
properties screen.

4 Right-click on the stage table and select Create (ReCreate).

360

5 Double click on the stage table in the left pane to bring up the Properties dialog.

• Click the Rebuild button to rebuild the stored procedure.

• Select Set Merge as the procedure type.

361

6 The stored procedure is rebuilt, as follows:

362

363

364

In This Chapter

Data Store Objects Overview .. 365
Building a Data Store Object ... 367
Generating the Data Store Update Procedure ... 371
Data Store Artificial Keys .. 378
Data Store Column Properties .. 382
Data Store Column Transformations .. 387

C h a p t e r 1 2

Data Store Objects

365

Data Store Objects Overview
A Data Store Object is a data warehouse object used to store any type of data for later processing.
In WhereScape RED, Data Store objects have many of the code generating attributes of stage,
dimension and fact tables. Data Store objects can be thought of as a source system for the data
warehouse. Alternatively, they may be reported off directly by users and reporting tools. Data
Store Objects can be considered either reference or transactional in nature.

A Data Store Object is built from the Data Warehouse connection. Unless you are retrofitting an
existing system, Data Store Objects are typically built from one or more load or stage tables. The
Data Store model may be retrofitted from an enterprise modeling tool. See Importing a Data
Model (on page 957) for more details.

The usual steps for creating a Data Store model are defined below and are covered in this chapter.
The steps are:

1 Identify the source reference or transactional data that will constitute the Data Store Object.
If the data is sourced from multiple tables ascertain if a join between the source tables is
possible, or if one or more intermediate stage (work) tables would be a better option.

2 Using the 'drag and drop' functionality drag the load or stage table that is the primary source
of information for the Data Store Object into a Data Store target. See Building a Data Store
Object (on page 367).

3 If there's only one source table and all of the columns from it are being used, you can select
the auto create option to build and load the table. This automatically completes the next four
steps. See .

4 Add columns from other load and/or stage tables if required. See Building a Data Store
Object (on page 367).

5 Create the Data Store Object in the database. See Building a Data Store Object (on page 367).

6 Build the update procedure. See Generating the Data Store Update Procedure (on page 371).

7 Run the update procedure and analyze the results.

If necessary, modify the update procedure or create a custom procedure.

366

Data Store Object Keys

Data Store Objects have Business Keys, they do not usually have Artificial Keys.

Business Key

The business key is the column or columns that uniquely identify a record within a Data Store
Object. Where the Data Store Object maps back to a single or a main table in the source system, it
is usually possible to ascertain the business key by looking at the unique keys for that source
table. The business key is sometimes referred to as the 'natural' key. Examples of business keys
are:

• The product SKU in a product table
• The customer code in a customer table
• The IATA airport code in an airport table.

It is assumed that business keys will never be NULL. If a null value is possible in a business key
then the generated code will need to be modified to handle the null value by assigning some
default value. In the following examples, the business key column is modified by using a database
function and default value:

• COALESCE(business_key,'N/A')

Note: Business keys are assumed to never be Null. If they can be null it is best to transform them
to some value prior to the Data Store or stage table update. If this is not done, an un-modified
update procedure will probably fail with a duplicate key error on the business key index.

367

Building a Data Store Object
Data Store Objects are often sourced from one table in the base application. The process for
building a Data Store Object begins with the drag and drop of the load or stage table that contains
the bulk of the Data Store Object's information.

Drag and Drop
1 Create a Data Store Object target by double clicking on the Data Store group in the left pane.

The middle pane will display a list of all existing Data Store Objects in the current project.
When this list is displayed in the middle pane, the pane is identified as a target for new Data
Store Objects.

2 Browse to the Data Warehouse via the Browse Connection menu option.
3 Drag the load or stage table that contains the bulk of the Data Store Object columns into the

middle pane.

4 Drop the table anywhere in the pane. The new object dialog box will appear identifying the
new object as a Data Store Object and providing a default name based on the load or stage
table name.

5 Either accept this name or enter a name for Data Store Object and click ADD to proceed:

Data Store Object Properties
The table properties dialog for the new table displays.

• If required, the Data Store Object can be changed to be a history table by choosing History
from the table type drop-down list on the right side of the dialog. History tables are like

368

slowly changing dimensions in dimensional data warehouses. See Building a Dimension for
more information. Change the storage options if desired.

• If prototyping, and the Data Store Object is simple (i.e. one source table) then it is possible to
create, load and update the Data Store Object in just a couple of steps.

• If you want to do this, select the (Build Procedure...) option from the Update Procedure
drop-down, and click Create and Load to the next screen.

Create and Load
If you chose to build the update procedure the following dialog appears after clicking OK on the
Properties page. This dialog asks if you want to create the Data Store table in the database and
execute the update procedure.

If you are satisfied with the columns that will be used and do not wish to add any columns you
can select the Create and Load button. Alternatively, the Create button creates the table in the
repository but does not execute an update, allowing you to change columns before loading data
into the table.

If Create or Create and Load is selected and a new procedure creation was chosen proceed
directly to the Generating the Data Store Update Procedure (on page 371) section.

If you have additional columns to add or columns to delete, click Close and proceed as below
(Deleting and Changing Columns).

Note: It is possible to create and load the table via the Scheduler; by selecting this option from
the drop-down list on the Create and Load button:

369

Deleting and Changing columns
The columns defined for the Data Store Object will be displayed in the middle pane.

• It is possible to delete any unwanted columns by highlighting a column name or a group of
names and clicking the Delete key.

• You can change a column name by selecting the column and using the right-click context
menu to edit its properties.

• Any new name must conform to the database naming standards. Good practice is to use
alphanumerics and the underscore character.

• See the section Data Store Column Properties (on page 382) for a full description of fields.

TIP: When prototyping, and in the initial stages of an analysis area build, it is best not to
remove columns, nor to change their names to any great extent. This type of activity is best left
until after end users have used the data and provided feedback.

Adding additional columns
With the Data Store Object columns displayed in the middle pane, this pane is considered a drop
target for additional columns.

• It is simple to select columns from other load and/or stage tables and drag these columns into
the middle pane.

• The source table column in the middle pane shows where each column was dragged from.
• The column description could be acquired from three different tables.
• Best practice is to rename at least two of the columns, perhaps also adding context to the

column name. For example, description could become group_description, and so forth.
• There are a number of WhereScape RED ancillary columns that do not have a source table.

These columns have been added by WhereScape RED, and are added depending on earlier
choices.

A description of these columns follows.

Column name Description

dss_start_date Used for history tables. This column provides a date time stamp
when the Data Store Object record came into existence. It is used to
ascertain which Data Store Object record should be used when
multiple are available.

dss_end_date Used for history tables. This column provides a date time stamp
when the Data Store Object record ceased to be the current record.
It is used to ascertain which Data Store Object record should be used
when multiple are available.

dss_current_flag Used for Data Store history tables. This flag identifies the current
record where multiple versions exist.

370

Column name Description

dss_source_system_key Added to support history tables that cannot be fully conformed, and
the inclusion of subsequent source systems. See the ancillary
settings section for more details.

dss_version Used for Data Store history tables. This column contains the version
number of a Data Store history tables record. Numbered from 1
upwards with the highest number being the latest or current
version. It forms part of the unique constraint for the business key
of a Data Store history tables.

dss_update_time Indicates when the record was last updated in the data warehouse.

dss_create_time Indicates when the record was first created in the data warehouse

Create the table
Once the Data Store Object has been defined in the metadata you need to physically create the
table in the database.

1 To do this, right-click on the Data Store Object name and select Create (ReCreate) from the
pop-up menu.

2 The Results pane will display the results of the creation: a copy of the actual database create
statement and if defined the results of any index create statements will be listed. For the
initial create no indexes will be defined.

3 If the table was not created then ascertain and fix the problem. A common problem is a
'Duplicate column' where a column has the same name in two of the source tables. The best
way of finding such a column is to double click on the list heading Col name. This will sort
the column names into alphabetic order.

4 Another double click on the heading will sort the columns back into their create order.

The next section covers Generating the Data Store Update Procedure (on page 371).

371

Generating the Data Store Update Procedure
Once a Data Store Object has been defined in the metadata and created in the database, an
update procedure can be generated to handle the joining of any tables and the update of the Data
Store Object.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update
Procedures (on page 199) for details.

Generating a Procedure
1 To generate a procedure, right-click on the Data Store Object in the left pane and select

Properties.
2 Click on the Rebuild button to start the process of generating the new procedure.

3 A series of options are available.

Processing tab

Template: Enables you to generate update procedures via a template (see "Rebuilding Update
Procedures" on page 199).

372

Business Key Columns: Columns that define the business key for update processing. Required
for include Update options.

Clicking on the ellipsis button will bring up the Business Key selection screen.

TIP: Use the column name ascending/descending buttons to sort column names. To revert
to the metadata column order, click on the meta column order button.

A business key can be made up of multiple columns, but it must provide a unique identifier.
Where multiple columns separately uniquely identify rows in the Data Store Object, choose one
to act as the primary business key.

For example, a source table may have a unique constraint on both a product code and a product
description. Therefore, the description as well as the code must be unique. It is of course possible
to combine the two columns, but the normal practice would be to choose the code as the business
key.

NULL Values: none of the columns chosen as the business key should ever contain a NULL value.

373

Parameters: Any parameters selected are included in the generated update procedure as
variables.

The procedure will include code to retrieve the value of the parameter at run time and store it in
the declared variable.

Clicking on the ellipsis button opens the Parameters selection screen.

The variables can also be used in column transformations and in the from/where clause for the
update procedure. Some databases have a 30 character limit for variable names. WhereScape RED
ensures the variables added for any parameters are less than 30 characters long by creating
variable names in the form v_ followed by the first 28 characters of the parameter name.

For example, a parameter called MINIMUM_ORDER_NUMBER_SINCE_LAST_SOURCE_LOAD will
be available as the variable v_MINIMUM_ORDER_NUMBER_SINCE_L.

TIP1: WhereScape RED parameters should be unique within the first 28 characters to avoid
conflicting variables names.

TIP2: If the desired parameter doesn't exist in the metadata yet, a new parameter can be
added by clicking on the Add New button on the bottom leftmost corner of the Select Parameters
dialog.

See Parameters (on page 143) for more information on WhereScape RED Parameters

374

Include Initial Load Insert: adds an additional insert statement to the update procedure that
runs if the target Data Store is empty. The benefit of this is improved performance inserting into
an empty table without performing any checks to see if rows already exist. The default for this
field is not set (i.e. an initial insert statement is not added to the procedure).

Process by Batch: allows users to select a column to drive data processing in a loop based on the
distinct ordered values of the selected Business Key columns. The update procedure loops on this
column and performs the delete, update and/or insert for each value. If the column chosen is a
date datatype (date, datetime or timestamp), then the user is able to specify yearly, monthly,
daily or column level looping. The default for this field is not set (do not do batch processing).

Delete Before Insert: allows selecting how to process deletes. It enables a delete statement to be
added to the update procedure before any update or insert statement. This is a particularly useful
option for purging old data and for updates based on a source system batch number. When this
option is selected, it enables the Issue Warning if a Delete occurs and the Delete Where
Clause Fields.

Issue Warning if a Delete occurs: this option sets the procedure to a warning state if any
deletes occur.

Delete Where Clause: the delete where clause is appended to the generated delete statement
to constrain the rows deleted.

Process Method: allows updating the Dimension with either an Insert/Update or a Merge
statement. Merge allows you to use one Merge statement instead of two separate Insert and
update statements.

Source Table Locking: allows a locking request modifier to be specified for each source table.
The specified locking request modifier is applied to each source table during generated update
procedures. By default this is set to 'ACCESS' which locks each row being accessed, a blank
entry will result in no locking clause in the generated procedure.

Insert Method

Include Insert Statement: set this field to include the insert statement in the procedure. This
allows inserting new rows in the Data Store.

Insert New Rows Only: uses change detection to work out which rows will require inserting.

New Row Identification Method: method used to identify that records in source are not
currently recorded in the target table. Select Join or Minus.

Include Update Statement: set this field to include an update statement in the procedure. This
allows updating the changing rows in the Data Store. If this is set, the Update Changed Rows
Only option is available.

Update Changed Rows Only: uses change detection to work out what rows require updating.
When set, this option enables the Change Row Identification Method.

Change Row Identification Method: method used to identify that records in source have
changed from what is currently recorded in the target table. Select Join or Minus.

375

Merge Method

Merge Changed Rows only: uses change detection to work out what rows require merging.
When the option is set, it enables the New Row Identification Method.

New Row Identification Method: method used to identify which records in the source are not
recorded or are recorded differently in the target table. Select between Join and Minus.

If non identity columns are used as artificial keys the only new row identification method is
Join.

Data Store Update procedures usually perform faster when you use the Join method for
new row identification.

Source tab

Distinct Data Select: ensures duplicate rows are not added to the Data Store. This is achieved by
adding the word DISTINCT to the source select in the update procedure. The default for this field
is not set.

Source Join: The From clause, including Source Join information.

Simple Join

A simple join only returns rows where data is matched in both tables. So for example if table A
has 100 rows and table B has a subset of 24 rows. If all the rows in table B can be joined to table A
then 24 rows will be returned. The other 76 rows from table A will not be returned.

376

Outer Join

The outer join returns all rows in the master table regardless of whether or not they are found in
the second table. Therefore, if the example above was executed with table A as the master table,
then 100 rows would be returned. 76 of those rows would have null values for the table B
columns.

Note: When WhereScape RED builds up an outer join, it needs to know which table is the master
table and which is subordinate. Select the join column from the master table first. In the example
screen above the table 'load_order_header' has had its column chosen and the column for the
table 'load_order_line' is currently being chosen. This will result in the 'load_order_header' table
being defined as the master, as per the example statement above. The results of this example
select are that a row will be added containing order information regardless of whether or not a
corresponding load_order_line entry exists.

Where Clause: The Where clause. Use as a filter to extract only the necessary records that fulfill
a specified criteria.

Group By: The Group By clause. Use in collaboration with the SELECT statement to arrange
identical data into groups.

Building and Compiling the Procedure
• Once the relevant options are completed, click OK. The procedure will be built and compiled.
• If the compile fails an error will be displayed along with the first few lines of error messages.

Compile fails typically occur when the physical creation of the table was not done.
• If the compile fails for some other reason the best approach is to use the procedure editor to

edit and compile the procedure. The procedure editor will highlight all the errors within the
context of the procedure.

• Once the procedure has been successfully compiled it can either be executed interactively or
passed to the scheduler.

377

Indexes

By default, a number of indexes will be created to support each Data Store Object. These indexes
will be added once the procedure has been built.

An example of the type of indexes created is as follows:

Additional indexes can be added, or these indexes changed. See the chapter on indexes for
further details.

378

Data Store Artificial Keys
By default, Data Store Objects in WhereScape RED do not have an artificial (surrogate) key.
Artificial keys can be added manually, but needing to do so could indicate Data Store Objects are
not the correct WhereScape RED object for this table (perhaps an EDW 3NF Table would be more
appropriate).

There is also an option for artificial keys to be automatically added to Data Store tables through
an option in the Tools menu (see below - Allowing for non identity surrogate keys on Data Store
tables).

To manually add an extra artificial key column to a Data Store table:
1 Right click in the middle pane and click either Add Column or Duplicate Column.
2 Edit the properties of the new column to have the correct name and order, source table and

column, datatype, key type and flags as below.

3 The Column Name and Source Column should be the same.

4 The Source Table should be empty.

5 The Data Type should be integer.

6 The Key Type should be 0.

7 Only the Numeric and Artificial Key flags should be set.

379

The following example shows a manually added artificial key column:

The artificial key for a Data Store Object is set via an identity column. This artificial key normally,
and by default, starts at one and progresses as far as is required.

A WhereScape standard for the creation of special rows in the EDW 3NF tables is as follows:

Key value Usage

1 upwards The standard artificial keys are numbered from 1 upwards, with a new
number assigned for each distinct Data Store Object record.

0 Used as a join to the Data Store Object when no valid join existed. It is the
convention in the WhereScape generated code that any EDW 3NF table
business key that either does not exist or does not match is assigned to key
0.

-1 through -9 Used for special cases. The most common being where an EDW 3NF table is
not appropriate for the record. A new key is used rather than 0 as we want to
distinguish between records that are invalid and not appropriate.

380

Key value Usage

 -10 backward Pseudo records. In many cases we have to deal with different granularities in
our data. For example we may have a table that contains actual sales at a
product SKU level and budget information at a product group level. The
product table only contains SKU based information. To be able to map the
budget records to the same table, we need to create these pseudo keys that
relate to product groups. The values -10 and backwards are normally used
for such keys.

Artificial keys set via a non identity column:

Data Store Tables can have non identity columns as surrogate keys.

The generation of the update procedure will automatically add logic to the code which will
associate a sequential number to the artificial key when a new row is inserted into the EDW 3NF
table.

The order of these sequential numbers is determined by the business key of the source table. The
value of the first newly inserted artificial key will be the value of the highest artificial key in the
dimension table plus 1.

This automatically generated logic can be overwritten by defining a user specific logic on the
Dimension Transformation field on the Tools>Options menu or in the transformation column
of the artificial key.

To have an EDW 3NF table with a non identity column as a surrogate key, you can set the table
Data Type to integer in the Tools>Options menu.

The old logic for dimensions can be retained if an identity column is chosen as surrogate key.

381

Allowing for non identity surrogate keys on Data Store tables:
1 Go to Tools -> Options -> Global Naming Conventions -> Global Name of Key Columns.

2 Expand the Data Store section.
3 Set the Data Store have a Surrogate Key auto added field if you want a surrogate key

added by default to all Data Store tables.

4 Set the Data Store Data Type to be integer and click OK.

5 If your tables have been created previously, you will have to Recreate the tables after you set
this option in the Tools menu.

382

Data Store Column Properties
Each Data Store Object column has a set of associated properties. The definition of each property
is described below:

If the Column name or Data type is changed for a column then the metadata will differ from the
table as recorded in the database.
Use the Validate>Validate Table Create Status menu option or the right-click context menu to
compare the metadata to the table in the database.
The Alter table option is available from the context menu when you right-click the table name,
after the validate has completed. This option alters the database table to match the metadata
definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be
altered in the database. Use the Validate>Validate Table Create Status to compare metadata
definitions to physical database tables. The option also provides the ability to alter the database
table, through a pop-up menu option from the validated table name.

A sample Properties screen is as follows:

383

The two special update keys allow you to update the column and step either forward or backward
to the next column's properties.
ALT-Left Arrow and ALT-Right Arrow can also be used instead of the two special update keys.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. Typically column-naming standards exclude the use of
spaces etc. A good practice is to only use alphanumerics, and the underscore character. Changing
this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Business Display Name

Name that the business uses to refer to the column, which is included in the RED-generated
documentation and can be used in the end user layer of other tools. [Does NOT affect the physical
database table]. As such it is a free form entry and any characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Description

This field contains the description for the column. It may be a description from a business user's
point of view. This field might additionally contain information on where and how the column
was acquired. For example if the column is sourced from multiple tables or is a composite or
derived column then this definition would normally describe the process used to populate the
column. This field is used in the documentation and is available via the view
ws_admin_v_dim_col . This field is also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The
lowest numbered column will appear first in the table. Although this affects the physical table
definition no action will be taken unless the table is re-created in the database. The columns can
be re-numbered based on the existing order by choosing the Respace Order Number pop-up
menu option when positioned over any column in the table. This action will number the columns
in increments of 10 starting at 10. In addition to a simple change of the order field, the column
order can be changed by first displaying the columns in the middle pane and then using drag and
drop to move the columns around. This drag and drop process will automatically renumber the
columns as required.

384

Data Type

Database-compliant data type that must be valid for the target database. Typical Teradata
databases often have integer, numeric(), varchar(), char(), date and timestamp data types. See the
database documentation for a description of the data types available. Changing this field alters
the table's definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always
mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is
specified for the column.

Character Set

Database-compliant table column character-set used for storage. Select Latin or Unicode.

Format

Optional format mask that can be used in end user tools. [Does NOT affect the physical database
table]. As such it is a free form entry and any characters are valid. Typically format masks are only
used on numeric fields. Example: #,###0.00. It is not worth the effort of populating this field
unless it can be utilized by the end user tools in use.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant
for fact tables. It does not affect the physical table definition, but rather provides input to the
view ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end
user layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column
can be summed when performing data grouping in a query. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may
have an order number, or a invoice number stored in the fact table. Such columns are considered
attributes, rather than facts. This checkbox is therefore normally only relevant for fact tables.
This checkbox does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tools end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

385

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update
procedure build. [Normally maintained automatically]. Multiple columns can form the primary
business key.

Artificial Key

Indicates whether the column is the artificial key. Only one artificial key is supported. This
indicator is set by WhereScape RED during the initial drag and drop creation of a table, and
should not normally be altered.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of
any business key.

A Indicates that the column is part of the primary business key. Set whenever
a business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used
during index generation and not normally set.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a
load table within the data warehouse. If the column was sourced from multiple tables, then the
normal practice is to record one of the tables in this field and a comment listing all of the other
tables in the Source strategy field. This field is used when generating a procedure to update the
Data Store object. It is also used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a
load table column, which in turn may have been a transformation or the combination of multiple
columns. This may also be a dimensional key where a dimension is being joined.

Transformation

See Data Store Column Transformation (see "Data Store Column Transformations" on page
387). [Read-only].

386

Join

Indicates whether the table column is used in a table join. [Normally maintained automatically
but can be optionally changed to override the default join logic used in the generated update
procedure]. The Source Table and Source Column fields will provide the dimension table's side
of the join. The options for this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the dimension table is looked up during the update
procedure build. It allows you to join the dimension manually in the Cursor mapping dialog
(where the 'Where' clause is built).

Setting this field to Pre Join activates the Pre Join Source Table field and allows you to select a
table from the drop-down list.

Pre Join Source Table

Indicates the table from which the pre joined column was sourced. When the Join option is set to
False, this field becomes inactive. When the Join option is set to True or Manual, this field is set
to the current table name. When the Join option is set to Pre Join, then you can select the
required table from the drop-down list.

387

Data Store Column Transformations
Each Data Store Object column can have a transformation associated with it. The transformation
will be included in the generated procedure and will be executed as part of the procedure update.
The transformation must therefore be a valid SQL construct that can be included in a Select
statement.

For example, we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax
column of 12.5%.

Click the Transformation tab to enter a transformation.
The transformation screen is as follows:

Note: Transformations only take effect when the procedure is re-generated.

See Transformations (on page 593) for more details.

388

NOTE: EDW 3NF/Normalized Table rename

Former WhereScape RED Normalized Tables have been renamed to EDW 3NF from RED version
6.8.4.3.
However, this change applies only for new metadata repositories, existing metadata repositories
will not be affected and will not have its table's naming modified.
All references to Normalized tables have been updated in the RED documentation from version
6.8.4.3 onwards, however, some screenshots of the RED left pane browser might still show
instances of the Normalized object type instead of the new EDW 3NF type.

To modify table naming from Normalized to EDW 3NF in existing repositories see Object Type
Names and Global Naming Conventions.
Please note that short name and table prefixes can be overwritten by the Local Naming
conventions setting in the User Preferences. If this is the case, you can disable this option here:
Local Naming conventions.

In This Chapter

EDW 3NF Tables Overview ... 389
Building EDW 3NF Table ... 391
Generating the EDW 3NF Update Procedure .. 395
EDW 3NF Table Artificial Keys ... 403
EDW 3NF Table Column Properties .. 406
EDW 3NF Table Column Transformations.. 411

C h a p t e r 1 3

EDW 3NF Tables

389

EDW 3NF Tables Overview
An EDW 3NF Table is a data warehouse object used to build third normal form enterprise data
warehouses. In WhereScape RED, EDW 3NF objects have many of the code generating attributes
of stage, dimension and fact tables. Third normal form enterprise data warehouses can be
thought of as a source system for star schema data marts. Alternatively, they may be reported off
directly by users and reporting tools. EDW 3NF Tables can be considered either reference or
transactional in nature.

An EDW 3NF Table is built from the Data Warehouse connection. Unless you are retrofitting an
existing system, EDW 3NF Tables are typically built from one or more load or stage tables.
The EDW 3NF model may be retrofitted from an enterprise modeling tool. See Importing a Data
Model (on page 957) for more details.

The usual steps for creating an EDW 3NF model are defined below and are covered in this
chapter. The steps are:

1 Identify the source reference or transactional data that will constitute the EDW 3NF Table. If
the data is sourced from multiple tables ascertain if a join between the source tables is
possible, or if one or more intermediate stage (work) tables would be a better option.

2 Using the 'drag and drop' functionality drag the load or stage table that is the primary source
of information for the EDW 3NF Table into an EDW 3NF target. See Building an EDW 3NF
Table (see "Building EDW 3NF Table" on page 391)

3 If there's only one source table and all of the columns from it are being used, you can select
the auto create option to build and load the table. This automatically completes the next four
steps. See Building an EDW 3NF Table (see "Building EDW 3NF Table" on page 391)

4 Add columns from other load and/or stage tables if required. See Building a EDW 3NF Table
(see "Building EDW 3NF Table" on page 391)

5 Create the EDW 3NF Table in the database. See Building an EDW 3NF Table (see "Building
EDW 3NF Table" on page 391)

6 Build the update procedure. See Generating the EDW 3NF Update Procedure (on page 395)
7 Run the update procedure and analyze the results.

If necessary, modify the update procedure or create a custom procedure.

EDW 3NF Table Keys

EDW 3NF Tables have two types of keys that we will refer to frequently. These are the Business
Key and the Artificial Key. A definition of these two key types follows:

Business Key

The business key is the column or columns that uniquely identify a record within an EDW 3NF
Table. Where the EDW 3NF Table maps back to a single or a main table in the source system, it is
usually possible to ascertain the business key by looking at the unique keys for that source table.
The business key is sometimes referred to as the 'natural' key. Examples of business keys are:

• The product SKU in a product table
• The customer code in a customer table
• The IATA airport code in an airport table.

390

It is assumed that business keys will never be NULL. If a null value is possible in a business key
then the generated code will need to be modified to handle the null value by assigning some
default value. In the following examples, the business key column is modified by using a database
function and default value:

• COALESCE(business_key,'N/A')

Note: Business keys are assumed to never be Null. If they can be null it is best to transform them
to some value prior to the EDW 3NF or stage table update. If this is not done, an un-modified
update procedure will probably fail with a duplicate key error on the business key index.

Artificial Key

By default, EDW 3NF Tables in WhereScape RED do not have an artificial key (artificial keys can
be added manually or set to be added by default through the Tools menu. See EDW 3NF Table
Artificial Keys for more details.

An artificial key is the unique identifier that can be used to join an EDW 3NF Table record to
other EDW 3NF Tables. When joining EDW 3NF Tables it would be possible to perform the join
using the business key. For EDW 3NF Tables that satisfy one of more of the following conditions,
joining with business keys could result in slow query times and excessive use of database storage:

• Multiple column business keys (excessive storage and multiple column joins)
• One or more large character business key columns (excessive storage)
• Very large tables (excessive storage - integer artificial keys often use less space than one

small character field)
• History EDW 3NF Tables (complex joins involving a between dates construct)

As query time is one of our key drivers in data warehouse implementations the best answer is
often to use some form of artificial key. A price is paid in the additional processing required doing
key lookups, but this is offset by the reduced query times and reduced complexity.

The artificial key is an integer and is built sequentially from 1 upwards. See the section on
artificial keys for a more detailed explanation. An artificial key is sometimes referred to as a
"surrogate" key.

391

Building EDW 3NF Table
EDW 3NF tables are often sourced from one table in the base application. The process for
building an EDW 3NF table begins with the drag and drop of the load or stage table that contains
the bulk of the EDW 3NF table's information.

Drag and Drop
1 Create an EDW 3NF table target by double clicking on the EDW 3NF group in the left pane.

The middle pane will display a list of all existing EDW 3NF tables in the current project.
When such a list is displayed in the middle pane, the pane is identified as a target for new
EDW 3NF tables.

2 Browse to the Data Warehouse via the Browse>Source Tables menu option.
3 Drag the load or stage table, that contains the bulk of the EDW 3NF table columns, into the

middle pane. Drop the table anywhere in the pane.

4 The new object dialog box appears and identifies the new object as an EDW 3NF table and will
provide a default name based on the load or stage table name.

5 Either accept this name or enter the name of the EDW 3NF table and click ADD to proceed.

EDW 3NF Table Properties

The table properties dialog for the new table is displayed.

If required, the EDW 3NF table can be changed to be a history table by choosing History from the
table type drop-down list on the right side of the dialog.
History tables are like slowly changing dimensions in dimensional data warehouses. See EDW
3NF Table Column Properties (on page 406) for more information. Change the storage options if
desired.

If prototyping, and the EDW 3NF table is simple (i.e. one source table) then it is possible to
create, load and update the EDW 3NF table in a couple of steps.
If you wish to do this select the (Build Procedure...) option from the Update Procedure drop-
down, and answer Create and Load to the next question.

392

Create and Load

If you chose to build the update procedure the following dialog appears after clicking OK on the
Properties page. This dialog asks if you want to create the EDW 3NF table in the database and
execute the update procedure.

If you are satisfied with the columns that will be used and do not wish to add any columns you
can select the Create and Load button. Alternatively, the Create button creates the table in the
repository but does not execute an update, allowing you to change columns before loading data
into the table.
If Create or Create and Load is selected and a new procedure creation was chosen proceed
directly to the Generating the EDW 3NF Update Procedure (on page 395) section.

Note: It is possible to create and load the table via the Scheduler; by selecting this option from
the drop-down list on the Create and Load button:

If you have additional columns to add or columns to delete, then select Finish and proceed as
follows.

Deleting and Changing columns

The columns defined for the EDW 3NF table will be displayed in the middle pane. It is possible to
delete any unwanted columns by highlighting a column name or a group of names and clicking
the Delete key.
The name of a column can also be changed by selecting the column and using the right-click
menu to edit its properties. Any new name must conform to the database naming standards.
Good practice is to use alphanumerics and the underscore character. See the section on column
properties for a fuller description on what the various fields mean.

393

TIP: When prototyping, and in the initial stages of an analysis area build it is best not to
remove columns, nor to change their names to any great extent. This type of activity is best left
until after end users have used the data and provided feedback.

Adding additional columns

With the columns of the EDW 3NF table displayed in the middle pane, this pane is considered a
drop target for additional columns.

It is a simple matter to select columns from other load and/or stage tables and drag these
columns into the middle pane. The source table column in the middle pane shows where each
column was dragged from. The column description could be acquired from three different tables.
The best practice is to rename at least two of the columns, perhaps also adding context to the
column name. For example, description could become group_description, and so forth.
There are a number of WhereScape RED ancillary columns that do not have a source table. These
columns have been added by WhereScape RED, and are added depending on earlier choices.

A description of these columns follows.

Column name Description

dss_start_date Used for history tables. This column provides a date time stamp
when the EDW 3NF table record came into existence. It is used to
ascertain which EDW 3NF table record should be used when multiple
are available.

dss_end_date Used for history tables. This column provides a date time stamp
when the EDW 3NF table record ceased to be the current record. It is
used to ascertain which EDW 3NF table record should be used when
multiple are available.

dss_current_flag Used for EDW 3NF history tables. This flag identifies the current
record where multiple versions exist.

dss_source_system_key Added to support history tables that cannot be fully conformed, and
the inclusion of subsequent source systems. See the ancillary settings
section for more details.

dss_version Used for EDW 3NF history tables. This column contains the version
number of an EDW 3NF history tables record. Numbered from 1
upwards with the highest number being the latest or current version.
It forms part of the unique constraint for the business key of an EDW
3NF history tables.

dss_update_time Indicates when the record was last updated in the data warehouse.

dss_create_time Indicates when the record was first created in the data warehouse

394

Create the table

Once the EDW 3NF table has been defined in the metadata we need to physically create the table
in the database.
This is achieved by right-clicking on the EDW 3NF table name and selecting Create (ReCreate)
from the pop-up menu.

A results dialog box will appear to show the results of the creation. The contents of this dialog
are a message to the effect that the EDW 3NF table was created.

A copy of the actual database create statement and if defined the results of any index create
statements will be listed. For the initial create no indexes will be defined.

If the table was not created then ascertain and fix the problem. A common problem is a 'Duplicate
column' where a column has the same name in two of the source tables. The best way of finding
such a column is to double click on the list heading 'Col name'. This will sort the column names
into alphabetic order.

Another double click on the heading will sort the columns back into their create order.

The next section covers Generating the EDW 3NF Update Procedure (on page 395).

395

Generating the EDW 3NF Update Procedure
Once an EDW 3NF Object has been defined in the metadata and created in the database, an
update procedure can be generated to handle the joining of any tables and the update of the EDW
3NF Object.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update
Procedures (on page 199) for details.

Generating a Procedure
1 To generate a procedure, right-click on the EDW 3NF Object in the left pane and select

Properties.
2 Click the Rebuild button to start the process of generating the new procedure.

3 A series of options are available.

Processing tab

Template: Enables you to generate update procedures via a template (see "Rebuilding Update
Procedures" on page 199).

Business Key Columns: Columns that define the business key for update processing. Required
for include Update options.

396

Clicking the ellipsis button brings up the Business Key selection screen.

TIP: Use the column name ascending/descending buttons to sort column names. To revert
to the metadata column order, click on the meta column order button.

A business key can be made up of multiple columns, but it must provide a unique identifier.
Where multiple columns separately uniquely identify rows in the EDW 3NF Object, choose one to
act as the primary business key. For example a source table may have a unique constraint on both
a product code and a product description. Therefore the description as well as the code must be
unique. It is of course possible to combine the two columns, but the normal practice would be to
choose the code as the business key.

NULL Values: none of the columns chosen as the business key should ever contain a NULL value.

397

Parameters: Any parameters selected are included in the generated update procedure as
variables. The procedure will include code to retrieve the value of the parameter at run time and
store it in the declared variable.

Clicking the ellipsis button will bring up the Select Parameters screen.
If the desired parameter doesn't exist in the metadata yet, a new parameter can be added by
clicking on the Add New button on the bottom leftmost corner of the Select Parameters screen.

The variables can also be used in column transformations and in the from/where clause for the
update procedure. Some databases have a 30 character limit for variable names. WhereScape RED
ensures the variables added for any parameters are less than 30 characters long by creating
variable names in the form v_ followed by the first 28 characters of the parameter name.

For example, a parameter called MINIMUM_ORDER_NUMBER_SINCE_LAST_SOURCE_LOAD will
be available as the variable v_MINIMUM_ORDER_NUMBER_SINCE_L.

TIP: WhereScape RED parameters should be unique within the first 28 characters to avoid
conflicting variables names.

See Parameters (on page 143) for more information on WhereScape RED Parameters

Include Initial Load Insert: adds an additional insert statement to the update procedure that
runs if the target EDW 3NF table is empty. The benefit of this is improved performance inserting
into an empty table without performing any checks to see if rows already exist. The default for
this field is not set (i.e. an initial insert statement is not added to the procedure).

398

Process by Batch: allows users to select a column to drive data processing in a loop based on the
distinct ordered values of the selected Business Key columns. The update procedure loops on this
column and performs the delete, update and/or insert for each value. If the column chosen is a
date datatype (date, datetime or timestamp), then the user is able to specify yearly, monthly,
daily or column level looping. The default for this field is not set (do not do batch processing).

Delete Before Insert: allows selecting how to process deletes. It enables a delete statement to be
added to the update procedure before any update or insert statement. This is a particularly useful
option for purging old data and for updates based on a source system batch number. When this
option is selected, it enables the Issue Warning if a Delete occurs and the Delete Where
Clause Fields.

Issue Warning if a Delete occurs: this option sets the procedure to a warning state if any
deletes occur.

Delete Where Clause: the delete where clause is appended to the generated delete statement
to constrain the rows deleted.

Process Method: allows updating the EDW 3NF table with either an Insert/Update or a Merge
statement. Merge allows you to use one Merge statement instead of two separate Insert and
update statements.

Source Table Locking: allows a locking request modifier to be specified for each source table.
The specified locking request modifier is applied to each source table during generated update
procedures. By default, this is set to 'ACCESS' which locks each row being accessed, a blank
entry will result in no locking clause in the generated procedure.

Insert Method

Include Insert Statement: set this field to include the insert statement in the procedure. This
allows inserting new rows in the EDW 3NF table.

Insert New Rows Only: uses change detection to work out which rows will require inserting.

New Row Identification Method: method used to identify that records in source are not
currently recorded in the target table. Select Join or Minus.

Include Update Statement: set this field to include an update statement in the procedure. This
allows updating the changing rows in the EDW 3NF table. If this is set, the Update Changed
Rows Only option is available.

Update Changed Rows Only: uses change detection to work out which rows require updating.
When set, this option enables the Change Row Identification Method.

Change Row Identification Method: method used to identify that records in source have
changed from what is currently recorded in the target table. Select Join or Minus.

Merge Method

Merge Changed Rows only: uses change detection to work out what rows require merging.
When the option is set, it enables the New Row Identification Method.

New Row Identification Method: method used to identify which records in the source are not
recorded or are recorded differently in the target table. Select between Join and Minus.

If non identity columns are used as artificial keys the only new row identification method is
Join.

399

EDW 3NF Update procedures usually perform faster when you use the Join method for new
row identification.

Source tab

Distinct Data Select: ensures duplicate rows are not added to the EDW 3NF Object. This is
achieved by the word DISTINCT being added to the source select in the update procedure. The
default for this field is off.

Source Join: The From clause, including Source Join information.

Simple Join

A simple join only returns rows where data is matched in both tables. So for example if table A
has 100 rows and table B has a subset of 24 rows. If all the rows in table B can be joined to table A,
then 24 rows will be returned. The other 76 rows from table A will not be returned.

Outer Join

The outer join returns all rows in the master table, regardless of whether or not they are found in
the second table. Therefore, if the example above was executed with table A as the master table,
then 100 rows would be returned. 76 of those rows would have null values for the table B
columns.

400

Note: When WhereScape RED builds up an outer join, it needs to know which table is the master
table and which is subordinate. Select the join column from the master table first. In the example
screen above, the table 'load_order_header' has had its column chosen and the column for the
table 'load_order_line' is currently being chosen. This will result in the 'load_order_header' table
being defined as the master, as per the example statement above. The results of this example
select are that a row will be added containing order information regardless of whether or not a
corresponding load_order_line entry exists.

Where Clause: The Where clause.

Group By: The Group By clause.

Building and Compiling the Procedure

• Once the relevant options are completed, click OK. The procedure will be built and compiled.
• If the compile fails, an error is displayed along with the first few lines of error messages.

Compile fails typically occur when the physical creation of the table was not done.
• If the compile fails for some other reason the best approach is to use the procedure editor to

edit and compile the procedure. The procedure editor will highlight all the errors within the
context of the procedure.

• Once the procedure has been successfully compiled it can either be executed interactively or
passed to the scheduler.

Indexes
By default a number of indexes will be created to support each EDW 3NF table.
An example of the type of indexes created is as follows:

Additional indexes can be added, or these indexes changed. See the chapter on indexes for
further details.

401

Converting an existing EDW 3NF Table to a EDW 3NF History Table
To convert a EDW 3NF table to a EDW 3NF history table, change the table type to History, select
(Build Procedure...) from the Update Procedure drop-down list and click OK.

If the existing EDW 3NF table is NOT to be dropped and recreated, then the following process is
followed:

1 Click Alter on the Adding Additional Columns dialog.

402

2 Click Alter Table on the Alter Table Commands dialog:

Note: The SQL commands in this dialog can be edited if required.

3 Click OK on the succeeding dialogs.

4 Define required fields on the succeeding dialogs and then click OK to finish.

403

EDW 3NF Table Artificial Keys
By default, EDW 3NF tables in WhereScape RED do not have an artificial (surrogate) key.
Artificial keys can be added manually but you can also set an option in the Tools menu to have
them automatically added to new tables as well (see below - Allowing for non identity surrogate
keys on EDW 3NF tables).

To manually add an extra artificial key column to an EDW 3NF table:
1 Right click in the middle pane and click either Add Column or Duplicate Column.

2 Edit the properties of the new column to have the correct name and order, source table and
column, data type, key type and flags as below.

3 The Column Name and Source Column must be the same.

4 The Source Table must be empty.

5 The Data Type must be integer.

6 The Key Type must be 0.

7 Only the Numeric and Artificial Key flags must be set on.

The following example shows a manually added artificial key column:

404

Artificial Keys set via identity columns:

The artificial key for an EDW 3NF table is set via an identity column. This artificial key normally,
and by default, starts at one and progresses as far as is required.

A WhereScape standard for the creation of special rows in the EDW 3NF tables is as follows:

Key value Usage

1 upwards The standard artificial keys are numbered from 1 upwards, with a new number
assigned for each distinct EDW 3NF table record.

0 Used as a join to the EDW 3NF table when no valid join existed. It is the
convention in the WhereScape generated code that any EDW 3NF table business
key that either does not exist or does not match is assigned to key 0.

-1 through -9 Used for special cases. The most common being where an EDW 3NF table is not
appropriate for the record. A new key is used rather than 0 as we want to
distinguish between records that are invalid and not appropriate.

 -10 backward Pseudo records. In many cases we have to deal with different granularities in our
data. For example, we may have a table that contains actual sales at a product
SKU level and budget information at a product group level. The product table
only contains SKU based information. To be able to map the budget records to
the same table, we need to create these pseudo keys that relate to product
groups. The values -10 and backwards are normally used for such keys.

Artificial keys set via a non identity column:

EDW 3NF Tables can have non identity columns as surrogate keys.

The generation of the update procedure will automatically add logic to the code which will
associate a sequential number to the artificial key when a new row is inserted into the EDW 3NF
table.

The order of these sequential numbers is determined by the business key of the source table. The
value of the first newly inserted artificial key will be the value of the highest artificial key in the
dimension table plus 1.

This automatically generated logic can be overwritten by defining a user specific logic on the
Dimension Transformation field on the Tools>Options menu or in the transformation column
of the artificial key.

To have an EDW 3NF table with a non identity column as a surrogate key, you can set the table
Data Type to integer in the Tools>Options menu.

The old logic for dimensions can be retained, if an identity column is chosen as surrogate key.

405

Allowing for non identity surrogate keys on EDW 3NF tables:
• Go to Tools>Options>Global Naming Conventions>Global Name of Key Columns.
• Expand the EDW 3NF section.
• Set the EDW 3NF table to have a Surrogate Key auto added if you want a surrogate key

added by default to all EDW 3NF tables.
• Set the EDW 3NF Data Type to be integer and click OK.
• If your tables have been created previously, you will have to Recreate the tables after you set

this option in the Tools menu.

406

EDW 3NF Table Column Properties
Each EDW 3NF table column has a set of associated properties. The definition of each property is
described below:

If the Column name or Data type is changed for a column then the metadata will differ from the
table as recorded in the database. Use the Validate>Validate Table Create Status menu option
or the right-click menu to compare the metadata to the table in the database. A right-click menu
option of Alter table is available when positioned on the table name after the validate has
completed. This option will alter the database table to match the metadata definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be
altered in the database. Use the Validate>Validate Table Create Status to compare metadata
definitions to physical database tables. The option also provides the ability to alter the database
table, through a pop-up menu option from the validated table name.

A sample Properties screen is as follows:

The two special update keys enable you to update the column and step either forward or
backward to the next column's properties.
ALT-Left Arrow and ALT-Right Arrow can also be used instead of the two special update keys.

407

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. A good practice is to only use alphanumerics, and the
underscore character. Changing this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Title

Name that the business uses to refer to the column. It does not affect the physical table
definition, but rather provides input to the documentation and to the view ws_admin_v_dim_col
which can be used to assist in the population of a end user tool's end user layer. As such it is a
free form entry and any characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Description

This field contains the description for the column. It might contain information on where and
how the column was acquired. For example if the column is sourced from multiple tables or is a
composite or derived column then this definition would normally describe the process used to
populate the column. This field is used in the documentation and is available via the view
ws_admin_v_dim_col . This field is also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The
lowest numbered column will appear first in the table. Although this affects the physical table
definition no action will be taken unless the table is re-created in the database. The columns can
be re-numbered based on the existing order by choosing the Respace order number pop-up
menu option when positioned over any column in the table. This action will number the columns
in increments of 10 starting at 10. In addition to a simple change of the order field, the column
order can be changed by first displaying the columns in the middle pane and then using drag and
drop to move the columns around. This drag and drop process will automatically renumber the
columns as required.

Data Type

Database-compliant data type that must be valid for the target database. Typical Teradata
databases often have integer, numeric(), varchar(), char(), date and timestamp data types. See the
database documentation for a description of the data types available. Changing this field alters
the table's definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always
mandatory.

408

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is
specified for the column.

Character Set

Database-compliant table column character-set used for storage. Select Latin or Unicode.

Format

Database-compliant table column format. It does not affect the physical table definition, but
rather provides input to the view ws_admin_v_dim_col which can be used to assist in the
population of an end user tool's end user layer. As such it is a free form entry and any characters
are valid. Typically format masks are only used on numeric fields. Example: #,###0.00. It is not
worth the effort of populating this field unless it can be utilized by the end user tools in use.

Character Comparison/Sorting

Determines how the column character values are treated for comparison and sorting operations.
Choose from: case specific, not case specific, uppercase case specific or uppercase not case
specific.

Compress

Indicates whether the table column values are compressed when stored.

Compress/Compress Value

Optional list of values to be compressed. By default, only NULL is compressed if no list of values
is specified.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant
for fact tables. It does not affect the physical table definition, but rather provides input to the
view ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end
user layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column
can be summed when performing data grouping in a query. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may
have an order number, or a invoice number stored in the fact table. Such columns are considered
attributes, rather than facts. This checkbox is therefore normally only relevant for fact tables.
This checkbox does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tools end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

409

End User Layer display

Indicates whether the table column is available/visible to end users. If set the documentation will
include the column in the glossary and in the user documentation. It is also used to decide what
columns appear in the view ws_admin_v_dim_col. Typically columns such as the artificial key
would not be enabled for end user display.

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update
procedure build. [Normally maintained automatically]. Multiple columns can form the primary
business key. This indicator is set and cleared by WhereScape RED during the dimension update
procedure generation process. This checkbox should not normally be altered.

Artificial Key

Indicates whether the column is the artificial key. Only one artificial key is supported. This
indicator is set by WhereScape RED during the initial drag and drop creation of a table, and
should not normally be altered.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of
any business key.

A Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used
during index generation and not normally set.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a
load table within the data warehouse. If the column was sourced from multiple tables, then the
normal practice is to record one of the tables in this field and a comment listing all of the other
tables in the Source strategy field. This field is used when generating a procedure to update the
data store object. It is also used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a
load table column, which in turn may have been a transformation or the combination of multiple
columns. This may also be a model table key where a model is being joined.

410

Transformation

See EDW 3NF Table Column Transformations (on page 411). [Read-only].

Join

Indicates whether the table column is used in a table join. [Normally maintained automatically
but can be optionally changed to override the default join logic used in the generated update
procedure]. The Source table and Source column fields will provide the other EDW 3NF table's
side of the join. The options for this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the other EDW 3NF table is looked up during the
update procedure build. It allows you to join the other EDW 3NF table manually in the Cursor
mapping dialog (where the 'Where' clause is built). The usual dialog for matching the other EDW
3NF table's business key to a column or columns in the table is not displayed if this option is
enabled.

Setting this field to Pre Join activates the Join Source field and allows you to select a table from
the drop-down list.

Pre Join Source Table

Indicates the table from which the pre joined column was sourced. When the Join option is set to
False, this field becomes inactive. When the Join option is set to True or Manual, this field is set
to the current table name. When the Join option is set to Pre Join, then you can select the
required table from the drop-down list.

411

EDW 3NF Table Column Transformations
Each EDW 3NF table column can have a transformation associated with it. The transformation
will be included in the generated procedure and will be executed as part of the procedure update.
The transformation must therefore be a valid SQL construct that can be included in a Select
statement. For example we could have a transformation of 'load_order_line.qty * 0.125' to
calculate a tax column of 12.5%.

Click the Transformation tab to enter a transformation.
The transformation screen is displayed as follows:

Note: Transformations are only put into effect when the procedure is re-generated.

Microsoft Analysis Services 2005+ Tabular Mode Tables: For Tabular Mode table column
transformations, Default DAX is the only applicable Function Set for after load
transformations.

See Transformations (on page 593) for more details.

413

The Data Vault system is an alternative approach to modelling an enterprise data warehouse that
has been gaining popularity among organizations.

The Data Vault data warehouse architecture was invented by Dan Linstedt to provide an
alternative to the traditional data warehouse modelling approach that includes developing 3rd
Normal Form (3NF) type models or dimensional star schema models. The data vault methodology
seeks to improve the efficiency of data ingestion and the flexibility of structure changes. For
more information about Data Vaults, please refer to Dan Linstedt’s website
(http://danlinstedt.com/solutions-2/data-vault-basics/).

WhereScape RED has been enhanced to expand its current Data Vault functionality and provide
improved automation for creating and managing Data Vault objects in WhereScape RED managed
Data Warehouses. The enhancement includes the following:

• New DSS columns for Load tables
• New Wizard for Hash key generation
• New Wizard for building Hub, Link and Satellite tables
• New Templates for Procedure generation

All these enhancements are designed to be compliant with Data Vault 2.0 standards and are
described in the succeeding sections below.

Note that previous releases of WhereScape RED used a workflow for Data Vault objects that is
similar to the workflow for creating Data Store Objects.

The Hub, Link and Satellite tables are based on standard Load or Stage tables (that do not include
the hash key column type flags) then WhereScape RED reverts to this behaviour and the resulting
procedures are generated by internal WhereScape RED automation and not via templates.

If the above legacy method of creating Data Vault Objects is required, please refer to the Data
Store Objects chapter of this User Guide. You can also refer to the previous version of this User
Guide, for details on the previous process used to import Data Vault objects into WhereScape
RED.

For more information on Data Vault design, refer to Building a Scalable Data Warehouse With
Data Vault 2.0 by Daniel Linstedt and Michael Olschimke.

In This Chapter

Data Vault Functions and Features .. 414
Building Data Vault Objects ... 425

C h a p t e r 1 4

Data Vaults

414

Data Vault Functions and Features
The following describe the WhereScape RED functions and features that are used for building
Data Vault objects (Hub, Link and Satellite) to create a Data Vault model.

Load Table Meta Data Columns
The option to add default meta data columns to a new Load table object in WhereScape RED.

If the option Add meta data columns to table is selected, two DSS columns (dss_record_source
and dss_load_date) are included in the meta data for the table and are populated by
transformations. Note that these two DSS columns could equally be applied to other Load
tables not used in a Data Vault model but are particularly important to comply with the Data
Vault standards.

415

Note: Custom aliases for the dss_load_date and dss_record_source columns can be defined in
the Tools>Options>DSS Tables and Columns>DSS Columns to Include and Naming window.
If custom DSS aliases are defined then the aliases are used for the column names that are added
to the new load tables. Refer to DSS Columns (on page 103) for more details.

416

Data Vault Stage Table
WhereScape RED provides the option to create Data Vault Stage objects that are used to define
the source columns for the Hub, Link and Change hash key columns.

The Data Vault Stage option can be selected from Table Type drop-down of the Stage Table
Properties screen. This object type is created via a Wizard which is described in the section
Creating Data Vault Stage Tables (on page 427) below.

417

Hash Key Generation Wizard
This Wizard is launched when building a Stage table with Table Type of Data Vault Stage. It
enables you to specify the source columns to be used in defining the Hub, Link and Change hash
key columns.

The generated Hash Keys are used to build the Hub, Link and Satellite objects in
WhereScapeRED. The detailed steps for using this Wizard is described in the succeeding
section, Creating Data Vault Stage Tables (on page 427).

Notes:
1. Creating a Change Hash Key via the Wizard in WhereScape RED is limited to one key per Data
Vault Stage table. This limitation does not apply for Data Vault models imported from
WhereScape 3D.
2. Custom aliases for the dss_change_hash column can be defined in the Tools>Options>DSS
Tables and Columns>DSS Columns to Include and Naming window. If custom DSS aliases are
defined then the aliases are used for the column names that are added to the new Load tables.
Refer to DSS Columns (on page 103) for more details.
3. The data type defined for the dss_change_hash column in Tools>Options>DSS Tables and
Columns>DSS Columns for Custom Targets window is applied when creating a hub hash key or
a link hash key for tables in custom database targets. Refer to DSS Columns for Custom Targets
(on page 104) for details.
4. Refer to Changing the Data Vault Hash Key Function in WhereScape RED 6.9.1.0 and above
(on page 455), if you need to amend the Hash key function on the shipped WhereScape RED Data
Vault Templates (on page 418).

418

Hub, Link and Satellite Creation Wizard
This Wizard is launched when building a Data Vault object (Hub, Link or Satellite table) by
dragging and dropping the source Data Vault Stage table from the right pane to the middle
pane.

The detailed steps for using this Wizard is described in the succeeding section, Creating the Hub,
Link and Satellite Tables (on page 440).

419

Data Vault Templates
Templates are used to generate update procedures for Data Vault objects. Users must select a
template to use when generating the update procedure for Data Vault objects created in
WhereScape RED.

The Teradata Data Vault templates are described below:

• wsl_teradata_proc_dv_stage –this template creates a Teradata procedure for updating
WhereScapeRED Data Vault Stage tables.

• wsl_teradata_proc_dv_perm – this template creates a Teradata procedure for updating
WhereScapeRED Data Vault objects (Hub, Link and Satellite tables).

• wsl_teradata_utility_dv – this utility template contains generic Teradata macros that are
used by the other two templates above.

The above templates are available in WhereScape RED version 6.9.1.0 and above. If the
templates are not visible in Template objects list after installing/upgrading WhereScape RED,
use the WhereScape RED Setup Administrator to Validate the MetaData Repository.

Note: Templates for SQL Server and Oracle are also supplied by WhereScape. For other
database types, users need to create/provide their own templates.
Important: The above templates have changed in WhereScape RED version 8.0.1.0. The Data
Vault hash key functions for Teradata and Oracle repositories have been changed in the
templates (wsl_teradata_utility_dv and wsl_oracle_utility_dv). Data Vault customers running on
Teradata or Oracle who were using these templates from the RED 6.9.1.0 release are advised to
retain that version of the template, unless they migrate any key generated using the previous
hash key function.
Refer to Changing the Data Vault Hash Key Function in WhereScape RED 6.9.1.0 and above (on
page 455) if you need to amend the Hash key function on the shipped WhereScape RED Data
Vault Templates.

420

A Wizard to generate update procedures via templates is used to populate Data Vault tables.
The detailed steps for using this Wizard is described in the succeeding section, Building Data
Vault Objects (on page 425).

Data Vault Settings
Settings for Data Vault objects can be configured from the Tools > Options screen.

Object Types settings:
The Default Sub Type for Stage Table Objects drop-down includes the Data Vault Stage
option.

Configure this setting, if you want to set Data Vault Stage to be the default Table Type in the
Stage Table Properties screen.

421

Global Naming Conventions settings:
The Global Naming of Tables setting for Hub, Satellite and Link tables have been set to
comply with the recommended standard naming convention for Data Vault tables. You can
edit this setting to suit your requirements.

422

DSS Tables and Columns settings:
The DSS Columns to Include and Naming setting includes two additional columns which is
described below:

• dss_create_time – this column is added to all Stage, ODS, Normalized, Dimension, Fact
and Aggregate tables for information purposes only. Leave blank to deactivate.

• dss_change_hash – this column is used to identify the differences in the descriptive
columns of a Satellite table which is required for generating the change hash key for a
Satellite table.

423

Table Column Properties
The Key Type field drop-down include options for Data Vault hash keys, e.g. Change Hash Key
(c), Hub Hash Key (h) and Link Hash Key (l).

424

Hash Key source information are also displayed for these key types.

• Hash Key Sources – displays the source columns that are used to generate the selected Hub,
Link or Change hash key.

• Hash Key Source For – displays the hash keys columns that use the displayed hash key
sources.

The hash key generation Wizard enables you to specify the source columns to be used in defining
the Hub, Link and Change hash key columns. The detailed steps for using this Wizard is
described in the succeeding section, Creating Data Vault Stage Tables (on page 427).

Once the hash key columns have been defined, another Wizard is used to generate the procedure
to populate the columns. The detailed steps for using this Wizard is described in the section,
Generating Update Procedures for the Data Vault Stage Table (on page 436).

425

Maintain Hash Key Columns
The context menu for Stage Table objects, listed in the left pane provides an option for
maintaining Data Vault hash key columns.

You can review the composition of existing hash keys for a Data Vault Stage table (Hub, Link
and Satellite) and create additional hash keys by selecting the Maintain DV Hash Key Columns
option from the selected Stage Table’s context menu. This launches the hash key generation
Wizard which enables you to maintain the source columns defined for the hash keys.

Note: To remove or change a hash key column, you need to delete it first, e.g. right click the
column listed in the middle pane and then select Delete Column from the context menu.

426

Building Data Vault Objects
To build Data Vault objects (Hub, Link and Satellite) in WhereScape RED, involves the following
procedures.

1 Creating Load Tables with the required DSS columns.

2 Creating Data Vault Stage tables.

3 Generating update procedures for the Stage table via templates.
4 Creating the Hub, Link and Satellite tables.

5 Generating update procedures for the Hub, Link and Satellite tables via templates.

The detailed steps for each procedure are outlined in the following sections.

Creating Load Tables
The following describe the steps for creating a Load table:

1 Browse to the source system connection required (Browse>Source Tables).

2 Double-click the Load Table object group in the left pane, the middle pane displays a list of
existing Load tables.

3 Click the source table from the right pane and drag it to the middle pane. You need to
create the Load table with the required DSS columns—the option to add default meta data
columns to the load table must be selected:

When the build table is performed, the load table created has the two additional columns,
which are populated by transformations:

• dss_record_source – the connection or source for the load table.
• dss_load_date – the date when the data was loaded to the table. This is updated every

time a load operation is performed.

These DSS columns added, include column description and transformation information.

427

Notes:

- Custom aliases for the dss_load_date and dss_record_source columns can be defined in the
Tools>Options>DSS Tables and Columns>DSS Columns to Include and Naming window.
If custom DSS aliases are defined then the aliases are used for the column names that are
added to the new load tables. Refer to DSS Columns (on page 103) for more details.
- The dss_record_source column transformation is set to the name of the source connection
when the table is first created. If the source connection changes, the transformation value
does not update automatically. You can manually update the transformation—refer to
Transformations (on page 593) for more details.

428

Creating Data Vault Stage Tables
The following describe the steps for creating a Data Vault Stage table:

1 Browse to the Data Warehouse connection to create the Stage table.

2 Double-click the Stage Table object group in the left pane, the middle pane displays a list of
existing Stage tables.

3 Click the source Load table from the right pane and drag it to the middle pane. The selected
Load table must have the required DSS columns (dss_record_source and dss_load_date).

4 The Add a New Metadata Object screen appears and classifies the new object as a Stage
table. It provides a default name based on the Load table name. Accept the name or enter a
new name for the Stage table and click ADD to continue.

5 On the Table Properties screen, select the Data Vault Stage option from the Table Type
drop-down.

429

Notes:

You can set this table type to be the default by configuring the Default Sub Type for Stage
Table Objects setting in the Tools > Options > Object Types > Object Sub Types screen.
RED displays the name of the previously used update procedure template by default, below
the Update Procedure drop-down.

430

6 Click OK on the Table Properties screen to launch the Wizard that enables you to define the
source columns for the Hub, Link and Change hash key columns.

7 Select the source column(s) to use in defining the first Hub hash key. The Hash Key Name is

formed based on the prefix (defined in the Tools>Options>Global Naming Conventions
settings) and the source column(s) name. You can manually amend the name if required.

431

8 Click Add to create the first Hub hash key. Repeat the same steps as required. Once all the
required Hub Hash Keys are created, click Next to progress to the Link hash key generation
screen.

9 Creating the Link Hash Keys involves the same process, follow the previous steps (6 and 7)

to select multiple source columns to combine to create the Link hash key. Click Add to create
the first Link hash key. Repeat the same steps for any subsequent keys. Once all the required

432

Link Hash Keys are created, click Next to progress to the Change hash key generation
screen.

10 Follow the same steps to select the columns to use for the Change Hash Key.

433

Notes:
1. Creating a Change Hash Key via the new Wizard in WhereScape RED is limited to one key
per Data Vault Stage table. This limitation does not apply for Data Vault models imported
from WhereScape 3D.
2. Custom aliases for the dss_load_date and dss_record_source columns can be defined in
the Tools>Options>DSS Tables and Columns>DSS Columns to Include and Naming
window. If custom DSS aliases are defined then the aliases are used for the column names
that are added to the new Load tables. Refer to DSS Columns (on page 103) for more details.
3. The data type defined for the dss_change_hash column in Tools>Options>DSS Tables
and Columns>DSS Columns for Custom Targets window is applied when creating a hub
hash key or a link hash key for tables in custom database targets. Refer to DSS Columns for
Custom Targets (on page 104) for details.

11 Click Finish, once you have defined the required list of descriptive columns for the Change
hash key. The new Stage table is added to the Stage Table objects list in the left pane and
the columns included in the table are listed in the middle pane.

In addition to the columns defined from the Load table, the following columns and their
metadata have been added to the Data Vault Stage table:

• The Hub Hash Keys

• The Link Hash Keys

• The Change Hash Key

• The DSS_CREATE_TIME column

• The DSS_UPDATE_TIME column
The metadata for the hash columns include the source columns that were used to create them
(used to generate the hash keys).

The hash keys created are used in the subsequent Data Vault object (Hub, Links and
Satellites) creation Wizards.

434

Tip: You can review the composition of existing hash keys for a Data Vault Stage table (Hub,
Link and Satellite) and create additional hash keys by selecting the Maintain DV Hash Key
Columns option from the selected Data Vault Stage table's context menu. This launches
the hash key generation Wizard which enables you to maintain the source columns defined
for the hash keys.
Note: To remove or change a hash key column, you need to delete it first, e.g. right click the
column listed in the middle pane and then select Delete Column from the context menu.

12 Right-click the new Data Vault Stage table you defined from the left pane, under the Stage
Table objects list and select Create (ReCreate) from the context menu to create the table.

13 Click Yes on the Primary Index prompt.

435

14 Specify code on the Primary Index Columns field and then click OK.

15 The Results pane displays confirmation that the Data Vault Stage table was successfully
created.

436

Once the new Data Vault Stage table is defined and created, clicking the Rebuild button on
the Table Properties screen launches the Wizard to generate the procedure to populate the
table. This Wizard utilizes a template to create the procedure.

The detailed steps for using this Wizard is described in the next section, Generating Update
Procedures for the Data Vault Stage Table.

437

Generating Update Procedures for the Data Vault Stage Table
After successfully defining and creating the Stage table, you can generate the update procedure
via a template to populate the table.

Note: Please ensure that you have installed the WhereScape supplied templates (see "Data Vault
Templates" on page 418) or created your own Data Vault templates, before performing the steps
below.
Important: The Data Vault hash key functions for Teradata and Oracle repositories have been
changed in the templates (wsl_teradata_utility_dv and wsl_oracle_utility_dv). Data Vault
customers running on Teradata or Oracle who were using these templates from the RED 6.9.1.0
release are advised to retain that version of the template, unless they migrate any key generated
using the previous hash key function.

1 Click the Rebuild button on the Table Properties screen to launch the procedure generation
Wizard to populate the table.

Note: RED displays the name of the previously used update procedure template below the
Update Procedure drop-down field by default.

438

2 On the Processing tab of Table Update Build Options screen, select the template to use
from the Template drop-down or use the previous update procedure template.

3 Click OK to proceed with the procedure generation. The Results pane displays confirmation
that the procedure was generated.

439

4 Right-click the Data Vault Stage table in the left pane, under the Stage Table objects list
and select Code>View update from the context menu to view the contents of the update
procedure generated.

5 Right-click the Data Vault Stage table in the left pane and select Execute Update

Procedure from the context menu to run the procedure. The Results pane displays the
number of records created.

440

Creating the Hub, Link and Satellite Tables
After successfully creating and populating the Data Vault Stage table you can now create the
Hub, Link and Satellite tables. The Hub, Link and Change hash keys information stored in the
Data Vault Stage table is used by the Wizard for building these Data Vault objects.

Creating the Hub table
The following describe the steps for creating a Hub table:

1 Browse to the Data Warehouse connection to create the Hub table.

2 Double-click the Hub object group in the left pane, the middle pane displays a list of existing
Hub tables.

3 Click the source Data Vault Stage table from the right pane and drag it to the middle pane.
4 The Hub table creation Wizard appears and prompts you to select the Hash Key to use from

the Available Hash Keys pane. The columns that comprise the selected Hash Key are
displayed under the Selected Columns pane—these are the columns that will be populated
by the Wizard on the new Hub table.

441

5 Select the Hash Key you want to use from the Available Hash Keys pane to see the columns
that will be included in your Hub table under the Selected Columns pane. Click OK to
continue.

6 The Add a New Metadata Object screen appears and classifies the new object as a Hub table.
It provides a default name based on the source Data Vault Stage table name. Accept the
name or enter a new name for the Hub table and click ADD to continue.

7 Click the OK button on the Table Properties screen to finish defining the meta data for the

Hub table. The new Hub table is added to the Hub objects list in the left pane and the
columns included in the table are listed in the middle pane.

442

8 Right-click the new Hub table you defined in the left pane and select Create (ReCreate) from
the context menu to create the table.

9 Click Yes on the Primary Index prompt and specify code on the Primary Index Columns
field and then click OK. The Results pane displays confirmation that the Hub table was
successfully created.

After the new Hub table is defined and created, clicking the Rebuild button on the Table
Properties screen launches the Wizard to generate the update procedure to populate the
table. This Wizard utilizes a template to create the procedure.

The detailed steps for using this Wizard is described in the section, Generating Update
Procedures for the Hub, Link and Satellite Tables (see "Generating Update Procedures for
Hub, Link and Satellite Tables" on page 451).

443

Once you have run the generated update procedures, you can view the generated Hub Hash
keys, by right-clicking the new Hub table you created in the left pane and then selecting
Display Data from the context menu:

444

Creating the Link table
The steps for creating the Link table is similar to the steps used in creating the Hub table:

1 Browse to the Data Warehouse connection to create the Link table.

2 Double-click the Link object group in the left pane, the middle pane displays a list of existing
Link tables.

3 Click the source Data Vault Stage table from the right pane and drag it to the middle pane.
4 The Link table creation Wizard appears and prompts you to select the Hash Key to use from

the Available Hash Keys pane. The columns that comprise the selected Hash Key are
displayed under the Selected Columns pane—these are the columns that will be populated
by the Wizard on the new Link table.

5 Select the Hash Key you want to use from the Available Hash Keys pane to see the columns

that will be included in your Link table under the Selected Columns pane. Click OK to
continue.

6 The Add a New Metadata Object screen appears and classifies the new object as a Link
table. It provides a default name based on the source Data Vault Stage table name. Accept
the name or enter a new name for the Link table and click ADD to continue.

445

7 Click the OK button on the Table Properties screen to finish defining the meta data for the
Link table. The new Link table is added to the Link objects list in the left pane and the
columns included in the table are listed in the middle pane.

446

8 Right-click the new Link table you defined in the left pane and select Create (ReCreate) from
the context menu to create the table.

9 Click Yes on the Primary Index prompt and specify code on the Primary Index Columns
field and then click OK. The Results pane displays confirmation that the Link table was
successfully created.

After the new Link table is defined and created, clicking the Rebuild button on the Table
Properties screen launches the Wizard to generate the update procedure to populate the
table. This Wizard utilizes a template to create the procedure.
The detailed steps for using this Wizard is described in the succeeding section, Generating
Update Procedures for the Hub, Link and Satellite Tables (see "Generating Update
Procedures for Hub, Link and Satellite Tables" on page 451).

447

Once you have run the generated update procedures, you can view the generated Link Hash
keys, by right-clicking the new Link table you created in the left pane and then selecting
Display Data from the context menu:

448

Creating the Satellite table
The following describe the steps for creating a Satellite table:

1 Browse to the Data Warehouse connection to create the Satellite tables.

2 Double-click the Satellite object group in the left pane, the middle pane displays a list of
existing Satellite tables.

3 Click the source Data Vault Stage table from the right pane and drag it to the middle pane.
4 The Satellite table creation Wizard appears and prompts you to select the Hash Key to use

from the Available Hash Keys pane. The columns that comprise the selected Hash Key are
displayed under the Selected Columns pane—these are the columns that will be populated
by the Wizard on the new Satellite table.

449

5 Select the Hash Key you want to use from the Available Hash Keys pane to see the columns
that will be included in your Satellite table under the Selected Columns pane. Click OK to
continue.

6 The Add a New Metadata Object screen appears and classifies the new object as a Satellite
table. It provides a default name based on the source Data Vault Stage table name. Accept
the name or enter a new name for the Satellite table and click ADD to continue.

7 Click the OK button on the Table Properties screen to finish defining the meta data for the

Satellite table. The new Satellite table is added to the Satellite objects list in the left pane
and the columns included in the table are listed in the middle pane.

450

8 Right-click the new Satellite table you defined in the left pane and select Create (ReCreate)
from the context menu to create the table.

9 Click Yes on the Primary Index prompt and specify code on the Primary Index Columns
field and then click OK. The Results pane displays confirmation that the Satellite table was
successfully created.

After the new Satellite table is defined and created, clicking the Rebuild button on the Table
Properties screen launches the Wizard to generate the update procedure to populate the
table. This Wizard utilizes a template to create the procedure.

The detailed steps for using this Wizard is described in the succeeding section, Generating
Update Procedures for the Hub, Link and Satellite Tables (see "Generating Update
Procedures for Hub, Link and Satellite Tables" on page 451).

451

Once you have run the generated update procedures, you can view the generated Satellite
Hash keys, by right-clicking the new Satellite table you created in the left pane and then
selecting Display Data from the context menu:

452

Generating Update Procedures for Hub, Link and Satellite Tables
The following describe the steps for generating update procedures via a template.

Hub table
After successfully defining and creating the Hub table, you can generate the update procedure via
a template to populate the table.

1 Click the Rebuild button beside the Update Procedure drop-down in the Table Properties
screen, to launch the procedure generation Wizard to populate the table.

Note: RED displays the name of the previously used update procedure template below the
Update Procedure drop-down by default.

453

2 On the Processing tab of Table Update Build Options screen, select the template to use
from the Template drop-down or use the previous update procedure template.

3 Click OK to proceed with the procedure generation. The Results pane displays confirmation

that the procedure was generated.

454

4 Right-click the Hub table in the left pane, under the Hub objects list and select Code>View
update from the context menu to view the contents of the update procedure generated.

5 Right-click the Hub table in the left pane and select Execute Update Procedure from the

context menu to run the procedure. The Results pane displays the number of records created.

Link and Satellite Tables
Follow the same steps described above to create and execute the update procedures for the Link
and Satellite tables, via a template to populate the tables.

455

Changing the Data Vault Hash Key Function in WhereScape RED 6.9.1.0 and
above
WhereScape RED ships templates (see "Data Vault Templates" on page 418) to generate the
procedures for Data Vault objects if the customer’s license includes Data Vault object support
and for database platforms SQL Server, Oracle or Teradata.

Included in the Data Vault utility (wsl_<database>_utility_dv) template is an initial Hash key
function. This Hash key function must be evaluated before deployment, and if an alternate
function is preferable for the customer’s operating environment, then this function must be
amended before Hash keys are created in a production environment.

The following outline the suggested steps to amend the shipped Hash key function, if required.

WhereScape Data Vault templates are Read-Only (to differentiate from custom templates), the
first step is to make a copy of each of the three templates:

• wsl_<database>_proc_dv_perm
• wsl_<database>_proc_dv_stage
• wsl_<database>_utility_dv

1 Right-click the template from the Template objects list and select Version Control>New
Version from the context menu.

456

2 Enter the version name and other details on the Version Definition window and then click
OK to save the new version of the template.

3 Right-click the Template object type and select New Object (from version) from the
context menu.

457

4 Select the new version of the template you created from the list in the Create an Object
From a Version window and then enter the new object name.

5 Click Create to create the new Template object.
6 Follow the same steps to create the other new templates with unique names.

7 Modify the replacement utility template with new function in this section:
{%- set hashFunctionPatBeg = "CAST(HASHBYTES('md5',"
-%}
{%- set hashFunctionPatEnd = ") AS CHAR(32))"
-%}
{%- set hashColTransPattern = "COALESCE(CAST([SRCCOL] AS
VARCHAR(MAX)),'null')" -%}
{%- set hashConcatPattern = " +'||'+"
-%}

In each of the addHubHashKey, addLinkHashKey and addChangeHashKey macros.

8 In the two replacement proc_dv templates, change the import command to reference the new
utility template:
{% import "custom_sqlserver_utility_dv" %}

458

9 Update existing Data Vault Stage table objects to reference the replacement proc_dv_stage
template (the Usage Report on the context menu of the old template objects can help locate
these).

10 After successfully testing the new templates, it is recommended to delete the original WSL
Data Vault templates to avoid confusion.

Note: The above workflow does not provide allowance for the migration of any existing Data
Vault records, created with a previous Data Vault function. This workflow can be used for new
Data Vault implementations. In an existing Data Vault system, changing the Hash key
function requires migration of existing Hash keys that is not provided in this workflow.

459

Custom1 and Custom2 objects are user defined objects. These Object Types can be renamed in
the Tools>Options>Object Types>Object Names menu.

A Custom object license is required for these object types.

Custom objects have the same options and properties as EDW 3NF tables, for more information
see EDW 3NF Tables (on page 388).

C h a p t e r 1 5

Custom Objects

461

In This Chapter

Model Table Overview .. 462
Building a Model Table ... 464
Generating the Model Table Update Procedure .. 469
Model Table Artificial Keys ... 475
Model Table Custom Procedure .. 475
Model History Tables .. 476
Generating History Table Update Procedures .. 478
Model Table Column Properties ... 481
Model Table Column Transformations ... 486

C h a p t e r 1 6

Model Tables

462

Model Table Overview

Note: WhereScape RED version 8.1.1.0 and above no longer supports the Model Table object
type. However, users that have existing Model table objects in their data warehouse can retain
and continue to use them.

Model objects are used to create EDW 3NF models in an enterprise data warehouse. They can
contain surrogate keys to other model tables.

A model is built from the Data Warehouse connection. Unless you are doing a retro-fit of an
existing system, model tables are typically built from one or more stage tables.

The normal steps for creating a model table are defined below and are covered in this chapter.
The steps are:

• Identify the source transactional or reference data that will constitute the model table. If the
data is sourced from multiple tables ascertain if a join between the source tables is possible.

• Using the 'drag and drop' functionality drag the load table that is the primary source of
information for the model table into a model target. See Building a Model Table (on page
464).

• If only one table is being sourced and most of the columns are to be used (or if prototyping)
you can select the auto create option to build and load the model table and skip the next 4
steps. See Building a Model Table (on page 464).

• Add columns from other load tables if required. See Building a Model Table (on page 464).
• Create the model table in the database. See Building a Model Table (on page 464).
• Build the update procedure. See Generating the Model Table Update Procedure (on page

469).
• Run the update procedure and analyze the results. See Generating the Model Table Update

Procedure (on page 469).

Modify the update procedure as required.

Model Keys

Model tables have up to two types of keys that we will refer to frequently.

These are the Business Key and the Artificial Key. A Definition of these two key types follows:

463

Business Key

The business key is the column or columns that uniquely identify a record within the model table.
Where the model maps back to a single or a main table in the source system, it is usually possible
to ascertain the business key by looking at the unique keys for that source table. Some people
refer to the business key as the 'natural' key. Examples of business keys are:

• The product SKU in a product model table
• The customer code in a customer model table
• The calendar date in a date model table
• The 24 hour time in a time model table (i.e.HHMM) (e.g.1710)
• The airport short code in an airport model table.

It is assumed that business keys will never be NULL. If a null value is possible in a business key
then the generated code will need to be modified to handle the null value by assigning some
default value. For example the 'Where' clause in a model update may become:

Where coalesce(business_key,'N/A') = coalesce (v_LoadRec.business_key,'N/A')

Note: Business keys are assumed to never be Null. If they could be null it is best to transform
them to some value prior to model or stage table update. If this is not done an unmodified update
will probably fail with a duplicate key error on the business key index.

Artificial Key

The artificial key is the unique identifier that is used to join a model table record to another
model table. When joining model tables to other model tables it would be possible to perform the
join using the business key. For model tables with a large number of records this however would
result in slow query times and very large indexes. As query time is one of our key drivers in data
warehouse implementations the best answer is often to use some form of artificial key. A price is
paid in the additional processing required to build the model table rows (particularly high volume
transaction model tables rows), but this is offset by the reduced query times, storage and index
sizes.

The artificial key is an integer and is built sequentially from 1 upwards. See the section on
artificial keys for a more detailed explanation. An artificial key is sometimes referred to as a
"surrogate" key.

Note: The default behavior of RED can be changed to not automatically add surrogate keys. See
Settings - Repository Attributes and Options (see "Settings - Repository Identification" on page
79).

464

Building a Model Table
Model Tables are often sourced from one table in the base application. The process for building a
model table is the same for most other tables and begins with the drag and drop of the stage table
that contains the bulk of the model information.

Drag and Drop
Create a model target by double clicking on the Dimension object group in the left pane. The
middle pane displays a list of all existing Dimension tables.
Browse to the Data Warehouse via the Browse>Source Tables menu option.
Drag the table that contains the bulk of the model table columns, into the middle pane. Drop the
table anywhere in the pane.
The new object dialog box will appear and will identify the new object as a Dimension table and
will provide a default name based on the load table name.
Either accept this name or change the name to reflect the new model table and click OK to
proceed.

465

Model Table Properties
At this stage change the Table type to Model Table and change any other storage options if
desired.
If prototyping and the model table is simple (e.g. one source table), then it is possible to create,
load and update the model table in a couple of steps.
If you want to do this, select the (Build Procedure...) option from the 'Update Procedure' drop-
down and then click Create and Load on the next dialog.

466

Create and Load
If you chose to build the update procedure the following dialog appears after clicking OK on the
Properties page. This dialog asks if you want to create the Model table in the database and
execute the update procedure.

If you are satisfied with the columns that will be used and do not wish to add any columns you
can select the Create and Load button. Alternatively, the Create button creates the table in the
repository but does not execute an update, allowing you to change columns before loading data
into the table.

If Create or Create and Load is selected and a new procedure creation was chosen proceed
directly to the Generating the Model Table Update Procedure (on page 469) section.

If you have additional columns to add or columns to delete then select Close and proceed as
follows.

Note: It is possible to create and load the table via the Scheduler; by selecting this option from
the drop-down list on the Create and Load button:

467

Deleting and Changing columns
The columns defined for the model table will be displayed in the middle pane. At this stage it is
possible to delete any unwanted columns by highlighting a column name or a group of names and
clicking the Delete key.

The name of a column can also be changed at this stage by selecting the column and using the
right-click menu to edit its properties. Any new name must conform to the database naming
standards. Good practice is to use alphanumerics and the underscore character. See the section
on column properties for a fuller description on what the various fields mean.

Note: When prototyping, and in the initial stages of an analysis area build it is best not to remove
columns, nor to change their names to any great extent. This type of activity is best left until
after end users have used the data and provided feedback.

Adding additional columns
With the columns of the model table displayed in the middle pane, this pane is considered a drop
target for additional columns.

It is a simple matter therefore to select columns from other load tables and drag these columns
into the middle pane.

The source table shows where each column was dragged from. Although not the case in the
tutorial, it is often common to have columns of the same name coming from different tables. In
the example above the description column is acquired from the load_product, load_prod_group
and load_prod_subgroup tables. In order that the model table can be created we need to assign
these columns unique names, so for this example the last two columns in question have been
renamed to group_description and subgroup_description.

There are a number of columns that do not have a source table. These columns have been added
by WhereScape RED, and are added depending on earlier choices. A description of these columns
follows.

Column name Description

model_customer_key The unique identifier (artificial key) for the model table. This key is
used in the joins to the fact table. It is generated via an identity
associated with the table, except for the date model table where it
has the form YYYYMMDD. If you have changed the default behavior
of RED not automatically add surrogate keys, this column will not
have been added. See Settings - Repository Attributes and Options
(see "Settings - Repository Identification" on page 79).

dss_start_date Used for model history tables. This column provides a date time
stamp when the model table record came into existence. It is used to
ascertain which model table record should be used when multiple are
available.

468

Column name Description

dss_end_date Used for model history tables. This column provides a date time
stamp when the model table record ceased to be the current record.
It is used to ascertain which model table record should be used when
multiple are available.

dss_current_flag Used for model history tables. This flag identifies the current record
where multiple versions exist.

dss_version Used for model history tables. This column contains the version
number of a model table record. Numbered from 1 upwards with the
highest number being the latest or current version. It forms part of
the unique constraint for the business key of a model history table.

dss_update_time Indicates when the record was last updated in the data warehouse.

dss_create_time Indicates when the record was first created in the data warehouse

Create the table
Once the model table has been defined in the metadata we need to physically create the table in
the database. This is achieved by right-clicking on the model name and selecting Create
(ReCreate) from the pop up menu.

A results dialog box will appear to show the results of the creation.

The contents of this dialog are a message to the effect that the model table was created. A copy of
the actual database create statement and if defined the results of any index create statements will
be listed. For the initial create no indexes will be defined.

If the table was not created then ascertain and fix the problem. A common problem is a 'Duplicate
column' where a column has the same name in two of the source tables. The best way of finding
such a column is to double click on the list heading 'Col name'. This will sort the column names
into alphabetic order. Another double click on the heading will sort the columns back into their
create order.

The next section covers the Generating the Model Table Update Procedure (on page 469).

469

Generating the Model Table Update Procedure
Once a model table has been defined in the metadata and created in the data base an update
procedure can be generated to handle the joining of any tables and the update of the model table
records.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update
Procedures (on page 199) for details.

Generating a Procedure
To generate a procedure, right-click on the model table in the left pane and select Properties.
Click on the Rebuild button to start the process of generating the new procedure.
A series of questions will be asked during the procedure generation based on the type of load
information.

Business Key definition
A dialog will appear asking for the business key that will uniquely identify each model table
record. The source table from which the model table is derived would normally have some form of
unique constraint applied. In most cases, this will be the business key. In the example below, the
customer code is selected as the business key.

470

A business key can be made up of multiple columns, but it must provide a unique identifier.
Where multiple columns uniquely and separately identify the model table, choose one to act as
the primary business key. For example, a source table may have a unique constraint on both a
product code and a product description. Therefore, the description as well as the code must be
unique. It is of course possible to combine the two columns, but the normal practice would be to
choose the code as the business key.

None of the columns chosen as the business key should ever contain a NULL value. See the note
at the start of this chapter.

The Include Minus Change Detection checkbox will detect new rows using a minus sub-query
rather than the default where not exists query. Enabling this option can significantly improve
performance.

The Use Merge for Update and Insert checkbox will generate merge syntax. This option is only
available for non-history model tables.

The Include Separate Initial Build Insert adds a second insert to the procedure to separately
insert all data if the target model table is empty. This significantly improves performance with a
large model table being loaded the first time.

471

Locking Request Modifier
Source Table: Specify a locking request modifier to be applied to each source table during
generated update procedures. By default, this is set to 'ACCESS' which locks each row being
accessed, a blank entry will result in no locking clause in the generated procedure.

472

Source Table Mapping
WhereScape RED generates a default update statement with a 'Where' clause to join source and
target tables together. The default update statement can be edited via the following dialog.

If there is more than one source table, additional joins will also have to be created. See Joining
multiple source tables below.

Insert query where clause

If multiple source tables were used to build the model table, then a dialog box will appear
prompting for the joins. This applies to the insert statement only in the generated procedure. See
Joining multiple source tables for more information.

473

Joining multiple source tables

The example below shows the joining of the product, prod_line and prod_group tables as supplied
with the tutorial data set.

Select two tables in the left box and then click one of the join buttons. The columns for the two
tables then appear at the bottom of the dialog and one column is selected from each drop-down
list to effect the join between the selected tables. In the example above, the load_product and
load_prod_group tables are joined by two columns namely prod_line and group. In such a case,
two joins are actioned for these two tables, so that both columns can be selected.

Simple Join

A simple join joins the two tables via either a 'Where' clause or from clause join (ANSI). A simple
join only returns rows where data is matched in both tables. So for example, if table A has 100
rows and table B has a subset of 24 rows. If all the rows in table B can be joined to table A, then 24
rows will be returned. The other 76 rows from table A will not be returned.

Outer Join

An outer join joins the two tables, and returns all rows in the master table, regardless of whether
or not they are found in the second table. Therefore, if the example above was executed with
table A as the master table then 100 rows would be returned. 76 of those rows would have null
values for the table B columns. When RED builds up a 'Where' clause join, it must place the outer
join indicator next to the appropriate column. RED needs to know which table is master and
which subordinate.

Select the join column from the master table first. In the example screen above, the table
'load_product' has had its column chosen and the column for the table 'load_prod_subgroup' is
currently being chosen. This will result in the 'load_product' table being defined as the master, as
per the example statement as shown in the 'Where' clause edit window above.

474

The results of this example select are that a row will be added containing product information,
regardless of whether or not a corresponding prod_subgroup entry exists.

As the join columns are selected, the join statement is built up in the large edit window on the
right. Once all joins have been made, the contents of this window can be changed if the join
statement is not correct.

Once satisfied with the join clause click the OK button to proceed to the next step. This clause
will be a combined from and 'Where' clause. This clause can of course be edited in the procedure
that is generated if not correct.

Only ANSI Outer Joins are available in Teradata.

Building and Compiling the Procedure
Once the above questions are completed, the procedure is built and compiled automatically. If
the compile fails an error will be displayed along with the first few lines of error messages.
Compile fails typically occur when the physical creation of the table was not done. If the compile
fails for some other reason, the best approach is to use the procedure editor to edit and compile
the procedure. The procedure editor will highlight all the errors within the context of the
procedure.

Once the procedure has been successfully compiled it can either be executed interactively or
passed to the scheduler.

Indexes

By default, a number of indexes will be created in the RED meta repository to support the model
table. The primary index is the only Active index. Secondary indexes can add significant
performance cost during updates in Teradata, so these are defined in the RED meta repository but
are not active (so are not created on the table). An example of the type of indexes defined is as
follows:

This example shows three indexes being created. They are:

1 A primary key constraint placed on the artificial key for the model table.

2 A unique index placed on the business key for the model table.

3 The primary index of the model table.

Only the third kind of index is active. To activate one of the other indexes as a secondary index,
click the active check box in the index properties dialog.

Additional indexes can be added, or these indexes changed. See the chapter on indexes for
further details.

475

Model Table Artificial Keys
The artificial (surrogate) key for a model table is set via an identity column. This artificial key
normally, and by default, starts at one and progresses as far as is required.
A WhereScape standard for the creation of special rows in the model table is as follows:

Key value Usage

1 upwards The normal model table artificial keys are numbered from 1 upwards,
with a new number assigned for each distinct model table record.

0 Used as a join to the model table when no valid join existed. It is the
normal convention in the WhereScape generated code that any
model table business key that either does not exist or does not match
is assigned to key 0.

-1 through -9 Used for special cases. The most common being where a model table
is not appropriate for the record. For example, we may have a sales
system that has a promotion model table. Not all sales have
promotions. In this situation it is best to create a specific record in
the model table that indicates that a fact table record does not have a
promotion. The stage table procedure would be modified to assign
such records to this specific key. A new key is used rather than 0 as
we want to distinguish between records that are invalid and not
appropriate.

 -10 backward Pseudo records. In many cases, we have to deal with different
granularities in our fact data. For example, we may have a fact table
that contains actual sales at a product SKU level and budget
information at a product group level. The product model table only
contains SKU based information. To be able to map the budget
records to the model table we need to create these pseudo keys that
relate to product groups. The values -10 and backwards are normally
used for such keys. A template called 'Pseudo' is shipped with
WhereScape RED to illustrate the generation of these pseudo records
in the model table.

Model Table Custom Procedure
A second procedure can be created on every model table. This is called the custom procedure.
Rather than modifying the generated procedure, it is often more practical to make additions to
the generated code in a separate procedure. This allows for regeneration of the model table's
update procedure without losing changes (and having to reapply them).

The generated procedure for a custom procedure is template code. That is, a procedure that
declares and initializes a variable, does nothing and returns the correct return code and message
for the WhereScape RED scheduler.

476

Model History Tables
Model history tables are a special type of model table where new records are created when certain
identified columns in the model table change.

With any model table we identify a business key that uniquely identifies the model table records.
For example in the case of the product model table from the tutorial the product code is deemed
to be the business key. The code uniquely identifies each product within the model table. The
product may also have a name or description and various other attributes that distinguish it. (e.g.
size, shape, color etc.). A common question when handling model tables is what do we do when
the name or description changes. Do we want to track transactional records in other model table
based only on the product code or do we also want to track records based on different
descriptions.

An example:

code description product_group sub_group

1235 15oz can of brussel
sprouts

canned goods sprouts

This product is sold for many years and we consequently have a very good history of sales and the
performance of the product in the market. The company does a '20% extra for free' promotion for
3 months during which time it increases the size of the can to 18oz. The description is also
changed to be '15 + 3oz can of brussel sprouts'. At the end of the promotion the product is
reverted to its original size and the description changed back to its original name.
The question is do we want to track the sales of the product when it had a different description
(using a model history table), or should the description of the product simply change to reflect its
current name (a standard model table).
The decision is not a simple one and the advantages and disadvantages of each of the two choices
is discussed below.

Model History Table
• Allows the most comprehensive analysis capabilities when just using the product model

table.
• Complicates the analysis. Does not allow a continuous analysis of the product called '15oz

can of brussel sprouts' when the description is used. This analysis is however still available
through the code which has not changed.

• Adds considerable additional processing requirements to the building of any other model
tables joined to this model table.

477

Model Table
• Does not allow specific analysis of the product during its size change. Note, however that this

analysis will probably be available through the combination of a 'promotion' model table.
• Provides a continuous analysis history for the product called '15oz can of brussel sprouts'. An

analysis via description and code will produce the same results.
• Simplifies analysis from an end user's perspective.

As mentioned above the choice is never a simple one. Even amongst experienced data warehouse
practitioners there will be a variety of opinions. The decision must be based on the business
requirements. In many cases keeping the analysis simple is the best choice, at least in the early
stages of a data warehouse development. Model history tables do have a place, but there is nearly
always an alternate method that provides equal or better results. In the example above a
promotion model history table coupled with the product model table could provide the same
analysis results whilst still keeping product only analysis simple and easy to understand.

478

Generating History Table Update Procedures
Business Key definition

This is almost identical to standard model tables.

An additional check-box, Source System supplied Start and End dates is supplied. This enables
you to specify a start and end dates in the source data.

Source System supplied Start and End dates

If Source System supplied Start and End dates are enabled, the define start and end date dialog is
displayed. Select the start date first, then the end date and click OK.

479

Default Start and End Dates

The dss_start_date and dss_end_date columns are used to track the start and end dates of history
records. Defaults must be entered to ensure the null values are not placed in these columns. Use
the history records dialog to enter these.

480

The default interval and interval type should also be chosen. These provide the difference
between the end of the previous record and the start of the new record.

History columns

The change detection fields dialog requests the selection of the columns to be managed as history
columns. Select the required columns and click OK to proceed. In the example below; columns
customer_code and customer_name are to be managed as history columns.

Update query statement

This is the same as standard model tables.

Insert query where clause

This is the same as standard model tables.

Joining multiple source tables

This is the same as standard model tables.

481

Model Table Column Properties
Each model table column has a set of associated properties. The definition of each property is
described below:

If the Column name or Data type is changed for a column then the metadata will differ from the
table as recorded in the database. Use the Validate>Validate Table Create Status menu option
or the right-click menu to compare the metadata to the table in the database. A right-click menu
option of Alter table is available when positioned on the table name after the validate has
completed. This option will alter the database table to match the metadata definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be
altered in the database. Use the Validate>Validate Table Create Status to compare metadata
definitions to physical database tables. The option also provides the ability to alter the database
table, through a pop-up menu option from the validated table name.

A sample Properties screen is as follows:

The two special update keys enable you to update the column and step either forward or
backward to the next columns properties.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

482

Column Name

Database-compliant name of the column. A good practice is to only use alphanumerics, and the
underscore character. Changing this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Title

Name that the business uses to refer to the column. It does not affect the physical table
definition, but rather provides input to the documentation and to the view ws_admin_v_dim_col
which can be used to assist in the population of a end user tool's end user layer. As such it is a
free form entry and any characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Description

This field contains the description for the column. It might contain information on where and
how the column was acquired. For example if the column is sourced from multiple tables or is a
composite or derived column then this definition would normally describe the process used to
populate the column. This field is used in the documentation and is available via the view
ws_admin_v_dim_col . This field is also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The
lowest numbered column will appear first in the table. Although this affects the physical table
definition no action will be taken unless the table is re-created in the database. The columns can
be re-numbered based on the existing order by choosing the Respace order number pop-up
menu option when positioned over any column in the table. This action will number the columns
in increments of 10 starting at 10. In addition to a simple change of the order field, the column
order can be changed by first displaying the columns in the middle pane and then using drag and
drop to move the columns around. This drag and drop process will automatically renumber the
columns as required.

Data Type

Database-compliant data type that must be valid for the target database. Typical Teradata
databases often have integer, numeric(), varchar(), char(), date and timestamp data types. See the
database documentation for a description of the data types available. Changing this field alters
the table's definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always
mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is
specified for the column.

483

Character Set

Database-compliant table column character-set used for storage. Select Latin or Unicode.

Format

Database-compliant table column format. It does not affect the physical table definition, but
rather provides input to the view ws_admin_v_dim_col which can be used to assist in the
population of an end user tool's end user layer. As such it is a free form entry and any characters
are valid. Typically format masks are only used on numeric fields. Example: #,###0.00. It is not
worth the effort of populating this field unless it can be utilized by the end user tools in use.

Character Comparison/Sorting

Determines how the column character values are treated for comparison and sorting operations.
Choose from: case specific, not case specific, uppercase case specific or uppercase not case
specific.

Compress

Indicates whether the table column values are compressed when stored.

Compress/Compress Value

Optional list of values to be compressed. By default, only NULL is compressed if no list of values
is specified.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant
for fact tables. It does not affect the physical table definition, but rather provides input to the
view ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end
user layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column
can be summed when performing data grouping in a query. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may
have an order number, or a invoice number stored in the fact table. Such columns are considered
attributes, rather than facts. This checkbox is therefore normally only relevant for fact tables.
This checkbox does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tools end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

484

End User Layer display

Indicates whether the table column is available/visible to end users. If set the documentation will
include the column in the glossary and in the user documentation. It is also used to decide what
columns appear in the view ws_admin_v_dim_col. Typically columns such as the artificial key
would not be enabled for end user display.

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update
procedure build. [Normally maintained automatically]. Multiple columns can form the primary
business key. This indicator is set and cleared by WhereScape RED during the dimension update
procedure generation process. This checkbox should not normally be altered.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table generation.

1 Component of all business keys. Indicates that this column is used as part of any
business key. It is considered part of any lookup on that table and has the key type
set to 1. Set when the column is added during drag and drop table generation.

2 Indicates that this column is a model table join. Used on model tables to indicate
the model keys to other model tables. Results in indexes being defined for the
columns. Set during the update procedure generation for a model table, based on
information from the staging table.

3 Not used in WhereScape RED for Teradata.

4 Not used in WhereScape RED for Teradata.

5 Indicates a column is a start date column.

6 Indicates a column is a end date column.

7 History column indicator. Used on dimension history tables to indicate that the
column is being managed as a history column within the context of a dimension
history table. Set when a column is identified during the dimension history update
procedure generation.

A Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used during
index generation and not normally set.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a
load table, stage table or another model table within the data warehouse. If the column was
sourced from multiple tables, then the normal practice is to record one of the tables in this field
and a comment listing all of the other tables in the Source strategy field. This field is used when

485

generating a procedure to update the model table. It is also used in the track back diagrams and
in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a
load table column, which in turn may have been a transformation or the combination of multiple
columns. This may also be a model table key where a model table is being joined.

Transformation

See Model Table Column Transformations (on page 486). [Read-only].

486

Model Table Column Transformations
Each model table column can have a transformation associated with it. The transformation will
be included in the generated procedure and will be executed as part of the procedure update. The
transformation must therefore be a valid SQL construct that can be included in a Select
statement. For example we could have a transformation of 'load_order_line.qty * 0.125' to
calculate a tax column of 12.5%.

Click the Transformation tab to enter a transformation.
It is possible to do transformations on model table columns. It is recommended that
transformations are not performed on columns that are model keys or the business keys for the
table.
The transformation screen is as follows:

Note: Transformations are only put into effect when the procedure is re-generated.

See Transformations (on page 593) for more details.

487

A Fact Table is normally defined, for our purposes, as a table with facts (measures) and
dimensional keys that allow the linking of multiple dimensions. It is normally illustrated in the
form of a Star Schema with the central fact table and the outlying dimensions.

The ultimate goal of the Fact Table is to provide business information to the end user
community. In many cases, different types of fact tables are required to address different end user
requirements.

In This Chapter

Detail Fact Tables ... 488
Fact Table Column Properties .. 495
Fact Table Column Transformations .. 500
Fact Table Language Mapping .. 501

C h a p t e r 1 7

Fact Tables

488

Detail Fact Tables
A detail fact table is normally a transactional table that represents the business data at its lowest
level of granularity. In many ways these tables reflect the business processes within the
organization. Such fact tables are usually large and are focused on a specified analysis area.

There may be quite a large number of detail fact tables in a data warehouse implementation, of
which only a few are used on any regular basis by the end user community. The disadvantage of
such fact tables is that they provide isolated pools of information. Although joined by conformed
dimensions, it is still often difficult to answer queries across the various analysis areas. They do
however provide the ultimate drill down for all information and also the platform on which to
build higher level and more complex fact tables. In terms of the time dimension detail fact tables
are typically at a daily or even hourly granular level.

An example of a detail fact table may be the sales, or orders fact tables that have a daily
granularity, and show all sales by product, by customer etc. on a given day.

Creating Detail Fact Tables
A detail fact table is typically created by dragging a staging table onto a fact table list.

In the following example screen the fact table list has been produced by double clicking on the
Fact Table object group under the Sales project. A list is produced showing the existing fact
tables.

A fact_sales_detail detail fact table can be created by selecting the stage_sales_detail name in the
right pane of the builder window, holding down the left mouse button and dragging the table into
the middle (fact table list) pane.

489

Once released, the dialog to create the fact table will start.

When a staging table is dragged into the list window (middle pane) all fact tables are by default
detail fact tables. If manually creating a table, then the table type can be selected under the
Properties of the fact table.

Detail Fact Columns

The columns for a detail fact table are typically those of the staging table. Such fact tables
typically contain a wide range of measures and attributes as well as the business keys used to look
up the artificial dimension keys. These business keys should be included whenever possible as
they provide a means of rebuilding the dimensional link. If size prohibits their inclusion it will
probably be necessary to backup or archive all source data to ensure that the fact table can be
rebuilt.

These fact tables normally contain a large number of attributes such as dates, which have not
been converted to dimensions. Also contained would be information such as order numbers,
invoice numbers etc.

See the first tutorial for an example of a fact table creation.

490

Generating the Detail Fact Update Procedure
Once a detail fact table has been defined in the metadata and created in the database, an update
procedure can be generated to handle the update of the fact table.

Note: You can also generate an update procedure via a template, refer to Rebuilding Update
Procedures (on page 199) for details.

Generating a Procedure
• To generate a procedure, right-click on the fact table in the left pane and select Properties.
• Click on the Rebuild button to start the process of generating the new procedure.

Define Fact Procedure Type and Options
• The first dialog displayed when generating a detail fact table update procedure is the define

Fact Procedure Type and Options dialog.
• Several other fields need to be set or adjusted on this dialog to ensure the required type of

update procedure is generated.
• Once the required options have been selected, click OK to proceed to the next dialog.

491

Template
Enables you to generate update procedures via a template (see "Rebuilding Update Procedures"
on page 199).

Define Fact Business Key Columns
The next dialog displayed is the define fact business key columns dialog, asking for the business
key that will uniquely identify each fact table record. The source table from which the fact table is
derived would normally have some form of unique constraint applied. In most cases this will be
the business key. In the example below the order_numer and order_line_no are selected for the
business key list.

TIP: Use the column name ascending/descending buttons to sort column names. To revert
to the meta column order, click on the meta column order button.

A business key can be made up of multiple columns, but it must provide a unique identifier.
Where multiple columns separately uniquely identify rows in the fact table, choose one to act as
the primary business key. For example a source table may have a unique constraint on both a
product code and a product description. Therefore the description as well as the code must be
unique.

NULL Values: none of the columns chosen as the business key should ever contain a NULL value.

492

Select Parameters

The next dialog displayed is the Select Parameters dialog. If WhereScape RED parameters exist in
the metadata, the following dialog is displayed. Any parameters selected in this dialog (by
moving them to right side), are included in the generated update procedure as variables. The
procedure will include code to retrieve the value of the parameter at run time and store it in the
declared variable.

Select a parameter by clicking on the parameter and then the > arrow to move it to the right
column; then click OK.
If the desired parameter doesn't exist in the metadata yet, a new parameter can be added by
clicking on the Add New button on the bottom leftmost corner of the Select Parameters dialog.

The variables can also be used in column transformations and in the from/where clause for the
update procedure.

Some databases have a 30 character limit for variable names. WhereScape RED ensures the
variables added for any parameters are less than 30 characters long by creating variable names in
the form v_ followed by the first 28 characters of the parameter name.

For example, a parameter called MINIMUM_ORDER_NUMBER_SINCE_LAST_SOURCE_LOAD will
be available as the variable v_MINIMUM_ORDER_NUMBER_SINCE_L.

TIP: WhereScape RED parameters should be unique within the first 28 characters to avoid
conflicting variables names.

See Parameters (on page 143) for more information on WhereScape RED Parameters.

493

Include initial load insert

The include initial load insert option adds an additional insert statement to the update
procedure that runs if the target Data Store Object is empty. The benefit of this is improved
performance inserting into an empty table without performing any checks to see if rows already
exist. The default for this field is off (i.e. an initial insert statement is not added to the
procedure).

Process by batch

The process by batch field allows the user to select a column to use to break up the data being
processed in a loop based on the distinct values in the column. The update procedure loops on
this column and performs the delete, update and/or insert for each value. If the column chosen is
a date datatype (date, datetime or timestamp), then the user is able to specify yearly, monthly,
daily or column level looping. The default for this field is off (do not do batch processing).

Batch Processing Field - allows selecting a field to batch process on. If you select a date field
you will have the ability to process by date part. If you select a join field to process by you can
choose and attribute of that related table to group by.

Delete before insert

The delete before insert option enables a delete statement to be added to the update procedure
before any update or insert statement. This is a particularly useful option for purging old data
and for updates based on a source system batch number. If this option is set Issue a Warning if a
Delete Occurs and Delete Where Clause fields are enabled.The default for this field is off (i.e. a
delete statement is not added to the procedure).

Truncate - if this option is chosen, the delete is ignored and the Fact Object is truncated.

Issue warning if a delete occurs: sets the procedure to a warning state if any deletes occur.

Delete 'Where' clause: the delete where clause that is appended to the generated delete statement
to constrain the rows deleted.

Update processing

The update process method option allows you to use the Merge statement instead of two
separate Insert and Update statements. The default value for this option is Insert/Update.

Source table locking

This section allows a locking request modifier to be specified for each source table. The specified
locking request modifier is applied to each source table during generated update procedures. By
default this is set to 'ACCESS' which locks each row being accessed, a blank entry will result in no
locking clause in the generated procedure.

Insert method

The include insert statement option includes an insert statement in the procedure to insert new
rows in the Fact Object. If this option is chosen, then the New rows only option is available.
Choosing this option, displays the code type drop-down, enabling the generated update
statement to use either a sub-select with except change detection or checksum change detection
to work out what rows in the source table(s) are new. If this option is turned off, the update
procedure will not contain an insert statement. The default for this field is on (i.e. an insert
statement is included).

494

Update method

The include update statement option includes an update statement in the procedure to update
changing rows in the Fact Object. If this option is chosen, then the Changed rows only option is
available. Choosing this option, displays the code type drop-down, enabling the generated
update statement to use either a sub-select with except change detection or checksum change
detection to work out what rows in the Fact Object require updating. If this option is turned off,
the update procedure will not contain an update statement. The default for this field is on (i.e. an
update statement is included).

Changed and New Rows Only

Choosing this option, displays the code type drop-down, enabling the generated merge
statement to use either a sub-select with Join change detection or Minus change detection to
work out what rows in the Fact Object are new or which require updating.

Source Tab
This dialog is used to join source tables, add 'Where' clauses and specify group by clauses.

Distinct data select

The distinct data select option ensures duplicate rows are not added to the Data Store Object.
This is achieved by the word DISTINCT being added to the source select in the update procedure.

The default for this field is not set (i.e. duplicates are not removed).

As source table joins should have been performed in the stage table, see Generating the Staging
Update Procedure (on page 337) for more details.

495

Fact Table Column Properties
Each fact table column has a set of associated properties. The definition of each property is
defined below.

If the Column name or Data type is changed for a column then the metadata will differ from the
table as recorded in the database.

Use the Validate>Validate Table Create Status menu option to compare the metadata to the
table in the database.

A right-click menu option of Alter table is available when positioned on the table name after the
validate has completed. This option will alter the database table to match the metadata
definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be
altered in the database.
Use the Validate>Validate Table Create Status to compare metadata definitions to physical
database tables. The option also provides the ability to alter the database table, through a pop-up
menu option from the validated table name.

496

A sample Properties screen is as follows:

The two special update keys allow you to update the column and step either forward or backward
to the next column's properties.
ALT-Left Arrow and ALT-Right Arrow can also be used instead of the two special update keys.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

Column Name

Database-compliant name of the column. Typically column-naming standards exclude the use of
spaces etc. A good practice is to only use alphanumerics, and the underscore character. Changing
this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Title

Name that the business uses to refer to the column, which is included in the RED-generated
documentation and can be used in the end user layer of other tools. [Does NOT affect the physical
database table]. As such it is a free form entry and any characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

497

Column Description

This field contains the description for the column. It may be a description from a business user's
point of view. This field might additionally contain information on where and how the column
was acquired. For example if the column is sourced from multiple tables or is a composite or
derived column then this definition would normally describe the process used to populate the
column. This field is used in the documentation and is available via the view
ws_admin_v_dim_col . This field is also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The
lowest numbered column will appear first in the table. Although this affects the physical table
definition no action will be taken unless the table is re-created in the database. The columns can
be re-numbered based on the existing order by choosing the Respace Order Number pop-up
menu option when positioned over any column in the table. This action will number the columns
in increments of 10 starting at 10. In addition to a simple change of the order field, the column
order can be changed by first displaying the columns in the middle pane and then using drag and
drop to move the columns around. This drag and drop process will automatically renumber the
columns as required.

Data Type

Database-compliant data type that must be valid for the target database. Typical Teradata
databases often have integer, numeric(), varchar(), char(), date and timestamp data types. See the
database documentation for a description of the data types available. Changing this field alters
the table's definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always
mandatory.

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is
specified for the column.

Format

Optional format mask that can be used in end user tools. [Does NOT affect the physical database
table]. As such it is a free form entry and any characters are valid. Typically format masks are only
used on numeric fields. Example: #,###0.00. It is not worth the effort of populating this field
unless it can be utilized by the end user tools in use.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant
for fact tables. It does not affect the physical table definition, but rather provides input to the
view ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end
user layer. The use of this field is not relevant unless it can be utilized by the end user tools.

498

Additive

Indicates whether the table column holds values that are additive. This implies that the column
can be summed when performing data grouping in a query. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may
have an order number, or a invoice number stored in the fact table. Such columns are considered
attributes, rather than facts. This checkbox is therefore normally only relevant for fact tables.
This checkbox does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tools end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

End User Layer Display

Indicates whether the table column is available/visible to end users. If set the documentation will
include the column in the glossary and in the user documentation. It is also used to decide what
columns appear in the view ws_admin_v_dim_col. Typically columns such as the artificial key
would not be enabled for end user display.

Business Key

Indicates whether the column is part of the BUSINESS key, which is defined during the update
procedure build. [Normally maintained automatically]. Multiple columns can form the primary
business key.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of any
business key. For example: By default the dss_source_system_key is added to
every dimension table. It is considered part of any lookup on that table and has
the key type set to 1. Set when the column is added during drag and drop table
generation.

2 Indicates that this column is a dimensional join. Used on fact tables to indicate
the dimension keys. Results in bitmap indexes being built for the columns. Set
during the update procedure generation for a fact table, based on information
from the staging table.

499

Key type Meaning

3 Slowly changing column indicator. Used on dimension tables to indicate that the
column is being managed as a slowly changing column within the context of a
slowly changing dimension. Set when a column is identified during the dimension
update procedure generation.

4 Previous value column indicator. Used on dimension tables to indicate that the
column is being managed as a previous value column. The source column
identifies the parent column. Set during the dimension creation.

A Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used during
index generation and not normally set.

KPI Column Type

Only used by KPI fact tables. This field defines the column type for the KPI Fact Table. Refer to
the KPI table creation section for more details on this field.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a
stage table within the data warehouse. If the column was sourced from multiple tables, then the
normal practice is to record one of the tables in this field and a comment listing all of the other
tables in the Source strategy field. This field is used when generating a procedure to update the
fact table. It is also used in the track back diagrams and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a
stage table column, which in turn may have been a transformation or the combination of multiple
columns. This may also be a dimensional key where a dimension is being joined.

Transformation

See Fact Table Column Transformations (on page 500). [Read-only].

Join

Indicates whether the table column is used in a table join. [Normally maintained automatically
but can be optionally changed to override the default join logic used in the generated update
procedure]. The Source Table and Source Column fields will provide the dimension table's side
of the join. The options for this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the dimension table is looked up during the update
procedure build. It allows you to join the dimension manually in the Cursor mapping dialog
(where the 'Where' clause is built).

Setting this field to Pre Join activates the Pre Join Source Table field and allows you to select a
table from the drop-down list.

500

Pre Join Source Table

Indicates the table from which the pre joined column was sourced. When the Join option is set to
False, this field becomes inactive. When the Join option is set to True or Manual, this field is set
to the current table name. When the Join option is set to Pre Join, then you can select the
required table from the drop-down list.

Fact Table Column Transformations
Each fact table column can have a transformation associated with it. The transformation will be
included in the generated procedure and will be executed as part of the procedure update.

The transformation must therefore be a valid SQL construct that can be included in a Select
statement.

For example we could have a transformation of 'load_order_line.qty * 0.125' to calculate a tax
column of 12.5%. Click the Transformation tab to enter a transformation.

Note: Transformations are only put into effect when the procedure is re-generated.

Microsoft Analysis Services 2005+ Tabular Mode Tables: For Tabular Mode table column
transformations, Default DAX is the only applicable Function Set for after load
transformations.

See Transformations (on page 593) for more details.

501

Fact Table Language Mapping
The Fact Properties screen has a tab called Language Mapping.

Select the language from the drop-down list and then enter the translations for the Business
Display Name and the Description in the chosen language.

The translations for these fields can then be pushed through into OLAP cubes.

503

Two types of aggregate tables are discussed.

The first is where all non-additive facts and one or more dimensions are removed from a fact
table. Typically this results in a smaller table that can answer a subset of the queries that could be
posed against the fact table. This aggregate table still maintains full integrity to the remaining
dimensions, and consequently reflects all changes to those dimensions.

The second type, we will call an aggregate summary, or summary table. This table includes
additive measures and in some cases hierarchical elements of one or more of the dimensions
providing a rolled-up summary of the fact table data. For example we may choose to deal at
product group level rather than product SKU which is the granularity of the dimension.

In This Chapter

Creating an Aggregate Table .. 504
Creating an Aggregate Summary Table .. 504
Aggregate Table Column Properties ... 504
Aggregate Table Column Transformations .. 509

C h a p t e r 1 8

Aggregation

504

Creating an Aggregate Table
1 In the left pane double click on the aggregate group to list the aggregates in the middle pane

and set aggregates as the drop target.

2 From the Data Warehouse browse (right) pane drag a fact table into the middle pane. Remove
any columns that will not make sense at an aggregated level. For example, dss_fact_table_key,
any business keys, any non-additive facts, any measures that relate to detail (e.g. unit price).

3 Create the aggregate table in the database by right-clicking on the aggregate and selecting
Create(ReCreate).

4 Create a procedure to update the aggregate by right-clicking on the aggregate, selecting
Properties and selecting (Build Procedure...) in the Update Procedure field. You will be
asked for the date in the fact table that is to be used as the basis for rebuilding changes in the
fact table. The aggregate update process looks at any records that have been updated in the
fact table in the last 7 days (by default). It then rebuilds all the information for the dates that
have been altered.
You will also be asked to specify a locking request modifier to be applied to each source table
during generated update procedures. By default this is set to 'ACCESS' which locks each row
being accessed, a blank entry will result in no locking clause in the generated procedure.

Creating an Aggregate Summary Table
The creation of a summary table proceeds initially in the same way as an aggregate table.

1 In the left pane double click on the aggregate group to list the aggregates in the middle pane
and set aggregates as the drop target.

2 From the Data Warehouse browse (right) pane drag a fact table into the middle pane. Remove
any columns that will not make sense at an aggregated level. For example, dss_fact_table_key,
any business keys, any non-additive facts, any measures that relate to detail (e.g. unit price).

3 Drag over columns from dimensions that are linked to the fact table. Delete the dimension
keys to allow a rollup to the level of the dimension elements.

4 In the properties of the aggregate table change the Table Type to Summary.

5 Create the aggregate summary table in the database by right-clicking on the aggregate and
selecting Create(ReCreate).

6 Create a procedure to update the aggregate summary by right-clicking on the aggregate,
selecting Properties and selecting (Build Procedure...) in the Update Procedure field. The
aggregate summary table is totally rebuilt each time the procedure is executed.

505

Aggregate Table Column Properties
Each aggregate table column has a set of associated properties. The definition of each property is
defined below:

If the Column name or Data type is changed for a column then the metadata will differ from the
table as recorded in the database. Use the Validate>Validate Table Create Status menu option
to compare the metadata to the table in the database. A right-click menu option of Alter Table is
available when positioned on the table name after the validate has completed. This option will
alter the database table to match the metadata definition.

TIP: If a database table's definition is changed in the metadata, then the table need to be
altered in the database. Use the Validate>Validate Table Create Status to compare metadata
definitions to physical database tables. The option also provides the ability to alter the database
table, through a pop-up menu option from the validated table name.

A sample Properties screen is as follows:

The two special update keys enable you to update the column and step either forward or
backward to the next column's properties. ALT-Left Arrow and ALT-Right Arrow can also be
used instead of the two special update keys.

Table Name

Database-compliant name of the table that contains the column. [Read-only].

506

Column Name

Database-compliant name of the column. Typically, column-naming standards exclude the use of
spaces etc. A good practice is to only use alphanumerics, and the underscore character. Changing
this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Title

Name that the business uses to refer to the column, which is included in the RED-generated
documentation and can be used in the end user layer of other tools. [Does NOT affect the physical
database table]. As such it is a free form entry and any characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Description

This field contains the description for the column. It may be a description from a business user's
point of view. This field might additionally contain information on where and how the column
was acquired. For example, if the column is sourced from multiple tables or is a composite or
derived column then this definition would normally describe the process used to populate the
column. This field is used in the documentation and is available via the view
ws_admin_v_dim_col. This field is also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The
lowest numbered column appears first in the table. Although this affects the physical table
definition no action is taken unless the table is re-created in the database. The columns can be
re-numbered based on the existing order by choosing the Respace Order Number pop-up menu
option when positioned over any column in the table. This action numbers the columns in
increments of 10 starting at 10. In addition to a simple change of the order field, the column
order can be changed by first displaying the columns in the middle pane and then using drag and
drop to move the columns around. This drag and drop process automatically renumbers the
columns as required.

Data Type

Database-compliant data type that must be valid for the target database. Typical Teradata
databases often have integer, numeric(), varchar(), char(), date and timestamp data types. See the
database documentation for a description of the data types available. Changing this field alters
the table's definition.

Null Values Allowed

Determines whether the table column can hold NULL values or whether a value is always
mandatory.

507

Default Value

Initial value that is assigned to the column when a row is inserted into the table but no value is
specified for the column.

Character Set

Database-compliant table column character-set used for storage, Latin or Unicode.

Format

Optional format mask that can be used in end user tools. [Does NOT affect the physical database
table]. As such it is a free form entry and any characters are valid. Typically, format masks are
only used on numeric fields. Example: #,###0.00. It is not worth the effort of populating this field
unless it can be utilized by the end user tools in use.

Character Comparison/Sorting

Determines how the column character values are treated for comparison and sorting operations.
Choose from: case specific, not case specific, uppercase case specific or uppercase not case
specific.

Compress

Indicates whether the table column values are compressed when stored.

Compress/Compress Value

Optional list of values to be compressed. By default, only NULL is compressed if no list of values
is specified.

Numeric

Indicates whether the table column holds values that are numeric. This is normally only relevant
for fact tables. It does not affect the physical table definition, but rather provides input to the
view ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end
user layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Additive

Indicates whether the table column holds values that are additive. This implies that the column
can be summed when performing data grouping in a query. This is normally only relevant for fact
tables. It does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tool's end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

Attribute

Indicates whether the table column holds values that are descriptive, and/or are used for
grouping/summing. An attribute is defined as a column that is non factual. For example we may
have an order number, or a invoice number stored in the fact table. Such columns are considered
attributes, rather than facts. This check box is therefore normally only relevant for fact tables.
This check box does not affect the physical table definition, but rather provides input to the view
ws_admin_v_dim_col which can be used to assist in the population of an end user tools end user
layer. The use of this field is not relevant unless it can be utilized by the end user tools.

508

End User Layer Display

Indicates whether the table column is available/visible to end users. If set, the documentation
will include the column in the glossary and in the user documentation. It is also used to decide
what columns appear in the view ws_admin_v_dim_col. Typically, columns such as the artificial
key would not be enabled for end user display.

Key Type

Key type that is assigned and used when generating the table's update procedure and indexes.
[Normally maintained automatically]. It can be altered here, but this should only be done if the
consequences are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part of any
business key. For example: By default the dss_source_system_key is added to
every dimension table. It is considered part of any lookup on that table and has
the key type set to 1. Set when the column is added during drag and drop table
generation.

2 Indicates that this column is a dimensional join. Used on fact tables to indicate
the dimension keys. Results in bitmap indexes being built for the columns. Set
during the update procedure generation for a fact table, based on information
from the staging table.

3 Slowly changing column indicator. Used on dimension tables to indicate that the
column is being managed as a slowly changing column within the context of a
slowly changing dimension. Set when a column is identified during the dimension
update procedure generation.

4 Previous value column indicator. Used on dimension tables to indicate that the
column is being managed as a previous value column. The source column
identifies the parent column. Set during the dimension creation.

A Indicates that the column is part of the primary business key. Set whenever a
business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used during
index generation and not normally set.

Aggregate

Indicates whether aggregation is required and the aggregation method used, e.g. Sum, Count or
Group by.

Source Table

Identifies the source table where the column's data comes from. This source table is normally a
fact table or a dimension table within the data warehouse. If the column was sourced from
multiple tables, then the normal practice is to record one of the tables in this field and a
comment listing all of the other tables in the Source Strategy field. This field is used when

509

generating a procedure to update the aggregate table. It is also used in the track back diagrams
and in the documentation.

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a
fact table column or a dimension table column, which in turn may have been a transformation or
the combination of multiple columns.

Transformation

See Aggregate Table Column Transformations (on page 509). [Read-only].

Join

Indicates whether the table column is used in a table join. [Normally maintained automatically
but can be optionally changed to override the default join logic used in the generated update
procedure]. The Source Table and Source Column fields will provide the dimension table's side
of the join. The options for this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the dimension table is looked up during the update
procedure build. It allows you to join the dimension manually in the Cursor mapping dialog
(where the 'Where' clause is built).

Setting this field to Pre Join activates the Pre Join Source Table field and allows you to select a
table from the drop-down list.

Pre Join Source Table

Indicates the table from which the pre joined column was sourced. When the Join option is set to
False, this field becomes inactive. When the Join option is set to True or Manual, this field is set
to the current table name. When the Join option is set to Pre Join, then you can select the
required table from the drop-down list.

510

Aggregate Table Column Transformations
Each aggregate table column can have a transformation associated with it. The transformation
will be included in the generated procedure and will be executed as part of the procedure update.
The transformation must therefore be a valid SQL construct that can be included in a Select
statement. For example we could have a transformation of 'load_order_line.qty * 0.125' to
calculate a tax column of 12.5%. Click the Transformation tab to enter a transformation.

Note: Transformations are only put into effect when the procedure is re-generated.

See Transformations (on page 593) for more details.

511

Join indexes are used to perform one or more of the following tasks in Teradata:

1 Replicate all or part of a single table using a new primary index

2 Join multiple tables in a pre-join table

3 Aggregates one or more columns of one or more tables

WhereScape RED supports all of these uses.

In This Chapter

Creating a Join Index .. 512

C h a p t e r 1 9

Join Indexes

512

Creating a Join Index
Drag and Drop
1 In the left pane double click on the join index group to list the join indexes in the middle

pane and set join indexes as the drop target.

2 From the Data Warehouse browse (right) pane drag a table into the middle pane.
3 The new object dialog box will appear and will identify the new object as a Join index and will

provide a default name based on the join index name.

4 Either accept this name or enter the name of the join index and click OK to proceed.

Join Index Properties

At this stage change the storage options if desired and click on OK.

If prototyping, and the join index is simple (i.e. one source table) then you can create the join
index automatically by answering Create and Load to the next question and specifying the
primary index. Otherwise proceed to the next section.

Pre-joined Join Indexes

If joining multiple tables in a pre-join table, add the columns from the other tables.

Define the join between the source tables using the 'Where' clause builder (right-click on the join
index and select Build From/Where clause).

513

If aggregation is required, proceed to the next section, otherwise remove any checks from the
Sum, Count and Group by check boxes on each column of the join index.

Create the join index in the database by right-clicking on the join index and selecting
Create(ReCreate).

514

Aggregated Join Indexes

To build an aggregated join index, edit each column and set the Sum, Count and Group by check-
boxes as appropriate.

Create the aggregate table in the database by right-clicking on the aggregate and selecting
Create(ReCreate).

515

Views are normally created to manage locking in Teradata, to join tables together for
presentation to users or to provide additional methods for updating underlying tables. In our
tutorials we create a view on each dimension table to provide an access path to the dimension
tables with a built in locking clause.

Views can be created from any table type.

Note: WhereScape RED version 8.1.1.0 and above no longer supports the Dimension View object
type when creating new objects. However, users that have existing Dimension View objects in
their data warehouse can retain and continue to use them.

In This Chapter

One to One Views ... 516
Dimension Views for Aliasing... 518
Compound Views, Facts and Dimensions ... 519
Creating a Custom View ... 526
View Aliases .. 527

C h a p t e r 2 0

Views

516

One to One Views
A one to one view is a database view of a dimension table. It may be a full or partial view. It is
typically used to provide an access path to the dimension tables with a built in locking clause.

In many data warehouses views are built as part of the end user layer, but creating them in the
data warehouse means they are available regardless of the end user tools used.

The process for creating a view is as follows:

1 Double click on View in the left pane.

2 Browse to the data warehouse in the right pane.

3 Drag a table from the right pane into the center pane.

• The dialog box that displays defaults the object type to a view.

• Change the view name as required, and click ADD.

4 The View properties dialog displays:

517

Change the following properties, if desired:

• Tick the Distinct Data Select check box if you want the view to return only distinct
values.

• You can enter a From/Where clause, but this can be done later. The ellipses button can
be used to open the From/Where Clause editor dialog:

• The Table Locking Mode can be changed at this point. The default is LOCK ROW FOR

ACCESS, all other Teradata locking modes are available for use.

5 Click OK.

6 A dialog box displays indicating that the view has been defined. Click Create view to create
the view in Teradata.

518

Dimension Views for Aliasing
A view of a Dimension table used to create an alternative logical object for a Dimension table. It
may have some or all columns renamed to match the aliased name of the view. Dimension Views
may be used to look up surrogate keys when building staging tables.

The process for creating a dimension view is as follows:

1 Double click View in the left pane.
2 Browse to the data warehouse in the right pane.

3 Drag a dimension table from the right pane into the middle pane.

• The dialog box defaults the object type to View.

• Change the view name as required, and click Add.

4 The View Column Definition dialog appears to provide a means of re-mapping some of the
column names in the View if required. A description of the fields in this dialog are provided
below.

5 The View Properties window appears—change the Table Type to Dimension View.
6 Select the Distinct Data Select check box if you want the Dimension View to return only

different values.

7 Click OK. A dialog box confirms that the View has been defined—click Create View to create
the view in Teradata.

View Column Re-mapping

The View Column Definition dialog is used for the automated re-mapping of certain column
names. It provides an easy method for changing the column names for a large number of columns
when creating a view. The various actions undertaken as a result of entries in this dialog can all
be done or reversed manually by changing the individual column properties. The various fields
are described below:

519

Remove Column Prefix

If the columns in the source table are prefixed then that prefix can be removed by entering it in
this field. An example may be a date dimension which has each column prefixed with date_ (e.g.
date_month, date_year, etc.). If this field is left blank then no removal action is taken.

Add Column Prefix

If required a prefix can be added to each column name. This is particularly useful when defining a
date dimension view where you would like each column to be prefixed by the date type.

Remove Business Display Prefix

As per the column names it may be required to remove a prefix from the business display fields. If
so enter the prefix to remove in this column.

Add Business Display Prefix

The business display fields are used in the creation of the glossary. It is therefore quite useful to
prefix these display fields with a quire identifier for the view being created. It is assumed that
these business display names will be carried forward to the end user layer. Enter a value in this
field to prefix the business display name fields for each column. It is normal to include a space at
the end of this field.

Old Column Name

Up to five individual column names can be re mapped. Enter the column name as it appears in the
source table in one of the 'old column name' fields in order to re map that column name. The
business display name is also changed to match.

New Column Name

Place a new column name alongside any existing column name you wish to re map. in the
example dialog above a column named 'calendar_date' is being renamed to 'order_date' in the
view.

520

Compound Views, Facts and Dimensions
A compound view is used to join tables and views together for presentation to users. They
simplify user access, particularly if multiple dimension history tables need to be accessed in a
single query.

The process for creating a compound view is as follows:

1 Double click on View in the left pane.
2 Browse to the data warehouse in the right pane.

3 Drag an existing one-to-one view from the right pane into the center pane. Change the view
name as required, click ADD.

4 The view property defaults dialog will appear. A 'Where' clause could be entered, but this can
be done later using the 'Where' clause builder. The table locking mode can also be changed at
this point. The default is lock for access, all other Teradata locking modes are available for
use. Change the table type to be a dimension view or fact view (as appropriate) if a star
schema presentation layer is being built.

Note: You will need to create fact and dimension views to use Analysis Services Cubes.

5 Tick the Distinct Data Select check-box if you want the view to return only distinct values.

6 Click OK and then Finish, not creating the view for now.
7 Add additional columns from other existing one-to-one views from the right pane into the

center pane.

Join the source objects

If columns from more than one table or view have been added, then we have to define the joins
between the source objects. This is achieved by right-clicking on the view name and selecting
Build From/Where clause from the pop up menu.

To join tables, select the tables in the left box and click either the Outer Join or Simple Join
button. Column lists for both tables will appear at the bottom of the dialog box. Select the
column (or one of the columns) that allows the two tables to be joined. If an outer join is being
used, the column for the master table must be chosen first. If there are multiple columns joining
two tables then this action must be repeated for each column. Continue to perform all joins
between all tables. The example below only has two tables with one join column so is a relatively
simple case. An additional option is available to allow either an ANSI standard join or a 'Where
clause' based join. The ANSI standard join should be chosen in most situations. See the example
screen in the following section.

521

Simple Join

A simple join joins the two tables, and only returns rows where data is matched in both tables. So
for example if table A has 100 rows and table B has a subset of 24 rows. If all the rows in table B
can be joined to table A then 24 rows will be returned. The other 76 rows from table A will not be
returned.

Outer Join

An outer join joins the two tables, and returns all rows in the master table regardless of whether
or not they are found in the second table. So if the example above was executed with table A as
the master table then 100 rows would be returned. 76 of those rows would have null values for the
table B columns. In the example screen above the table 'load_order_line' has had its column
chosen and the column for the table 'load_order_header' is currently being chosen. This will result
in the statement as shown in the 'Where' clause edit window. The results of this select are that a
row will be added containing order_line information regardless of whether or not an order_header
exists.

As the join columns are selected the 'Where' statement is built up in the large edit window on the
right. Once all joins have been made the contents of this window can be changed if the join
statement is not correct.

Once satisfied with the 'Where' statement click the OK button to proceed to the next step. As
indicated in its description this statement is the 'Where' clause that will be applied to the select
statement of the cursor to allow the joining of the various source tables. It can of course be edited
in the procedure that is generated if not correct.

You have the choice between 'Where' statement joins and ANSI standard joins.

Note: 'Where' joins are not available if using outer joins in Teradata.

522

The example below shows the result of an ANSI standard join which takes place in the 'From'
statement.

523

Create the view

Once the view has been defined in the metadata we need to physically create the view in the
database. This is achieved by using the right-clicking on the view name and selecting Create
(ReCreate) from the pop up menu.

The output from the creation are visible in the output windows. The following example shows a
successful creation.

The contents of this window are a message to the effect that the view was created followed by a
copy of the actual database create statement.

If the view was not created then ascertain and fix the problem. A common problem is a 'Duplicate
column' where a column has been accidentally added twice. The best way of finding such a
column is to double click on the list heading Col name. This will sort the column names into
alphabetic order. Another double click on the heading will sort the columns back into their create
order. Column ordering can be changed by altering the column order value against a column's
properties.

TIP: Double clicking on the heading of a column in a list sorts the list into alphabetical order
based on the column chosen.

524

Dimension View Hierarchies
The various hierarchies associated with a dimension view can be recorded in the WhereScape
RED metadata. These hierarchies are often not used in any form, except to provide documentary
completeness and for creating Analysis Services OLAP Cubes.

Adding a Dimension View Hierarchy
Any number of hierarchies can be created against a dimension view. There is no restriction on the
form of the hierarchy. To add a new hierarchy, position on the dimension view in the left pane
and using the right-click menu, select Hierarchies>Add Hierarchy. The following dialog
appears.

1 Enter a meaningful name for the hierarchy.
2 Enter a meaningful description for the hierarchy. This description is carried through into the

Hierarchy Description field of any OLAP Dimensions that are built from the original
Dimension object.

Note: The description text is automatically set to "Added at dimension creation for cube support"
but this can be edited to match the user's intended description.

525

The hierarchy is built with the highest level at the top; for example a customer dimension view
may have state at the highest level, then city, then address and finally code at the lowest level.

To enter the hierarchy elements, select them in the required order, from the left pane and click >
to add them to the right column. Once all the hierarchy elements have been added, click OK.

A hierarchy and its elements can be edited by listing the hierarchies associated with a dimension
and using the right-click menu options available in the middle pane.

526

Creating a Custom View
A custom view can be created within RED to handle views that are not strictly one to one, such as
where multiple tables are joined or where a complex condition is placed on the view. There are
two options for custom views, the first where the columns are defined in RED and the 'Select'
component of the view is customized. The second option is where the view is totally custom and
no columns need to be defined in RED, although it is good practice to still define the columns for
documentation purposes.

To create a Custom or 'User Defined' view proceed as follows:

1 Create a view in the normal manner either by dragging a table in or adding a new object.

2 Change the View Type to User Defined View in the properties of the view.

527

3 The following message is displayed. Click OK.

4 Edit the new tab View Create Statement and insert the SQL Statement that will be used to
create the view. This SQL Statement must start with either 'Create' or 'Select'. If 'Create' is
used then the columns in the view are ignored and the statement will be issued to create the
view. If the statement starts with 'Select' then RED will build up a view create statement form
the column names and the supplied Select clause. A button 'Load from Columns' is available
to get a sample Select statement based on the columns in the view and any transformations.

528

View Aliases
View Aliases provide multiple deployments of the same view into different Teradata presentation
layers.

The View Aliases tab enables you to define additional/replica views.

Add button

Enables you to add a View Alias which adds a new copy of the view. This enables you to define
new View Alias which is an alternate definition that will ultimately exist as another database
view with a different name, predicate and/or target location.

Delete button

Enables you to delete a View Alias and remove its metadata details after closing the dialog.

View Alias Name

The view alias name that is used as the alternate database view name.

View Alias Description

Description of the view alias.

View Alias Predicate

Optional 'Where' clause to include in the alternate view definition.

529

Target Connection

The name of the WhereScape RED connection that identifies the target location to create the
alternate view.

Database Type [Read Only]

The database type of the selected target connection.

Target

The Target that defines the database and schema for the table.

Target Database [Read Only]

Target database identifier (e.g. Oracle SID or TNS Name, Teradata TDPID) or Database Name (e.g.
as in DB2 or SQL Server) to reference the alternate view.

View Alias Locking Mode

The locking mode applied to the alternate view.

531

In This Chapter

OLAP Overview ... 532
OLAP Defining the Data Source for the OLAP Cube ... 532
OLAP Defining an OLAP Cube .. 535
OLAP Inspecting and Modifying Advanced Cube Properties 539
OLAP Creating an OLAP Cube on the Analysis Services Server 540
OLAP Cube Objects ... 541
OLAP Dimension Objects ... 573
OLAP Changing OLAP Cubes .. 586
OLAP Retrofitting an OLAP Object .. 588

C h a p t e r 2 1

Analysis Services OLAP Cubes

532

OLAP Overview
A cube is a set of related measures and dimensions that is used to analyze data.

• A measure is a transactional value or measurement that a user may want to aggregate. The
source of measures are usually columns in one or more source tables. Measures are grouped
into measure groups.

• A dimension is a group of attributes that represent an area of interest related to the
measures in the cube and which are used to analyze the measures in the cube. For example, a
customer dimension might include the attributes:
• Customer Name

• Customer Gender

• Customer City

These would enable measures in the cube to be analyzed by Customer Name, Customer Gender,
and Customer City. The source of attributes are usually columns in one or more source tables.
The attributes within each dimension can be organized into hierarchies to provide paths for
analysis.

A cube is then augmented with calculations, key performance indicators (generally known as
KPIs), actions, partitions, perspectives, and translations.

The information required to build and support an Analysis Services cube and its surrounding
structure is reasonably complex and diverse. In attempting to automate the building of Analysis
Services cubes WhereScape RED has simplified and restricted many of the functions available to
the cube designer. WhereScape RED includes most of the commonly used capabilities and the
components that logically fit into the methodology incorporated within WhereScape RED.

WhereScape RED broadly provides functionality to manage all of the above, except for
perspectives and translations. These can be created outside of WhereScape RED, scripted in xmla
and executed from within WhereScape RED. Features of cubes that are not supported in
WhereScape RED can be added to the cube via the Microsoft tools. These altered cubes can still
be processed through the WhereScape RED scheduler, and the cube should be documented within
WhereScape RED to explain the post creation phases required.

As a general rule, once a cube or a component of a cube is created on the Analysis Services server
it cannot be altered through WhereScape RED. The OLAP object can be dropped and recreated
easily using RED. New OLAP objects defined in RED (e.g. additional calculations or measures) can
be added by recreating the cube.

WhereScape RED supports cubes in Microsoft SQL Server Analysis Services versions 2005 and
2008.

533

OLAP Defining the Data Source for the OLAP Cube
Before we can create an OLAP cube, we first need to set up the data warehouse to be used as a
source for Analysis Services cubes.
On the Datawarehouse Properties screen, the fields in the section When Connection is an
OLAP Data Source are required.

MSAS Connection String

Connection string to be used by Microsoft Analysis Services (MSAS) to connect to the data
warehouse.

Note: A connection string is typically composed of multiple property name/value pairs that are
semi-colon delimited.

Connection Provider/Driver

Name of the Connection Provider/Driver to use to connect to the data warehouse database when
it is used as the data source for OLAP cubes. Set to TDOLEDB.

534

Data Warehouse Server

Data Warehouse Server Name, which is used when the data warehouse is used as the data source
for OLAP cubes. Set this to the Teradata TDPID.

Data Warehouse Database ID

Data Warehouse Database Identifier (e.g. Oracle SID or TNS Name, Teradata TDPID) or Database
Name (e.g. as in DB2 or SQL Server), which is used when the data warehouse is used as the data
source for OLAP cubes.

535

OLAP Defining an OLAP Cube
OLAP Cubes can be created from fact views. A single cube can contain date from multiple source
star schemas, each defined with a measure group. An OLAP Cube consists of many parts namely,
measure groups, measures, calculations, actions, dimensions, dimension hierarchies, dimension
attributes and dimension attribute relationships. It is strongly recommended that drag and drop
is used to create an OLAP Cube in order that all the components are set up correctly. OLAP Cubes
can utilize a hierarchical structure in the dimensions to facilitate user queries. Therefore, each
dimension present in an OLAP Cube should have either a hierarchy of levels or attributes and
relationships. The hierarchies are defined against the underlying dimensional attributes which
can be inherited from the source dimension metadata. Individual attributes can be added to the
dimension after the OLAP Cube or OLAP Dimension metadata has been created.

Note: Analysis Services does not like name as a column name. For dim_customer it will therefore
be necessary to change the column name from name to cname for example.

Building a New OLAP Cube
To create an OLAP Cube proceed as follows:

1 Double click on the OLAP Cube object group to make the middle pane a cube drop target.

2 Select the data warehouse connection to browse in the source pane. The connection can be
selected by right-clicking the Data Warehouse connection in the Object pane and choosing
Browse Source System.

3 Drag a fact view from the source pane into the target pane.

4 Set the cube name in the Create new metadata Object dialog box and click ADD.

536

5 A dialog box will prompt for any OLAP Dimensions that do not already exist that are required
for this cube (based on the fact view metadata). Set the dimension name in the Add a new
metadata Object dialog box and click ADD. Repeat this for each dimension as required.

Note: If you wish to include Attribute Relationships in Analysis Services for this dimension,
click on the Include Attribute Relationships checkbox.

6 A dialog appears, prompting you to select the attributes to be included in the Customer OLAP

dimension.

The attributes available for selection are in the left column. To select an attribute, click on
the attribute in the left column and click >. This will move the attribute to the right column.
To de-select an attribute, click on the attribute in the right column and click <. This will move
the attribute to the left column.

537

Repeat Step 5 for each dimension as required.

7 A dialog will appear with a list of the fields that are to be added as measures. Remove any
columns that are not measures. A measure is a column that uses the sum, count, min or max
of the column. Calculations can be chosen if required at this point. A date dimension must be
present along with a hierarchy to allow the definition of these calculated members.

8 During cube creation the Adding Cube Measures dialog is shown. In this dialog the
following options are provided:

• Measure, provides a list of measures that can be aggregated (e.g. using Sum, Count, Min,
Max or Distinct Count). By default WhereScape RED will show all attributes in the fact
view that are defined as numeric and additive. Those attributes that should not be
considered measures can be removed using the Remove button.

• Calculated Member options will allow the user to add some predefined date based
calculated member definitions to be built against the cube. The standard calculations:

Month to date

Year to date

Moving Quarter
Moving Year

538

Same Month Previous Year

Previous Year to date

These will define a calculated measures based on the associated drop-down boxes. There
are 2 different ways that WhereScape RED will implement these calculations which is
dictated by the Use OLAP functions checkbox:
Using OLAP Functions - will implement the calculations using MDX Expressions within
the cube using date based MDX functions. These calculations are efficiently executed by
Analysis Services.

Without using OLAP functions - will implement the calculations using an MDX Filter
function built over date dimension attributes. This option leverages the flags from the
relational date dimension and ensures that a query using the calculations in the Cube will
match an equivalent query against the star schema and is particularly useful if non-
standard date periods are used.

9 The cube and dimensions will be created in WhereScape RED metadata and the cube
measures will be displayed.

Setting Cube Properties
The properties of the cube must be completed before we can create the cube in the Analysis
services database. Most of the elements in the properties screen will be defaulted, but each of the
following columns will probably need to be completed.

1 The Connection to the Analysis services server must be defined within the cube properties.
This connection is a connection object. If no such connection exists then a new connection of
type must be created and configured. SQL Server 2005 or 2008 Analysis Services use a
connection type of "Analysis Server 2005+". This connection name must then be chosen in
the cubes properties.

2 A Cube Database Name must be selected. A new database name can be created by selecting
(Define New Cube Database...) from the drop-down list. This database name is the database
that the cubes will reside in on the Analysis services server.

3 The Data Source Connection must be defined and the three derived values shown under this
connection must be present. If there is nothing in the three fields below the data source
connection then the connection object will need to be modified.

539

OLAP Inspecting and Modifying Advanced Cube Properties
Now that the basic OLAP Cube has been defined, various properties of the OLAP Cube can be
inspected or modified:

Measure Groups
1 Display the Measure Groups by right-clicking on the cube name and selecting Display

Measure Groups.

2 Change the Measure Group properties by right-clicking on the measure group and selecting
Properties.

Measures
1 Display all of the Measures associated with a cube by right-clicking on the cube name and

selecting Display Measures.

2 Change the measure properties by right-clicking on the measure name and selecting
Properties.

Calculations
1 Display all of the Calculated members defined on the cube by right-clicking on the cube name

and selecting Display Calculations.
2 Change the Calculated members by right-clicking on a calculation and selecting Properties.

KPIs
1 Display all of the KPIs defined on the cube by right-clicking on the cube name and selecting

Display KPIs.

2 Change the KPIs by right-clicking on the KPI name and selecting Properties.

Actions
1 Display all of the Actions defined on the cube by right-clicking on the cube name and

selecting Display Actions.

2 Actions can be changed by right-clicking on the Action name and selecting Properties.

Partitions
1 Display all of the Partitions defined on the Measure Groups that are associated with the cube

by right-clicking on the cube name and selecting Display Partitions.

2 Change Partitions by right-clicking on the Partition name and selecting Properties.

Dimensions
1 Display all of the OLAP Dimensions associated with the cube by right-clicking on the cube

name and selecting Display Dimensions.
2 Change the customizable OLAP Dimension properties by right-clicking on the OLAP

Dimension name and selecting Properties.

540

Measure Group Dimensions
1 Display the relationship of OLAP Dimensions to Measure Groups defined against the cube by

right-clicking on the cube name and selecting Display Measure Group Dimensions.

2 Change the customizable properties of the relationship of the OLAP Dimension to Measure
Group by right-clicking on the OLAP Dimension name and selecting Properties.

OLAP Creating an OLAP Cube on the Analysis Services Server
If all the tasks above are completed, then it should be possible to create the cube on the Analysis
Services server. When positioned on the OLAP Cube name, right-click and select Create (Alter)
Cube. WhereScape RED checks that key components of the cube are correct before it proceeds to
issue the create command.

The create cube menu option performs the following tasks on the Analysis Services server:

• Create an Analysis Services database if the name specified is not already present.
• Create a Data Source with connection information back to the data warehouse based on the

cube source information in the Data Warehouse connection.
• Create a Data Source View to support the cube objects defined
• Create the dimensions used by the cube as database shared dimensions if they do not already

exist.
• Create the cube if it does not exist
• Create a partition for the cube.

541

OLAP Cube Objects

OLAP Cube Properties
The properties associated with a cube are described below. These properties relate both to the
cube environment and the cube itself.
There are seven tabs in the cube properties screen.
The first is the main properties, the second the processing and partitioning options and the rest
are for documentation stored in the WhereScape RED metadata and displayed in the generated
WhereScape RED documentation. In order to see the cube properties, right-click on the cube and
select Properties.

Internal Cube Name

This is the name by which the cube is known within WhereScape RED. This name is limited to 64
characters in length and may contain only alphanumeric characters and underscores.

542

Cube Publish Name

This is the name that the cube will have in the Analysis Services server. It is not constrained in its
content except by the limitations imposed by Analysis Services.

Cube Description

A description of the cube. This is used both in the WhereScape RED documentation and is also
stored against the cube in Analysis Services.

Cube Database Connection

This field allows the selection of one of the existing connections defined within WhereScape
RED. The connection must be of type 'Microsoft Analysis Server 2005+'. If no such connection
exists, then a new connection object must be created. This connection object is used to point to
the Analysis Services server.

Cube Database Name

An Analysis Services server must have databases associated with it. Each database can contain
one or more cubes, dimensions, data sources etc. Select the name of an existing database on the
server from the drop-down list. To create a new Database name, select '(Define New Cube
Database)' from the drop-down list and the dialog that follows will allow you to register the name
within the WhereScape RED metadata. Once registered, the name can then be selected as the
database.

Data Source Connection

In Analysis Services the data source is the location of the data to be used to build the cube. It also
defines the path for any drill through operations. This field provides a drop-down of the existing
connections. The Data Warehouse connection must be chosen.

Data Source Provider Type

This field essentially defines what type of database the Data Warehouse is. This field is a read
only field in the properties screen. Its value is set in the properties of the data source connection.

Data Source Server

The data source server is also a read only field being sourced from the properties of the data
source connection. For SQL Server, it defines the server on which the data warehouse database
runs.

Data Source Database

The data source database is also a read only field being sourced from the properties of the data
source connection. For SQL Server, it defines the database in which the data warehouse runs.

Post Create XML/A Script

This is an XML/A script that is run on the cube database when the cube is created. This script
allows Analysis Services features to be added to the cube or cube database that have been built
outside of WhereScape RED—for example security roles that has been defined for the cube can be
recreated from the script when the cube is created (or recreated).

543

Post Update XML/A Script

This is an XML/A script that is run on the cube database when the cube is updated or processed
via the scheduler. This script allows Analysis Services features to be added to the cube or cube
database that have been built outside of WhereScape RED—for example security roles that has
been defined for the cube can be recreated from the script when the cube is updated or processed.

Processing Mode

Gets or sets the index and aggregation settings for cube processing. The value indicates whether
processed data is available after all required data aggregation has been completed (Regular) or
immediately after the data has been loaded (Lazy Aggregations). This setting will be used as the
default for new measure groups and partitions created for the cube.

Processing Priority

Gets or sets the processing priority for the cube.

Partition Processing Mode

This option determines how partitions are updated when a cube is updated.

All Partitions - Sequential will update each cube partition sequentially.
All Partitions - Parallel will have all the cube partitions updated in parallel.
Measure Group Partitions - Parallel will process each measure group sequentially with all
partitions of that same measure group being updated in parallel.

Process Cube Dimensions

Will determine whether to process the OLAP Dimensions related to the cube as part of the
processing of the cube. The options are to process the enabled dimensions only, to process no
dimensions, or to process all the dimensions.
Processing of specific Dimensions with the Cube can be enabled or disabled on the Process Cube
Dimension With Cube checkbox of each Dimension's Properties screen. See OLAP Cube
Dimensions.

Process Selected Cube Dimensions in Parallel

Selecting this check-box will allow for all dimensions within the cube to be updated in parallel
instead of being updated sequentially.

Storage Mode

This field allows two options; MOLAP - Multidimensional OLAP or ROLAP.- Relational OLAP. At
the cube properties level, setting this field will determine the defaults for the Storage Mode field
on its related Measure Groups and partitions.

544

Default Measure

Specifies the measure used to resolve MDX expressions if a measure is not explicitly referenced in
the expression. If no default measure is specified an arbitrary measure is used as the default
measure.

Estimated Rows

Specifies the estimated number of rows in the fact views. Enter the size of the fact view if known,
otherwise leave as zero.

Visible

Indicates whether the cube is visible to client applications.

ROLAP stands for Relational Online Analytical Processing.

ROLAP is an alternative to the MOLAP (Multidimensional OLAP) technology. While both ROLAP
and MOLAP analytic tools are designed to allow analysis of data through the use of a
multidimensional data model, ROLAP differs significantly in that it does not require the pre-
computation and storage of information. Instead, ROLAP tools access the data in a relational
database and generate SQL queries to calculate information at the appropriate level when an end
user requests it. With ROLAP, it is possible to create additional database tables (summary tables
or aggregations) which summarize the data at any desired combination of dimensions.

While ROLAP uses a relational database source, generally the database must be carefully
designed for ROLAP use. A database which was designed for OLTP will not function well as a
ROLAP database. Therefore, ROLAP still involves creating an additional copy of the data.
However, since it is a database, a variety of technologies can be used to populate the database.

545

Language Mapping

The OLAP Cube Properties screen has a tab called Language Mapping.

Select the language from the drop-down list and then enter the translations for the Cube Publish
Name and the Cube Description in the chosen language.

See Language Settings (see "Settings - Language Options" on page 140) for more details on
how to add languages for translation.

546

OLAP Cube Measure Groups
A cube can contain multiple measure groups. In WhereScape RED each measure group can belong
to a single cube, and each measure group relates to a single star schema. The Measure Groups
Cube processing is defined on the Processing a tab of the Measure Group Properties.

The Measure Group's Properties are shown by right-clicking on the Measure Group and choosing
Properties. The Measure Group Properties associated with cubes are described below.

Measure Group Name

Specifies the name of the Measure Group in Analysis Services

Measure Group Description

Specifies the Metadata description of the Measure Group. This description is stored in Analysis
Services and is also used in the WhereScape RED auto-generated documentation.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current Measure Group
to the previous and next Measure Group respectively for the current OLAP cube. The alternative
is to exit the Measure Group and choose the next Measure Group Properties screen.

Source Table Type

Specifies the type of table from which the Measure Group has been built in WhereScape RED.

547

Source Table

Specifies the table from which the Measure Group has been built and populated in WhereScape
RED.

Estimated Rows

Specifies the estimated number of rows in the source table. If it is unknown then leave this value
as 0.

Storage Mode

This field allows two options; MOLAP - Multidimensional OLAP or ROLAP.- Relational OLAP.
The default value is inherited from the value set at the Cube level. Again, setting this field at the
Measure Group level will determine the default for the Storage Mode field on the related
Partitions.

Ignore Unrelated Dimensions

Indicates whether dimensions that are unrelated to the Measure Group are forced to their top
level when their members are included in a query.

Measure Group Type

Specifies the type of information the Measure Group contains. In some cases this enables specific
treatment by the server and client applications.

Processing Mode

Indicates whether processed data is available after all the aggregations have been computed
(Regular) or immediately after the data has been loaded (Lazy Aggregations).

Processing Priority

Specifies the priority for processing the measure group.

548

OLAP Cube Measure Group Processing/Partitions
Partitions define separately manageable data slices of the measure group data. Partitions can be
created, processed and deleted independently within a Measure Group. Each Measure Group
needs at least one partition to be defined to allow the Measure Group to be processed.

Partitions are managed through the Processing/Partitions tab of the Measure Group's
Properties within WhereScape RED.

Process Method

The processing or updating method of a Measure Group is an area that requires careful
consideration. The default option is 'Full process' which will result in the Measure Group being
rebuilt. This is in many ways the safest option, but processing time may mean other options must
be chosen. The valid options are:

The following describes the processing methods that are available in Analysis Services for
Measure Groups:

• Default Process

Detects the process state of the measure group, and performs processing necessary to deliver
a fully processed state.

• Full Process
Processes an Analysis Services Measure Group regardless of state. When Process Full is
executed against a Measure Group that has already been processed, Analysis Services drops
all data, and then processes it.

549

• Incremental Process
Adds newly available fact data and process only to the relevant partitions. In order to use this
option you must set the 'incremental filter' field with a statement that will result in only new
data being selected. Failure to do so will result in duplicated data in the cube. In many data
warehouses transactional data undergoes changes as well as the addition of new data, and so
the incremental update option is not possible. A validation regime should be put in place to
compare cube data to the transactional data if incremental is used. This validation regime
should be used to notify the administrator in the event that duplicate data is inserted into the
cube.

• Update Data

Processes data only without building aggregations or indexes. If there is data in the
partitions, it will be dropped before re-populating the partition with source data. This
processing option is supported for dimensions, cubes, measure groups, and partitions.

• Build Structure
If the cube is unprocessed, Analysis Services will process, if it is necessary, all the cube's
dimensions. After that, Analysis Services will create only cube definitions. The build structure
option just builds the cube structure without populating it. This can be useful if you have a
very large cube and want to validate the design.

Increment Filter

If an incremental processing option is chosen then a filter statement must be selected to only
return those rows that are to be added to the Measure Group. As mentioned above, care must be
taken when using incremental updates. For example, if the Measure Group is accidentally
processed twice and the filter is based on date, then duplicate data will be inserted into the
Measure Group without any warning.

Partitioning

Partitioning is useful for handling large datasets where it is impractical to reprocess the entire
Measure Group. In such a case the full process option would probably be chosen but only selected
partitions would be processed. See the section on partitioning for more information. The default
process will perform a full process on the first pass followed by incremental updates on
subsequent processing runs. Care should be taken when choosing default for the cube.

Partitioning Method

Three options are provided for handling Measure Group partitions. They are:

1 One partition only

When this option is selected the partition information for the Measure Group is ignored and
one partition is created and processed for the Measure Group. This would be the normal
situation unless performance issues require an alternate strategy.

2 Manually managed multiple partitions
With this option the partition information stored for the Measure Group is used in the
creation and processing of the Measure Group.

3 Automatic partition handling

This option is available if the Measure Group is to be partitioned by one numeric value. The
partitioning should preferably be on something like day, month or year. (i.e. YYYY, YYYYMM
or YYYYDDD). If this option is chosen together with one of the date formats described above,

550

then WhereScape RED will automatically create partitions as required and process only those
partitions that are marked for processing.

Partition by Dimension

This field is only available if automatic partition handling is chosen. Select the dimension in the
Measure Group that we will partition by. This would normally be a date dimension.

Partition by Attribute

This field is only available if automatic partition handling is chosen. Select the attribute that we
are to partition by. This would normally be a year or maybe a month level. (e.g. cal_year, fin_year
from the WhereScape date dimension).

Partition by Value Type

This field is only available if automatic partition handling is chosen. Select the type of level we
are dealing with. Choose YYYY for a year partition and YYYYMM for a month partition. This
format must correspond with the column in the date dimension. WhereScape RED only supports
partitioning by Year, Quarter, month or day.

Fact Partition Lookup Clause

This field is only available if automatic partition handling is chosen. In order to know when to
create a new partition WhereScape RED executes a query against the fact view and the date
dimension to acquire each unique period. When dealing with a large fact view, such a query may
take a long time to complete. This field can be used to include the components of the 'Where'
clause to restrict the amount of data examined. For example we may enter 'dss_update_time <
GETDATE()-14' to only look at fact view records that have been inserted or updated in the last 14
days. This should still allow us to catch any new partitions and add them. The first time a cube is
converted to auto partitioning handling, a full pass of the fact view should occur to allow
inclusion of every partition. This field should therefore only be populated once the cube has been
initially built with all partitions intact.

Max Number of Auto Created Partitions

This field is only available if automatic partition handling is chosen. You can specify an upper
limit for automatically created partitions. The default is zero, or no limit. This limit may be useful
if your source system can get erroneous data. If set, then the processing of the Measure Group
will fail if a new partition will exceed the counter.

Number of Historic Partitions Updated

This field is only available if automatic partition handling is chosen. This field allows you to
restrict the partition updating to the latest nnn partitions. If for example, we were partitioning by
year and we set this value to 2, we would process the current and previous years only.
WhereScape RED turns off partition processing after it does a partition update, so the first pass
will still update all partitions.

To Display Measure Groups

To display a list of measure groups defined against a cube, right-click on a cube and select
Display Measure Groups.

551

To Add a Measure Group

To add a measure group, display the measure groups in the middle pane and either:

• Drag over a new fact view into the target pane - this will automatically create a new measure
group in the cube. Any additional dimensions required to support analysis of the Measure
Group will be added to the cube.

• Right-click on the cube in the object pane and select Add Measure Group and fill in the
Measure Group properties.

To Delete a Measure Group

To delete a measure group, display the measure groups in the middle pane and right-click, select
delete measure group.

Displaying Measures

Measures can be displayed or added while viewing measure groups in the middle pane. Right-
click on a measure group and select the appropriate option.

Displaying Partitions

Partitions can be displayed or added while viewing measure groups in the middle pane. Right-
click on a measure group and select the appropriate option.

552

OLAP Cube Measure Group Partitions
The Measure Group Partition's properties are shown by right-clicking on the Measure Group
Partition and selecting Properties. The partition's properties associated with a measure group
are described below.

Cube Name

The name of the cube that the partition belongs to.

Data Source

The data source for the partitions. This will be inherited form the cube and cannot be changed.
You cannot have partitions with different data sources or different fact tables in WhereScape
RED. If you need to support either scenario then the partition must be created directly within
Analysis Services. In such a case it can still be managed in terms of processing through
WhereScape RED.

553

Fact Table

The fact table from which the data is derived. This is inherited from the cube and cannot be
changed. See the notes above under data source.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current Measure Group
Partition to the previous and next Measure Group Partition respectively for the current Measure
Group. The alternative is to exit the Measure Group Partition and choose the next Measure Group
Partition Properties screen.

Partition Name

Where only one partition exists it is normally given the same name as the cube. If manually
creating then a unique name must be assigned for each partition. If auto partitioning is chosen
then WhereScape RED will use the cube name plus the level value to make the partition name.

Partition Description

A description of the partition for documentation purposes.

Data Slice Formula

This field defines the range of data stored in the partition. It is a very simplified version of what
can be done in Analysis Services. If a more complex partitioning algorithm is required then the
partition will need to be created in Analysis Services. The format for the formula is as follows:

The brackets must surround each name and a full stop must separate the three parts of the
formula. For example a cube that is partitioned by year on its date dimension would have the
following formula for the 2003 year. [dim_date].[cal_year].[2003]

Aggregation Prefix

By default any cube aggregation will be prefixed with the partition name. An alternate name can
be entered here. See Analysis Services for more details.

Filter Statement

Not implemented.

Storage Mode

This field allows two options; MOLAP - Multidimensional OLAP or ROLAP.- Relational OLAP.
This determines how the OLAP cube is processed. The default value is inherited from the value
set at the Measure Group level.

Partition Type

The partition can be either Local or Remote. Local means that the partition resides on the same
Analysis Services server as the cube. If Remote is chosen, then a server must be specified where
the partition will be located.

Remote Server

If a Remote partition is chosen, then the name of the remote Analysis Services server must be
entered here.

554

Processing Method

A partition is either enabled for processing or disabled. This field can be set to Always process or
Never process. If left as default and in automatic mode then WhereScape RED will disable the
processing once the partition has been aged out.

OLAP Cube Measures
Measures represent the numeric attributes of a fact table that are aggregated using an OLAP
aggregate function defined against each Measure. Each Measure is defined against a Measure
Group, which is defined against a cube. The properties of a measure are shown by right-clicking
on a Measure and choosing Properties. In more detail:

Cube Name

A Read Only field that indicates against which OLAP Cube the measure is defined.

Measure Name

Specifies the Analysis Services name defined for the measure.

Measure Group

Specifies against which Measure Group the Measure is defined. This is related to the fact view of
which the Measure is an attribute.

555

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current Measure to the
previous and next Measure respectively for the current OLAP Cube Measure Group. The
alternative is to exit the Measure and choose the next Measure Properties screen.

Fact Table

A read only field that indicates the fact view that is related to the Measure Group.

Source Column

Specifies from which numeric attribute of the underlying fact view the Measure is built. This is a
drop-down list populated from REDs metadata definition of the fact view associated with the
Measure Group above.

Data Type

Specifies the data type used by Analysis Services. The data type specified for this property is
inherited from the fact view attribute defined in WhereScape RED metadata but can be different
(typically a larger data type is used in the cube to cope with the larger numbers generated by
aggregating the source data).

Aggregation Method

Specifies the OLAP function used to aggregate measure values. The default options are:

• Sum
• Count
• Distinct Count - only one distinct count is allowed per Measure Group and can have query

performance implications.
• Min - Minimum
• Max - Maximum

Display Format

Specifies the format used by clients when displaying the measure value.

Null Processing

Specifies the processing null values. Setting this property to Automatic means that Analysis
Services uses default behavior.

Order Number

The order in which the measures appear in the cube is dictated by their order number.

Visible

Measures are normally visible, but some measures used in calculations may be hidden. In such a
case clear this checkbox.

Display Folder

Cube Measures can be organized into user-defined folders to view and manage these attributes
within the Analysis Services user interface more easily. Enter the display folder name.

556

Note: One object can be in multiple display folders, for example:

Description

A description of the measure which is stored in the cube. This description will by default be
acquired from the source column.

To View measures

The measures can be viewed by clicking on an OLAP Cube in the left pane which will display the
measures in the middle pane.

To Add a New Measure

To add a new measure, view the measures in the middle pane, right-click in the middle pane and
select add measure. This can also be done when viewing measure groups in the middle pane.
Alternatively to create measure which is very similar to an existing measure, view the measures
in the middle pane and right-click, select Copy Measure. The same dialog box appears as for Add
Measure with most of the fields filled in. Notice that the measure name has the suffix "- Copy".
Change the name in the Measure Name field and make any other alterations and click OK.

To Delete a measure

Display the measures in the middle pane, select the measure to delete, right-click and select
Delete.

557

OLAP Cube Calculations
Calculations provide the ability to define the derivation of a value at query time within a cube.
The calculation is most typically a numeric derivation based on measures, but can be defined
against any dimension. The calculation is defined in MDX (Multi-Dimensional eXpressions). The
definition of a Calculation is shown by right-clicking a Calculation and choosing Properties.
The following Cube Calculated Member Definition dialog is shown:

Cube Name

A Read Only field that indicates against which OLAP Cube the Calculation is defined.

Calculated Member Name

Specifies the Analysis Services name defined for the Calculation.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current Calculation to
the previous and next Calculation respectively for the current OLAP Cube. The alternative is to
exit the Calculation and choose the next Calculation Properties screen.

Description

A business description of the Calculation that is used to populate WhereScape RED
documentation.

558

Expression

Specifies the MDX expression that defines the calculation.

Parent Hierarchy

Specifies where the calculation is displayed for use. By default and in most cases, this will be
'Measures'. This means that the calculated member will be displayed to the end user of the cube
as a measure, otherwise known as a calculated measure. Alternatively, you can include the
calculated member in a dimension instead of in the measures. Hierarchies are descriptive
categories of a dimension by which the measures in a cube can be separated for analysis. A
calculated member provides a new label in the parent dimension you select.

Parent Member

This is not available if you select Measures as your parent hierarchy, or if you select a one-level
hierarchy. Hierarchies are divided into levels that contain members. Each member produces a
heading in the cube. While browsing a cube, users can drill down to subordinate headings. The
heading for the calculated member will be added directly below the selected Parent Member.

Associated Measure Group

Specifies against which Measure Group the Measure is defined. This is related to the fact view of
which the Measure is an attribute.

Note: SSAS 2008+ uses the property Associated Measure Group but previous versions of SSAS
do not and can result in errors when creating the cube. It is possible to set this attribute in RED to
(Undefined) for previous versions of RED, but this is not necessary for the current version of RED
as this attribute will only be used when appropriate.

Display Folder

Cube Calculations can be organized into user-defined folders to view and manage these attributes
within the Analysis Services user interface more easily. Enter the display folder name.

Note: One object can be in multiple display folders, for example:

Display Format

Specifies the format used by clients when displaying the measure value.

Visible

Specifies whether the calculation is visible to client tools.

Non Empty Behavior

Determines the non-empty behavior associated with the calculation

Order Number

The create order of the member in the dimension hierarchy.

559

To View Calculations

To view the list of calculations (sometimes called a calculated measure), right-click on an OLAP
Cube in the left pane and select Display Calculations.

To Add a Calculation
1 To add a calculation, right-click on an OLAP Cube in the left pane, select Add Calculation

and then choose between:

• Add Calculated Member

• Add Named Set

• Add Script

This can also be achieved by displaying calculations in the middle pane, right-clicking and
selecting Add Calculated Member, Add Named Set or Add Script. Fill out the dialog box
with the relevant details.

2 To create a calculation that is similar to an existing calculation, display the calculations in
the middle pane and select Copy Calculation. The same dialog box appears as for Add
Calculation with most of the fields filled in. Notice that the calculated member name has the
suffix "- Copy". Change the name in the Measure Name field and make any other alterations
and click OK.

To Delete a calculation

Display the calculations in the middle pane, select the calculation to delete, right-click and select
Delete.

560

OLAP Cube Key Performance Indicators
In Analysis Services, a KPI is a collection of calculations that are associated with a measure group
in a cube that are used to evaluate business success. Typically, these calculations are a
combination of Multidimensional Expressions (MDX) expressions or calculated members. KPIs
also have additional metadata that provides information about how client applications should
display the results of the KPI's calculations. The definition of a Calculation is shown by right-
clicking a Calculation and choosing Properties. The following Cube KPI Definition dialog is
shown below:

Cube Name

A Read Only field that indicates against which OLAP Cube the KPI is defined.

KPI Name

Specifies the name of the KPI defined in Analysis Services.

Description

A business description of the KPI that is used to populate WhereScape RED documentation.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current KPI to the
previous and next KPI respectively for the current OLAP Cube. The alternative is to exit the KPI
and choose the next KPI Properties screen.

561

Display Folder

KPIs can be organized into user-defined folders to view and manage these attributes within the
Analysis Services user interface more easily. Enter the display folder name.

Note: One object can be in multiple display folders, for example:

Associated Measure Group

Specifies the Measure Group against which the KPI is defined.

Value Expression

An MDX numeric expression that returns the actual value of the KPI.

Goal Expression

An MDX numeric expression or a calculation that returns the target value of the KPI.

Status Expression

An MDX expression that represents the state of the KPI at a specified point in time.

The status MDX expression should return a normalized value between -1 and 1. Values equal to
or less than -1 will be interpreted as "bad" or "low." A value of zero (0) is interpreted as
"acceptable" or "medium." Values equal to or greater than 1 will be interpreted as "good" or
"high."

An unlimited number of intermediate values can optionally be returned and can be used to
display any number of additional states, if supported by the client application.

Status Indicator

A visual element that provides a quick indication of the status for a KPI. The display of the
element is determined by the value of the MDX expression that evaluates status.

Trend Indicator

A visual element that provides a quick indication of the trend for a KPI. The display of the
element is determined by the value of the MDX expression that evaluates trend.

Trend Expression

An MDX expression that evaluates the value of the KPI over time. The trend can be any time-
based criterion that is useful in a specific business context.

The trend MDX expression enables a business user to determine whether the KPI is improving
over time or degrading over time.

Display Folder

The folder in which the KPI will appear when a user is browsing the cube.

562

Parent KPI

A reference to an existing KPI that uses the value of the child KPI as part of computation of the
parent KPI. Sometimes, a single KPI will be a computation that consists of the values for other
KPIs. This property facilitates the correct display of the child KPIs underneath the parent KPI in
client applications.

Current Time Member

An MDX expression that returns the member that identifies the temporal context of the KPI.

Weight

An MDX numeric expression that assigns a relative importance to a KPI. If the KPI is assigned to
a parent KPI, the weight is used to proportionally adjust the results of the child KPI value when
calculating the value of the parent KPI.

To View KPIs

To view the list of KPIs, right-click on an OLAP Cube in the left pane and select Display KPIs.

To Add a KPI
1 To add a calculation, right-click on an OLAP Cube in the left pane and select Add KPI. This

can also be achieved by displaying KPIs in the middle pane, right-clicking and selecting Add
KPI. Fill out the dialog box with the relevant details.

2 To create a KPI that is similar to an existing KPI, display the KPIs in the middle pane and
select Copy KPI. The same dialog box appears as for Add KPI with most of the fields filled in.
Notice that the KPI name has the suffix "- Copy". Change the name in the KPI Name field and
make any other alterations and click OK.

To Delete a KPI

Display the KPIs in the middle pane, select the KPI to delete, right-click and select Delete.

563

OLAP Cube Actions
An action provides information to a client application to allow an action to occur based on the
property of a clicked dimensional member. Actions can be of different types and they have to be
created accordingly. To view the definition of an Action, right-click on the Action and select
Properties. The following Cube Action Definition will be shown:

Cube Name

A Read Only field that indicates against which OLAP Cube the Calculation is defined.

Action Type

Actions can be of the following types:

• Drill through actions which return the set of rows that represents the underlying data of the
selected cells of the cube where the action occurs. When this option is chosen an additional
tab is enabled that allows drill through columns to be chosen.

• Reporting actions which return a report from Reporting Services that is associated with the
selected section of the cube where the action occurs.

• Standard actions (Action), which return the action element (URL, HTML, DataSet, RowSet,
and other elements) that is associated with the selected section of the cube where the action
occurs.

The action type chosen determines which action specific fields are enabled within the dialog.

564

Action Name

Defines the name of the Action in the Cube.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current Action to the
previous and next Action respectively for the current OLAP Cube. The alternative is to exit the
Action and choose the next Action Properties screen.

Target Type

Select the object to which the action is attached. Generally, in client applications, the action is
displayed when end users select the target object; however, the client application determines
which end-user operation displays actions. For Target type, select from the following objects:

• Attribute members
• Cells
• Cube
• Dimension members
• Hierarchy
• Hierarchy members
• Level
• Level members

Target Object:

The cube object of the designated target type against which the action is defined.

Condition

Specify an optional Multidimensional Expressions (MDX) expression that resolves to a Boolean
value. If the value is True, the action is performed on the specified target. If the value is False, the
action is not performed.

Report Action: Server

The name of the computer running report server.

Report Action: Report Path

The path exposed by report server.

565

Format/Content Type

Select the type of action. The following table summarizes the available types.

• Data Set - Retrieves a dataset
• Proprietary - Performs an operation by using an interface other than those listed in this table.
• Row Set - Retrieves a rowset.
• Statement - Runs an OLE DB command.
• URL - Displays a page in an Internet Browser.

Expression

Specifies the parameters that are passed when the action is run. The syntax must evaluate to a
string, and you must include an expression written in MDX. MDX expressions are evaluated
before the parameters are passed.

Default

An additional true/false drop list is enabled for Drill through actions. This gets or sets the current
DrillThroughAction as the default action when multiple drill through actions are defined. This is
important for users of Excell 2007 to browse the Olap Cube because Excell will only invoke the
Drill through Action marked as the default.

Invocation

Specifies how the action is run. Interactive, the default, specifies that the action is run when a
user accesses an object. The possible settings are:

• Batch
• Interactive
• On Open

Application

Describes the application of the action.

Description

Describes the action.

Caption

Provides a caption that is displayed for the action.

Caption is MDX

If the caption is MDX, specify True, if not specify False.

To View Actions

To view the list of Actions, right-click on an OLAP Cube in the left pane and select Display
Actions.

566

To Add an Action
1 To add an Action, right-click on an OLAP Cube in the left pane and select Add Action. This

can also be achieved by displaying Actions in the middle pane, right-clicking and selecting
Add Action. Fill out the dialog box with the relevant details.

2 To create an Action that is similar to an existing Action, display the Actions in the middle
pane and select Copy Action. The same dialog box appears as for Add Action with most of
the fields filled in. Notice that the Action name has the suffix "- Copy". Change the name in
the Action Name field and make any other alterations and click OK.

To Delete an Action

Display the Actions in the middle pane, select the Action to delete, right-click and select Delete.

567

OLAP Cube Dimensions
OLAP Dimensions are associated automatically with a cube when a cube is created in WhereScape
RED based on the underlying star schema. OLAP Dimensions that are associated with a cube can
be displayed, or additional OLAP Dimensions can be manually added from the list of OLAP
Dimensions defined in WhereScape RED.

Once an OLAP Dimension is associated with a cube a relationship is created with the relevant
Measure Groups within the cube - these relationships are defined automatically with WhereScape
RED, and they can also be added. The properties of an OLAP Dimension associated with a cube
are shown by right-clicking the cube Dimensions listed in the middle pane and selecting
Properties from the right-click menu. The Properties are shown below:

Internal Dimension Name

A read only field displaying the name of the OLAP Dimension in WhereScape RED.

OLAP Dimension Name

Specifies the name of the OLAP Dimension as a Dimension in Analysis Services.

568

Cube Dimension Name

Specifies the exposed name of the Dimension when associated with a cube (this can be different
from the OLAP Dimension Name).

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current OLAP
Dimension to the previous and next OLAP Dimension respectively for the current OLAP Cube.
The alternative is to exit the OLAP Dimension and choose the next OLAP Dimension Properties
screen.

Dimension Description

A description of the dimension when associated with the cube.

Order Number

The order number.

Process Cube Dimension With Cube

Using this checkbox you can enable the dimension to be processed with the OLAP Cube.

Visible

Determines whether or not the dimension is visible to client applications.

All Member Aggregation Usage

Specifies how aggregations will be designed by the BIDS Storage Design Wizard if it is used to
design cube aggregations.

Hierarchy Unique Name Style

Indicates whether the dimension name will be included in the name of the hierarchies. If set to
Default then the system will apply a default behavior and will include the dimension name in the
case where there is more than one usage of the same dimension.

569

Member Unique Name Style

Indicates how member unique names will be formed.

Other Read only fields that are displayed in this dialog are configurable against the OLAP
Dimensions' properties and cannot be changed in this dialog, including:

• Source Table Type
• Source Table
• Source Table Key
• Processing Mode
• All caption
• OLAP Dimension Type
• Unknown Member Action
• Unknown Member Name

To View Cube Dimensions

To view the list of Dimensions associated with a cube, right-click on an OLAP Cube in the left
pane and select Display Dimensions.

To Add a Cube Dimension

To add an existing OLAP Dimension, right-click on an OLAP Cube in the left pane and select Add
Dimension. This can also be achieved by displaying Dimensions in the middle pane, right-
clicking and selecting Add Dimension. Fill out the dialog box with the relevant details.

To Remove a Cube Dimension

Display the Cube Dimensions in the middle pane, select the Dimension to remove, right-click and
select Remove Dimension from Cube. This action removes the association of the OLAP
Dimension from the OLAP Cube.

570

OLAP Cube Measure Group Dimensions
Measure group dimensions are the relationships between cube Measure Groups and OLAP
Dimensions. In WhereScape RED this equates to the relationships between fact views and
dimensions in the underlying star schema.

The Properties are shown below:

Internal Dimension Name

A read only field displaying the name of the OLAP Dimension in WhereScape RED.

OLAP Dimension Name

A ready only field displaying the name of the OLAP Dimension as a Dimension in Analysis
Services.

Cube Dimension Name

A read only field displaying the name of the Dimension when associated with a cube (this can be
different from the OLAP Dimension Name).

571

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current OLAP Measure
Group Dimension to the previous and next OLAP Measure Group Dimension respectively for the
current OLAP Cube. The alternative is to exit the OLAP Measure Group Dimension and choose
the next OLAP Measure Group Dimension Properties screen.

Dimension Description

A description of the dimension when it is associated with the cube.

Order Number

The order number.

Update Dimension with Cube

A read only checkbox showing whether the dimension is processed when the cube is processed.

Visible

A read only field displaying the visibility of the dimension on the cube.

All Member Aggregation Usage

A read only field displaying how aggregations will be designed by the BIDS Storage Design Wizard
if it is used to design cube aggregations.

Hierarchy Unique Name Style

A read only field which indicates whether the dimension name will be included in the name of the
hierarchies.

Member Unique Name Style

A read only field which indicates how member unique names will be formed. A read only field.

Measure Group

A read only field displaying the Measure Group which is being referenced by the Measure Group
Dimension relationship.

Measure Group Column

Specifies which fact view key joins to the dimension key.

Relationship Type

Defines the relationship type for the relationship between the Dimension and Measure Group. In
WhereScape RED this option can be Regular, which means that the relationship is based on a
dimension key join, or No Relationship between the Measure Group and Dimension.

Cardinality

Indicates whether the measure group has a many to one or one to one relationship with the
dimension.

572

Source Table Type

A read only field that displays the type of table from which the OLAP Dimension was created.

Source Table

A read only field that displays the name of the table from which the OLAP Dimension was
created.

Source Table Key

A read only field that displays the key (typically the primary key) that relates the dimension to
the fact in the underlying star schema.

Processing Mode

A read only field that indicates whether processed data is available after all aggregations have
been computed or immediately after the data has been loaded.

All Caption

A read only field that displays the name of the (All) member. This applies to all hierarchies in the
dimension that have an (All) member.

OLAP Dimension Type

A read only field that displays the type of information contained by the dimension.

Unknown Member Action

A read only field that displays the existence of an Unknown member and whether that member is
visible or hidden.

Unknown Member Name

A read only field that displays the caption for the unknown member.

573

OLAP Dimension Objects

OLAP Dimension Overview
OLAP Dimensions are dimensions that get created in an Analysis Services database.

An OLAP Dimension is a collection of related attributes which can be used to provide information
about fact data in one or more cubes. By default attributes are visible as attribute hierarchies and
can be used to understand the fact data in a cube. Attributes can be organized into user-defined
hierarchies that provide navigational paths to assist users when browsing the data in a cube.

They are typically created and populated from a relational dimension.

One or more OLAP Dimensions are defined automatically by WhereScape RED when a fact view is
dragged over to create a cube or measure group. WhereScape RED will take the relational
dimension tables and related metadata (including hierarchies) defined in the star schemas and
create OLAP Dimensions automatically. They can also be defined manually in WhereScape RED.

The properties of an OLAP Cube dimension are shown by right-clicking on the OLAP Dimension
and choosing Properties. The following dialog is shown:

574

Internal Dimension Name

Specifies the name of the dimension in WhereScape RED.

Dimension Publish Name

Specifies the name of the dimension as created in Analysis Services.

Dimension Description

A business description of the OLAP Dimension for use in documentation - this description also
gets created in the analysis services metadata.

Default Database Connection and OLAP Database Name

The WhereScape RED connection that is an OLAP connection to an analysis services server.
These fields only need to be populated when the OLAP Dimension needs to be created in Analysis
Services separately from a cube. If these fields are blank this dimension can only be created in the
same Analysis Services server and database as the related cubes when the cubes get created.

Data Source Connection

Defines the WhereScape RED connection that points to the relational dimensional table(s) used
to populate the OLAP Dimension - typically the Data Warehouse connection. When the
connection is defined the following read only fields are populated with the connection
information:

• Data Source Provider Type
• Data Source Server
• Data Source Database

Source Table Type

Specifies the type of table from which the OLAP Dimension was created.

Source Table

Specifies the name of the table from which the OLAP Dimension was created.

Source Table Key

Specifies the key (typically the primary key) that relates the dimension to the fact in the
underlying star schema.

Processing Group

Specifies the processing group for processing the dimension. This determines how much data is
read into memory during dimension processing at any one time.

Processing Mode

Indicates whether processed data is available after all aggregations have been computed
(Regular) or immediately after the data has been loaded (Lazy aggregations).

575

Processing Method

Indicates which processing method should be used for populating the dimension:

• Process Default - Detects the process state of an object, and performs processing necessary to
deliver unprocessed or partially processed objects to a fully processed state.

• Process Full - Processes an Analysis Services object and all the objects that it contains. When
Process Full is executed against an object that has already been processed, Analysis Services
drops all data in the object, and then processes the object. This kind of processing is required
when a structural change has been made.

• Rebuild Data - Processes data only without building aggregations or indexes.

Storage Mode

This field allows two options; MOLAP - Multidimensional OLAP or ROLAP.- Relational OLAP.
This determines how the OLAP dimension is processed.

All Caption

Specifies the name of the (All) member. This applies to all hierarchies in the dimension that have
an (All) member.

OLAP Dimension Type

Specifies the type of information contained by the dimension. Some client tools can treat the
dimension differently based on this information.

Unknown member Action

Specifies the existence of an Unknown member and whether that member is visible or hidden.
Fact data not associated with a member can be associated with the unknown member.

Unknown Member Name

Specifies the caption for the unknown member.

Language Mapping

The OLAP Dimension Properties screen has a tab called Language Mapping.

Select the language from the drop-down list and then enter the translations for the Dimension
Publish Name, All Caption, Dimension Description and the Unknown Member Name.

576

See Language Settings (see "Settings - Language Options" on page 140) for more details on how
to add languages for translation.

577

OLAP Dimension Attributes
Dimensional attributes contain information about the Dimension object. Attributes are exposed
in the cube to provide the ability to navigate and aggregate the data in the cube.
User defined hierarchies can be built over attributes to provide drill paths through the data and to
aid aggregation.

The properties of an attribute can be displayed by right-clicking an attribute in the middle pane
and choosing Properties. The following dialog is displayed:

Dimension Name

A read only field to display the dimension which the attribute is related to.

Internal Attribute Name

The name of the attribute in WhereScape RED.

Published Name

The name of the attribute created in Analysis Services.

Description

A business name that is stored in WhereScape RED for documentation and stored in the Analysis
Services metadata.

578

Estimated Count

Specifies the number of members in the attribute. This number is either the amount last counted
by Analysis Services or a user provided estimate of the member count.

Member Names Unique

Indicates whether member names are unique for this attribute.

Hierarchy Visible

Indicates whether the attribute hierarchy is visible to client applications. Even if the attribute
hierarchy is not visible it can still be used in a user defined hierarchy.

Hierarchy Enabled

Indicates whether an attribute hierarchy is enabled for this attribute. If the attribute hierarchy is
not enabled, then the attribute cannot be used in a user defined hierarchy.

Hierarchy Optimized state

Specifies the level of optimization applied to the attribute hierarchy.

Order by

Specifies the method used to order the members of the attribute.

Order by attribute

Specifies the attribute used to order the members of the attribute hierarchy

If the 'Order by' property is set to 'AttributeKey' or 'AttributeName' then 'Order by attribute'
cannot be empty. It must be populated with values from attribute relationships.

Type

Specifies the type of information contained by the attribute.

Usage

Specifies the usage of the attribute.

579

Key Column

Specifies the details of the binding to the column containing the member key.

Name Column

Specifies the details of the binding to the column containing the member name.

Value Column

Specifies the details of the binding to the column containing the member value.

Using the Value Column OLAP cube attribute setting for Excel date filtering
In the relevant OLAP Date dimension ensure the OLAP Dimension Type property is set to "Time",
then for the Key Attribute of the OLAP Date Dimension (e.g. dim_date_key) set the Value Column
property to a date data type column (e.g. calendar_date). Usually it will be useful to set the Name
Value property for the Key Attribute to a column containing a textual date format (e.g. dates
presented in dd/mm/yy format). After publishing and processing the OLAP cube use Microsoft
Office Excel PivotTables to expose date-specific filtering options for this dimension’s hierarchies
instead of label filtering options.

To View Attributes

To view the list of Attributes, right-click on an OLAP Dimension in the left pane and select
Display Attributes..

To Add an Attribute
1 Display the attributes of an OLAP Dimension in the middle pane. Display the columns of the

dimension in the right pane then drag over a column from the underlying relational
dimension into the middle pane.

2 To add an Attribute, right-click on an OLAP Dimension in the left pane and select Add
Attribute. This can also be achieved by displaying Attributes in the middle pane, right-
clicking and selecting Add Attribute. Fill out the dialog box with the relevant details.

3 To create an Attribute that is similar to an existing Attribute, display the Attributes in the
middle pane and select Copy Attribute. The same dialog box appears as for Add Attribute
with most of the fields filled in. Notice that the Attribute name has the suffix "- Copy".
Change the name in the Attribute Name field and make any other alterations and click OK.

To Delete an Attribute

Display the Attributes in the middle pane, select the Attribute to delete, right-click and select
Delete.

580

OLAP Dimension Attribute Relationships
Attribute relationships define functional dependencies between attributes. If attribute A has a
related attribute B in a hierarchical relationship, then an attribute relationship can be defined
that assists Analysis Services to aggregate data.

Note: Attribute relationships require unique members in order to function correctly—if there are
duplicate values participating in an attribute relationship then cube data can be incorrectly
aggregated and displayed.

To view the Properties of an attribute relationship right-click on an attribute relationship and
select Properties to show the dialog below:

Dimension Name

A read only field indicating the dimension associated with the attribute relationship.

Attribute

Specifies the attribute on which the attribute relationship is based.

Relationship Name

Specifies the name of the attribute relationship.

Related Attribute

Specifies the name of the related attribute.

Relationship Type

Indicates whether the relationship between attributes can change over time.

581

Cardinality

Indicates if the related attribute has a many to one or a one to one relationship with this
attribute.

Visible

Indicates whether the attribute relationship is visible to the client applications.

To View Attribute Relationships

To view the list of Attribute Relationships, right-click on an OLAP Dimension in the left pane and
select Display Attribute Relationships.

To Add an Attribute Relationship
1 Attribute relationships are defined automatically when a User Defined hierarchy is inherited

from an underlying relational dimension.

2 To add an Attribute Relationship, right-click on an OLAP Dimension in the left pane and
select Add Attribute Relationship. Fill out the dialog box with the relevant details.

To Delete an Attribute Relationship

Display the Attribute Relationships in the middle pane, select the Attribute Relationship to
delete, right-click and select Delete.

582

OLAP Dimension Hierarchies
User defined hierarchies define hierarchical relationships between related dimensional attributes
(e.g. Geographical or time based attributes). These related attributes are defined as levels within
the hierarchy.

To view the properties of a user defined Hierarchy right-click on the Hierarchy and select
Properties.

Dimension Name

A read only field indicating the dimension associated with the attribute relationship.

Internal Hierarchy Name

The name of the hierarchy within WhereScape RED.

Hierarchy Publish Name

The name of the hierarchy as created within Analysis Services.

Hierarchy Description

A business name that is stored in WhereScape RED for documentation and stored in the Analysis
Services metadata.

All Member Name

Specifies the name of the member in the All level

583

Allow Duplicate Names

Indicates whether the members under a common parent can have the same name.

Member Keys Unique

Indicates whether member keys are unique for this hierarchy.

Note: If you are using a version of Analysis Services earlier than service pack 2, the only value
allowed for Member Keys Unique is 'NotUnique'. If the value 'Unique' is used, Analysis Services
will return an error and the cube will not be created.

Member Names Unique

Indicates whether member names are unique for this hierarchy.

To view User Defined Hierarchies

To view the list of User Defined Hierarchies, right-click on an OLAP Dimension in the left pane
and select Display Hierarchies.

To Add a User Defined Hierarchy

To add an Attribute Relationship, right-click on an OLAP Dimension in the left pane and select
Add Hierarchy. Fill out the dialog box with the relevant details.

To Delete a User Defined Hierarchy

Display the User Defined Hierarchies in the middle pane, select the User Defined Hierarchy to
delete, right-click and select Delete.

584

OLAP Dimension User Defined Hierarchy Levels
The levels specify the drill path over a set of related attributes. The classic hierarchy levels are
Year, Month, Date in a Calendar based hierarchy in the date dimension.

To view the Properties of a user defined Hierarchy Level right-click on a user defined Hierarchy
Level and select Properties.

Dimension Name

A read only field indicating the dimension associated with the attribute relationship.

Hierarchy

The User Defined Hierarchy that contains the level.

Level Number

The number of levels from the top most hierarchy level. These level numbers must start at 1 for
the top level and provide continuous numbering to the bottom level.

Internal Level Name

The name of the Level within WhereScape RED.

Level Publish Name

The name of the Level as created within Analysis Services.

585

Level Description

A business name that is stored in WhereScape RED for documentation and stored in the Analysis
Services metadata.

Source Attribute

Specifies the source attribute on which the level is based.

Hide If

Specifies which members are hidden. This property supports ragged hierarchies contain logical
gaps between members.

To View User Defined Hierarchy Levels

To view the list of User Defined Hierarchy Levels, right-click on an OLAP Dimension in the left
pane and select Display Hierarchy Levels.

To Add a User Defined Hierarchy
1 To add a User Defined Hierarchy level, right-click on an OLAP Dimension in the left pane and

select Add Hierarchy Level. Fill out the dialog box with the relevant details.
2 Alternatively right-click on a User Defined Hierarchy in the middle pane and select Add

Hierarchy Level. Fill out the dialog box with the relevant details.

To Delete a User Defined Hierarchy Level

Display the User Defined Hierarchy Levels in the middle pane, select the User Defined Hierarchy
Level to delete, right-click and select Delete.

586

OLAP Changing OLAP Cubes
An understanding of the dependency of objects within Analysis Services is the key to figuring out
what needs to be dropped or recreated in a cube database using WhereScape RED.

Changes to the underlying relational star schema can cause cube processing to fail as the star
schema is frozen in the Data Source View (DSV) of the cube database. Minor changes such as
the addition of table columns, or altered data types (e.g. changing a char to varchar) will not
break the cube, but renaming a source table or column that is used as a source to the cube will
invalidate the DSV and cause processing to fail.

The solution to this issue is to drop and recreate the Cube database from RED to recreate the DSV
or manually update the DSV using Microsoft BIDS.

If an object needs to be dropped and recreated in RED then this is two separate actions. For
example to drop the OLAP database, right-click an OLAP cube within that database in RED and
select Drop Analysis Services Object, then using the drop-down boxes in the Drop Analysis
Services Object dialog choose the object to drop, and click Drop. This will drop the object from
Analysis Services.

587

A Create action on an Analysis Services object in RED will be different depending on whether or
not the object already exists in Analysis Services:

• If the object does not already exist in Analysis Services then RED will create the object (and
any related objects e.g. OLAP database and DSV).

• If the object does already exist in Analysis Services then RED will try to detect any changes or
additional features that need to be added to the object and add or alter the existing Analysis
Services object.

Some objects need to be dropped and recreated in order to be changed (eg dimension structures),
and some only need to be recreated (eg calculations).

Changes to cube runtime objects do not require the cube database to be dropped. For example a
new or changed definition of a calculation or KPI will not require the cube to be dropped and
recreated (so data is retained). By Recreating the cube the definition of these runtime objects will
be updated and available immediately to cube users.

A brief summary of the hierarchy of objects and the remedial action is shown below:

Cube Object Change Action

Data Source This changes the source database
connection. It is defined in the Data
Warehouse connection in RED.

OLAP database needs to be dropped
and recreated.

Data Source View
(underlying
relational star)

The DSV reflects the design of the
relational star. Therefore, the DSV
would need to be updated if any
changes are made to tables or views
that are used to build OLAP objects.

Changes to the underlying
relational star that affect an
existing OLAP Object requires that
the OLAP Database is dropped and
recreated to regenerate the DSV.

OLAP Dimension The addition or deletion of attributes
or hierarchies to an existing OLAP
dimension.

The OLAP dimension plus any
OLAP cubes associated with the
dimension need to be dropped and
recreated.

OLAP Cube
Measure Group

Delete or Add a Measure Group based
on a fact that already exists in the
DSV.

Recreate the cube in RED and
reprocess.

OLAP Cube
Measure Group

Add a Measure Group based on a fact
that does not exist in the DSV.

Recreate the OLAP cube database
and reprocess.

OLAP Cube
Measures

Delete or Add measures based on
columns that already exist in the
DSV.

Recreate the cube in RED and
reprocess.

OLAP Cube
Measures

Add measures that are based on new
columns that do not exist in the DSV.

Recreate the OLAP cube database
and reprocess.

OLAP Cube
Calculations, KPIs,
Actions

Add, change or delete definition on
the cube.

Recreate the cube in RED (a
reprocess is not necessary because
just the calculation definition is
stored in the cube - the result is
calculated at query time).

588

OLAP Retrofitting an OLAP Object
WhereScape RED provides the functionality for retrofitting OLAP cubes from Analysis Services.

Note: Before you can retrofit an OLAP cube, you must first retrofit any and all of the OLAP
dimensions used by the OLAP cube.

The process to retrofit an OLAP dimension is as follows:

1 Right-click on the OLAP Dimension object heading in the left pane and select New Object.

2 Enter any name for the object name and click ADD.

3 On the Properties dialog:
For the Internal dimension name enter the name that matches exactly the name of the
OLAP Dimension in Analysis Services that you want to retrofit.

For the Dimension publish name enter a name for the dimension.

For the Dimension description enter a description for the dimension.

For the Default database connection select the required Analysis Services connection.

For the OLAP database name select the database name in Analysis Services.

For the Data source connection select the relevant data source connection.

589

590

4 The OLAP Dimension can now be retrofitted by right-clicking the object in the left pane and
choosing Retrofit Dimension.

5 Two warning dialogs now appear. The first dialog warns that the existing information will be
deleted before being redefined from Analysis Services. Select Yes.

591

6 The second dialog warns that retrofitting a dimension will remove the links to cubes in the
Metadata. Select Yes.

7 The results of the retrofit are displayed in the results panel at the bottom of the screen. If it
was successful the new object should now have all the attributes, hierarchies and hierarchy
levels (as well as all of their properties) as set in Analysis Services.

Once all of the dimensions have been retrofitted you can retrofit the OLAP Cube.Follow steps 1-6
above to retrofit the OLAP Cube as for the OLAP dimensions.

The final dialog is a reminder to only retrofit an OLAP cube once the dimensions used by the cube
have been retrofitted. If all relevant dimensions have been retrofitted, select Yes.

Once again, the results of the retrofit are displayed in the results panel at the bottom of the
screen.

593

Standard column transformations (on page 594) can be used in WhereScape RED to perform
calculations, change data types or format data.

Re-using complex transformations can save a significant amount of time. These can be achieved
two ways in WhereScape RED:

• Teradata User Defined Functions (UDFs)
• WhereScape RED User Defined Transformations

In This Chapter

Column Transformations .. 594
Teradata User Defined Functions ... 601
Re-usable Transformations .. 605

C h a p t e r 2 2

Transformations

594

Column Transformations
Each table, view, join index or export object column can have a transformation associated with it.
For all table types, except for load tables, views and join indexes, the transformation will be
included in the generated procedure for the table. These are executed as part of the procedure
update. The transformation must therefore be a valid SQL construct that can be included in a
Select statement. For example, we could have a transformation of 'load_order_line.qty * 0.125' to
calculate a tax column of 12.5%. Click the Transformation tab on the column properties to enter
a transformation.

Note: Transformations added to an existing table that have an update procedure are only put into
effect when the procedure is re-generated and re-compiled.

Column transformations on load tables are more complex, due to the unique nature of load
tables. See Load Table Column Transformations (on page 597) for more details.

View and Join Index transformations are included in the Database Definition Language (DDL)
that creates the object in the Teradata database. Any changes to transformations require these
object types to be dropped and recreated.

Export object column transformations are dynamically applied for file loads. If the export object
is executed via a host script, then the script needs to be regenerated for changes to
transformations to take effect.

595

Column Transformation Properties
An example below shows the transformation property screen with a simple transformation:

The two special update keys allow you to update the column and step either forward or backward
to the next column's properties. ALT-Left Arrow and ALT-Right Arrow can also be used instead
of the two special update keys

Function SQL Text Window

The Function SQL Text Window contains the SQL used in the transformation. It can be directly
entered, built up using the Function Builder and Add buttons or a combination of both.

Function Builder

The Function Builder contains a list of standard database functions, operators, user defined
functions and all columns belonging to all source tables.

Expanding the Function Heading displays the Function Groups (Number, String, Data,
Conversion, etc) and the User Defined Function Heading. Similarly, expanding the Data
Heading displays Source Tables.

Each function group or source table can in turn be expanded to show individual Functions and
Source Columns.

Double clicking on a function adds the Function Model to the Function SQL Text Window. The
first variable (almost always the source column) is left highlighted in the Function SQL Text
Window. This allows additional Functions or Source Columns to be added to the correct place in

596

the Function SQL Text Window by double clicking on the required Function or Source Column in
the Function Builder.

Target Paste Button

The Target Paste button adds the current column in the form ColumnName to the Function SQL
Text Window at the location of the cursor.

Source Paste Button

The Source Paste button adds the source table and column in the form TableName.ColumnName
to the Function SQL Text Window at the location of the cursor.

Transform Stage

Only visible on load table column transformations. See Load Table Column Transformations (on
page 597) for more information.

Function Set

This drop-down list enables the user to select which set of functions are to be displayed in the
tree view when creating a transformation on a column of a table.

Update Buttons

The Update Buttons: Update <- and Update -> are used to move from the current column to
previous and next columns respectively in the current table. The alternative is to exit the Column
Transformation Properties, choose the next column, re-enter the Column Properties and choose
the Transformation tab.

Function Syntax

The syntax guide for the Function visible when the function is clicked. Essentially the same as
the function model loaded into the Function SQL Text Window when the function is double-
clicked. Read only.

Function Desc

The description of the Function visible when the function is clicked. Read only.

Function Model

The model (template SQL code) for a User Defined Transformations. This is only visible for
User Defined Transformations. Read only.

Localize Transformation

The Localize transformation button breaks the link between a column transformation and the
User Defined Transformation it's based on. If this button is clicked, changes to the underlying
user defined transformation cannot be automatically propagated to the column transformation.
This is only visible for User Defined Transformations.

597

Load Table Column Transformations

Overview

Data entering the data warehouse can be manipulated if required. This manipulation can occur at
any stage, but is supported via a number of methods during the Load stage. Load tables provide
options to transform data. If multiple pass transformations are required then a load table can be
created from another load table, i.e. multiple load tables can be supported in the data flow path.

The options available differ depending on the type of load but in most cases the after
transformation and post load procedure can be utilized. Specifically:

Database Link Load • During Load transformations
• After Load transformations
• Post Load procedure

ODBC Based Load • During Load transformations
• After Load transformations
• Post load procedure

File Based Load • During Load transformations
• After Load transformations
• Post load procedure

Integration Services Load • During Load transformations
• After Load transformations

Script Based Load • During Load transformations
• After Load transformations
• Post load procedure

Externally Loaded • After Load transformations
• Post Load procedure

The Transformation tab of a column's properties is used to define during and after load
transformations. It can only be one or the other for a specific column. One column can be used to
build another, so an after can be based on the results of a during, if different columns are used.

Note: The During transformations use Source Table columns. The After transformations use
the Load Table columns.

All After transformations take place in the native Teradata SQL language. The During
transformations differ in terms of which language is used. This is particularly true for file based
loads. Normally the During transformation will occur in the native SQL language of the source
database.

598

For Flat file loads using SSIS, After Load transformations use the SQL syntax of the target
database but During Load transformations use SSIS expression syntax that can be referred to
on the Microsoft Developer Network website : https://msdn.microsoft.com/en-
us/library/ms137547(v=sql.110).aspx.

Database Link During Load Transformations
The during load transformation allows the manipulation of column data as it enters the data
warehouse.

By default, Database link loads and ODBC based loads have During and After transformations
enabled.

599

When transformations are enabled, the contents of a source table/source column for each
column are used as the basis of the loading statement.

• If source table and source column are null, then a null is used.
• If data exists in the Transformation tab of a column's properties, then this transformation

data is used instead of the source table/source column combination.

Example

The following load table columns will generate the load sql statement if no transformation data is
present against these columns.

The SQL code from the load results is:

600

If the column 'description' has a transformation defined as follows:

upper(substr(description,1,1))||lower(substr(description,2,1))

then the following SQL statement will be executed.

File During Load Transformations
The loading of flat files is performed using Fastload, Multi-load or TPT. The contents of the
Transformation tab in a column's Properties are the functions and conversions supported by the
database loader.

Example

Multiload performs transformations such as:

• FORMAT 'DD-MMM-YYYY' converts from a value such as 23-Mar-1999 to a Teradata date.
• CAST(:COL AS NUMERIC(18,4)) converts the data to a numeric(18,4)
• COALESCE(LTRIM(RTRIM(:COL)),0) trims leading and trailing white characters and inserts

zero if null.

601

After Load Transformations
After transformations will initiate a pass of the load table after the load has occurred. They allow
manipulation of the load table columns using the database and SQL functions.

Example

The following after transformation set for the column code in the table load_product

substr(code,1,5)

would result in the following SQL statement being executed after the load:

update load_product set code = substr(code,1,5);

602

Teradata User Defined Functions
Teradata User Defined Functions (UDFs) can be built using the C programming language and
compile directly onto the Teradata server and registered via a SQL command.

This can be daunting for many data warehouse developers, who may not know C well, and may
not have access to compile UDFs on the Teradata server.

603

Teradata UDF Example
A standard example given for Teradata UDFs is building a REPLACE function similar to the Oracle
database's REPLACE function.

Here is a simplified example:

Step 1: Write c code for UDF as replace.c:

Step 2: Put c file onto the Server

Copy the c program file onto the data base server into the following location:

C:\program files\ncr\tdat\tdconfig\tdbs_udf\replace.c

604

Step 3: Register and Compile UDF via SQL:

Step 4: Use the Function

Simply use the UDF in a RED column transformation or 'Where' clause like any other SQL
function.

605

Re-usable Transformations
WhereScape RED Re-usable Transformations allow a complex SQL transformation using standard
Teradata functions (including UDFs) to be built once and reused in multiple column
transformations. Functionality is included to manage and propagate changes to user defined
transformations.

Creating a New Re-usable Transformation
New re-usable transformations are created from the Tools>Define Re-Usable
Transformations menu.

Creating a new re-usable transformation is a three step process:

• Specify the name of the transformation
• Enter metadata for the transformation
• Define the transformation

606

Specify the Name of the Transformation
Selecting Define Re-Usable Transformations from the Tools menu displays the following
screen:

607

Click New Transform and enter a name for the User defined transformation:

Note: This is the internal WhereScape RED name for the transformation, not the name
developers reference when utilizing the transformation on column transformations.

Click OK.

608

Enter Re-usable Transformation Metadata
Enter the following metadata for the transformation to describe the transformation for
developers.

Transform Description

A general description of the transformation.

Function Tag

This is the name the function will appear as for users to select from the function builder when
building column transformations.

Function Syntax

The syntax guide for the function. This is visible in the function builder when clicking on the User
defined function.

Function Description

The description of the function, visible in the function builder when clicking on the User defined
function.

Function Model

The model (template SQL code) for a User Defined Transformations. This is only visible for User
Defined Transformations. [Read only].

609

Define the Transformation Model
Once the transformation has been created and the metadata entered, the actual SQL code used by
the transformation can be defined. The SQL code can be entered directly or via the Function
Builder on the right side. To use the function builder, expand the tree to find the required
function.

Example of Building a Transformation Model

To build a model to CAST a trimmed string in YYYYMMDD format to a timestamp, do the
following:

• Click on the Model tab
• Expand Functions heading
• Expand the Conversion heading
• Double click on Cast as Type (CAST)
• Expand the String heading
• Double click on Trim (TRIM)
• Highlight data_type and type TIMESTAMP FORMAT 'YYYYMMDD'

You should see the following:

Click OK.

610

Completed Re-usable Transformation

611

Changing a Re-usable Transformation
To change a re-usable transformation:

• Select Re-usable transformations from the Tools menu.
• Choose the transformation from the Transform Name drop-down list.
• Click on the Model Tab.
• Change the SQL as required.
• Click OK.

Example of a change to the Model SQL

In the example used in Creating a New User Defined Transformation (see "Creating a New Re-
usable Transformation" on page 605), the SQL was:

CAST(TRIM(BOTH FROM string_column) AS TIMESTAMP FORMAT 'YYYYMMDD')

Change the SQL to allow the format to be specified when the transformation is used by changing
YYYYMMDD to format.

Then highlight the word format and click the Variable button. This makes the word format a
variable than can be substituted when the User Defined Transformation is used.

Now format is green and in italics:

Click OK.

612

Applying Changes to Dependant Transformations
After changing a Re-usable Transformation, a dialog appears asking to confirm that changes
should be applied to individual columns using the transformation, where possible:

If the Re-usable Transformation doesn't have any dependant columns, then the following
message is displayed:

If the Re-usable Transformation has been used for dependant columns then this message is
displayed:

When an attempt is made to update a dependant Transformation, and the transformation has
been modified in such a way as to make it impossible for the changes to the User Defined
Transformation to be applied, the error message above will include a count of the failures.

613

The results pane detail the columns (and tables) where the update failures have occurred:

Using Re-usable Transformations
User defined transformations are used exactly the same way as any standard database Function.
They can be used on any object type. See Column Transformation Properties (on page 595)

614

Export objects are used in RED to produce ascii files from a single database table or view for a
downstream feed. Some or all of the columns in a table or view can be exported.
There are three ways of performing exports.

• File export - an export where most of the processing is managed and controlled by the
scheduler.

• Script-based export - an export where a Windows or a Unix/Linux script file is executed to
perform the export. Script-based exports on Windows supports both DOS Batch and
Powershell scripts (see "Windows PowerShell Scripts" on page 653).

• Integration Services export - an export processed using a Windows connection where the
processing is handled via an Integration Services Package that is generated and executed
dynamically at run time.
SSIS exports to UNIX/Linux connections and processed via the UNIX/Linux scheduler are
currently not supported.

In This Chapter

Building an Export Object ... 615
File Attributes ... 619
Export Column Properties .. 624
Script based Exports.. 626

C h a p t e r 2 3

Exporting Data

615

Building an Export Object
Creating an Export:
1 Browse the Data Warehouse connection.
2 Create a drop target by double clicking on the Export object group in the left pane. The

middle pane should have a column heading of Export Objects for the leftmost column.

3 Select a table or view in the right pane and drag it into the middle pane. Drop the table or
view anywhere in the middle pane.

The following dialog appears:

4 Rename the export object if it needs to be renamed and click ADD.

616

The Properties dialog displays:

5 If exporting the object via Windows, change the Connection to Windows.

From a Windows connection, File, Script based and Integration Services export methods
are supported.

617

6 If exporting the object via Unix/Linux, change the connection to Unix.

From a Unix/Linux connection File export and Script based exports methods are supported.

618

TIP: When doing a Script based export on Windows or Unix/Linux, use the Rebuild
button after selecting the relevant script to be rebuilt on the the Script Name drop-down
menu.

• Click the File Attributes tab to fill in the fields described in the next section to set the

relevant location, name and contents of the exported data file.
• When the File Attributes fields are filled in, go back to the Properties tab, select (Build

Script) from the Script Name drop-down menu and click OK.
• Export the object after filling in the Files Attributes fields by right-clicking on the export

object on the left pane and selecting Export.

619

File Attributes
The following fields are available to define the location, name and contents of the exported data
file:

• Export Type - method of exporting data from the table. The available options are dependent

on the Destination connection that can be specified via the Properties page.
• Destination Connection - destination to the file system to which data will be exported. The

destination connection can be specified on the Properties screen.
• Export File Path - the full path (absolute path) of the folder/directory where the File is to be

created on the Windows or UNIX/Linux system.
• Export File Name - name of the Export File to which the data will be exported. The variable

$SEQUENCE$ can be used to provide a unique sequence number for the export file. Also, the
data/file components YYYY, MM, HH, MI, SS can be used when enclosed with the $ character.
For example, an export file name might be customer_$YYYYMMDD$.txt which would result
in a file name like customer_20150520.txt.

• Export Routine - database specific routine to use to export the data. FastExport or TPT Data
Connector for Windows exports, or TPT Data Connector for Unix/Linux exports.

• Export Format - routine-specific format to use to export the data. Select one of the default
Teradata formats: Text, Unformatted, Delimited, Binary, Formatted, FastLoad or a special
WhereScape RED derived format: Delimited or Width Fixed Text.

• Export File Delimiter - character that separates the fields within each record of the Export
File for Delimited formats. The delimiter identifies the end of which field. Common field
delimiters are tab, comma, colon, semi-colon, pipe. To enter a special character enter the
uppercase string CHAR with the ASCII value in brackets (e.g. CHAR(9)). This is only available
if the Export Format is Delimited text.

• Optionally Enclosed by - character that brackets text fields within each record of the Export
File for Delimited formats. A common example is ". This is only available if the Export Format
is Delimited Text.

• Export Options - allows the entry of export utility options. If more than one option is
required a semi-colon should be used between options.

• Header Row in Export - if a header line is required, choose business names or column
names from this drop-down list.

• Trigger Path - the trigger file indicates that the export to the main file has completed and it
is now safe to load the file. Secondarily, the trigger file may contain control sums to validate
the contents of the main load file. This field should contain the full path name to the
directory in which a trigger file is to be generated on the destination system.

• Trigger Name - this refers to the name of the file that is to be created as a trigger file. A
trigger file typically contains check sums (row count or the sum of a numeric column). The
variable $SEQUENCE$ can be used to provide a unique sequence number for the trigger file.
Also, the data/file components YYYY, MM, HH, MI, SS can be used when enclosed with the $

620

character. For example, a trigger file name might be customer_$YYYYMMDD$.txt which
would result in a file name like customer_20150520.txt.

• Trigger Delimiter - multiple fields in the trigger file need to be separated by the trigger
delimiter.

• Trigger Parameter 1,2,3 - checksums to be put in the trigger file. One of the row count and
the sum of any numeric fields in the source data.

• Compress After Export - tick this check-box if you want to compress the export file after it
has been created.

• Compress Utility Path - directory in which the compress utility exists.
• Compress Utility Name - name of the compression utility executable.
• Compress Parameters - name of the file to be compressed (using the RED variable

$EXPFILE$) and any commands or switches required to make the compression utility work.
These parameters will depend on the compression utility used.

For Windows File or Script based Exports, you can select the between the FastExport or TPT
Data Connector export routines.

1 Example screen for a Windows Script based Export using the TPT Data Connector.

621

2 Example screen for a Unix/Linux File/Script based Export using the TPT Data Connector.

TIP: With all the relevant fields filled in, remember to go back the Properties tab and
select (Build Script) from the Script Name drop-down menu.

Right-click on the export object on the left pane and select Export.

622

File Attributes - SSIS Exports
The following fields below are available to define the location, name and definitions of the
exported data file:

Integration Services File Attributes screen:

Export Type

Method of exporting data from the table. The available options are dependent on the Destination
connection that can be specified via the Properties page.

Destination Connection

Destination to the file system to which data will be exported. The destination connection can be
specified on the Properties screen.

623

Export File Definition
Export File Path

The full path (absolute path) of the folder/directory/ where the File is to be created on the
Windows or UNIX/Linux system.

Export File Name

Name of the Export File to which the data will be exported. The variable $SEQUENCE$ can be
used to provide a unique sequence number for the export file. Also the data/file components
YYYY, MM, HH, MI, SS can be used when enclosed with the $ character. For example an export
file name might be customer_$YYYYMMDD$.txt which would result in a file name like
customer_20150520.txt.

Export Format

Routine-specific format to use to export the data.

Export File Delimiter

Character that separates the fields within each record of the Export File for Delimited formats.
The delimiter identifies the end of which field. Common field delimiters are tab, comma, colon,
semi-colon, pipe. To enter a special character enter the uppercase string CHAR with the ASCII
value in brackets (e.g. CHAR(9)). This is only available if the Export Format is Delimited Text.

Optionally Enclosed by

Character that brackets text fields within each record of the Export File for Delimited formats. A
common example is ". This is only available if the Export Format is Delimited Text.

Header Row

If a header line is required, choose business names or column names from this drop-down list.
This option is not available in DB2.

SQL Server Integration Services (SSIS)
SSIS Row Count Log

When enabled, this option includes Row Count logging on SSIS exports.

624

Export Column Properties

Table Name

Database-compliant name of the table that contains the column. [Read-only field].

Column Name

Database-compliant name of the column. Typically, column-naming standards exclude the use of
spaces etc. A good practice is to only use alphanumerics, and the underscore character. Changing
this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Title

 Name that the business uses to refer to the column, which is included in the RED-generated
documentation and can be used in the end user layer of other tools. [Does NOT affect the physical
database table]. As such, it is a free form entry and any characters are valid.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

625

Column Description

This field contains the description for the column. It may be a description from a business user's
point of view. This field might additionally contain information on where and how the column
was acquired. For example, if the column is sourced from multiple tables or is a composite or
derived column, then this definition would normally describe the process used to populate the
column. This field is used in the documentation and is available via the view
ws_admin_v_dim_col. It is also stored as a comment against the column in the database.

Column Order

Numeric value that controls the relative order of columns in the database create statement. The
lowest numbered column will appear first in the table. Although this affects the physical table
definition, no action is taken unless the table is re-created in the database. The columns can be
re-numbered based on the existing order by choosing the Respace Order Number pop-up menu
option when positioned over any column in the table. This action numbers the columns in
increments of 10, starting at 10. In addition to a simple change of the order field, the column
order can be changed by first displaying the columns in the middle pane and then using drag and
drop to move the columns around. This drag and drop process automatically renumbers the
columns as required.

Data Type

Database-compliant data type that must be valid for the target database. Typical Teradata
databases often have integer, numeric(), varchar(), char(), date and timestamp data types. See the
database documentation for a description of the data types available. Changing this field alters
the table's definition.

Format

Not relevant for Export Objects

Numeric

Not relevant for Export Objects

Additive

Not relevant for Export Objects

Attribute

Not relevant for Export Objects

Source Table

Identifies the source table where the column's data comes from. This source table is normally a
load table within the data warehouse. If the column was sourced from multiple tables, then the
normal practice is to record one of the tables in this field and a comment listing all of the other
tables in the Source Strategy field. This field is used when generating a procedure to update the
dimension. It is also used in the track back diagrams and in the documentation.

626

Source Column

Identifies the source column where the column's data comes from. Such a column is normally a
load table column, which in turn may have been a transformation or the combination of multiple
columns. For previous value managed columns the source column is the column in the table
whose previous value is being recorded.

Transformation

See Column Transformations (on page 594). [Read-only].

627

Script based Exports
A script based export object will have a Host Script defined. During the export process, this host
script is executed and the results returned.
During the drag and drop creation of an export object from a single table or view, a script can be
generated by selecting one of the 'Script based' export options. This script can then be edited to
more fully meet any requirements.

There are a number of conventions that must be followed if these host scripts are to be used by
the WhereScape scheduler.

1 The first line of data in standard out must contain the resultant status of the script. Valid
values are '1' to indicate success, '-1' to indicate a Warning condition occurred but the result
is considered a success, '-2' to indicate a handled Error occurred and subsequent dependent
tasks should be held, -3 to indicate an unhandled Failure and that subsequent dependent
tasks should be held.

2 The second line of data in standard out must contain a resultant message of no more than
256 characters.

3 Any subsequent lines in standard out are considered informational and are recorded in the
audit trail. The normal practice is to place a minimum of information in the audit trail. All
bulk information should be output to standard error.

4 Any data output to standard error will be written to the error/detail log. Both the audit log
and detail log can be viewed from the RED tool under the scheduler window.

5 When doing Script based exports, it is easy to use the Rebuild button to the right of the
Script-name field to rebuild the scripts.

Note: Script-based exports on Windows supports both DOS Batch and PowerShell scripts (see
"Windows PowerShell Scripts" on page 653).

629

WhereScape RED has a Procedure object group for database stored procedures and a Script
object group for host system scripts, such as Windows batch files.

Procedures

RED generates the bulk of the procedures during a prototype build, but these procedures can be
customized. In fact it would be normal practice once the prototype phase is completed to modify
these procedures to meet specific requirements. The procedure object group refers to the concept
of database stored procedures. Specific objects may in fact be functions, procedures or packages.
In this chapter the generation, editing and compilation of procedures is covered.

Scripts

Host scripts are generated when a script based file load is chosen during a file drag and drop from
a Windows connection. Scripts can also be created manually provided the rules for their inclusion
into the scheduling process are followed. This chapter covers the generation, editing and testing
of host scripts as well as explaining the components required to allow them to work in the
scheduler environment.

Notes:
- Windows script supports both DOS Batch and PowerShell scripts (see "Windows PowerShell
Scripts" on page 653).
- While Windows scripts are available on Load table objects, currently only Windows Scripts are
available on other object types that are created in a Custom Database Connection.

C h a p t e r 2 4

Procedures and Scripts

630

In This Chapter

Procedure Generation ... 631
Procedure Editing ... 637
Procedure Loading and Saving .. 640
Procedure Comparisons .. 642
Procedure Compilation ... 643
Procedure Running ... 643
Procedure Syntax .. 644
Procedure Properties .. 645
Macros ... 647
BTEQ Scripts ... 647
Script Generation .. 647
Script Editing .. 658
Script Testing .. 659
Script Syntax ... 659
Script Environment Variables ... 661
Calling a Batch File from a Script ... 667
Scheduling Scripts .. 669
Manually created scripts ... 671

631

Procedure Generation
WhereScape RED generates template procedures to assist in the various phases of the data
warehouse build process. A procedure is generated by selecting the (Build Procedure...) option
from the drop-down list field in a table's Properties window to configure the update, initial build,
or post load procedures.

For Load tables a post load procedure can be generated by selecting the option above. This post
load procedure is designed to assist in the management of file loads where a trigger file has been
used.

Post load procedures can either be manually generated from a RED provided procedure outline or
generated leveraging a RED template—refer to Rebuilding Update Procedures (on page 199) for
details.

For Stage, Dimension, Fact and Aggregate tables, an Update or Initial Build procedure can be
generated by selecting from the corresponding procedure drop-down list field in the table's
Properties.

If a new procedure is created from scratch (i.e. not auto generated), then an outline of the syntax
required by the WhereScape scheduler can be generated by selecting the Tools>Create
Procedure Outline menu option in the procedure editor.

Wrapper procedures

In some cases, multiple procedures is required to update a table. In such cases, it is best to create
a top level procedure that is seen by the scheduler as the 'Update' procedure. This procedure can
in turn call other procedures.

632

Example

We may have a model table that is updated from multiple stage tables. This wrapper procedure
calls two child procedures, one for each stage table that is to update the model table. A status is
reported back to the audit trail for each stage and an overall status ascertained for the model
table update.
The wrapper procedure may look as follows:

633

634

Procedure Placeholders

Procedure placeholders can help in moving procedures between environments without the
necessity of regenerating those same procedures. In <PRODUCT, the purpose of these
placeholders is to automatically substitute the corresponding strings, which is needed for a
specific environment.
The following procedure placeholders described below can be found in the update_xxxx_xxxx
procedure.

[TABLEOWNER] is used as a placeholder to replace the schema name defined in the connection
or target.
For targets, the [TABLEOWNER] placeholder is derived from the Target Location
Database/Schema in the connection. The target can be changed in the table's Storage screen, on
the Target drop-down list. For more information about Target Location Database/Schema in
connections and table's storage screens, see Connection to the Data Warehouse (see "Database -
Data Warehouse/Metadata Repository" on page 147) and Storage (on page 202).
When moving tables between environments, the [TABLEOWNER] placeholder is determined by
the individual connection of the target environment.

635

Example

During the compilation process of the procedure, [TABLEOWNER.tablename] is replaced with
PRODUSER.tablename, if the table owner is PRODUSER in the destination environment.

 WhereScape RED Tip: dim_date
The TABLEOWNER placeholder is especially useful in update procedures when the related table
is moved to a different schema or environment. For example, when moving dim_date to other
schemas, [TABLEOWNER] will be replaced with the schema of the table when the procedure is
compiled.
To do this, prefix the table name in the procedure to [TABLEOWNER].table_name (e.g.
[TABLEOWNER].dim_date). Then it is only necessary to do a recompile instead of rebuilding or
regenerating the procedure.

636

[METABASE] is used as a placeholder for the Teradata database metadata repository to enable
the deployment between environments without regenerating the procedures.

637

Procedure Editing
WhereScape RED includes a procedure editor which allows the maintenance of the various
procedures, functions and packages within the data warehouse. The editor is invoked by double-
clicking on a procedure name in the left pane or by right-clicking on the procedure name and
selecting Edit the Procedure.

A procedure can be compiled by selecting the Compile>Compile menu option. See the section
on compiling procedures for more information.

This section will discuss some of the features of the procedure editor.

In the following sections, reference is made to a selected block of text. A selected block of text is
a normal Windows selection where the text in question is highlighted. Normally achieved by
holding down the left mouse button and moving the cursor.

Indenting code

The tab character inserts two spaces into the text. A shift/tab removes two spaces.

Cut, Copy, Paste and Delete

The normal Windows cut, copy, paste and delete functions are available either through the
toolbar or via the right-click context menu.

Indenting a block of text

A selected block of text can be indented by four spaces by depressing the tab character. Each tab
indents by a further two spaces. A shift/tab will remove two spaces from the front of each line in
the selected block.

Commenting out a block of text

A selected block of text can be turned into a comment by using the Comment option in the right-
click pop-up menu.

The editor will place two dashes '--' at the front of each line in the selected block.

In the same way a block of text can be un commented by choosing the Uncomment option.

Note: Only lines that start with two dashes in the left most column can be uncommented.

Inserting Steps

The right-click pop-up menu has an option to insert step. This option inserts a code line of the
format 'SET v_step = 1000;'. Each subsequent insert adds 100 to the step value. The Alt/Z key can
also be used to insert a step line.

The v_step variable is used in the event of an unhandled exception. In such a case, the current
v_step value is reported, and it may be possible to ascertain the code that failed based on the
value of this v_step variable.

Note: If a step is inserted via this method then the step numbering is automatically reset for all
steps numbering from 100 in increments of 100 when the procedure is compiled or saved.

638

Inserting Audit and Detail Messages

The Alt/A key can be used to insert an extra audit message to be written to the audit log while the
procedure is running. The default message can be changed as appropriate. The inserted code is:

The Alt/D key can be used to insert an extra detail (or error) message to be written to the detail
log while the procedure is running. The default message can be changed as appropriate. The
inserted code is:

Viewing other procedural code

During the editing process it is possible to pop up a window containing other procedural code.
This window enables cut and paste operations. In such a way, it can be used as a work area or as a
source of code. Select the Tools>View Procedure or Template menu option to bring the viewer
window up. A dialog appears:

639

A number of drop-down lists can be chosen from. Once an item is selected, the viewer loads the
code and moves to the right side of the edit window. The various options are:

• Version: A previously saved version of this procedure. The description and time are shown.
• Procedure: Some other procedure stored within the WhereScape metadata.
• Template: A template procedure as defined in the WhereScape metadata.
• Compiled procedure: One of the currently compiled procedures existing in the database.

Once an item is chosen, the viewer appears on the right side of the edit window. The viewer or
the main edit window can receive the focus by clicking the mouse within the appropriate window.
Code can be cut from one window and pasted into the other. Changes made in the viewer window
cannot be saved. An example of an active view window is as follows:

NOTE: Editing, deleting or compiling Locked for Edit or opened procedures/scripts
Procedures or scripts cannot be deleted if they are Locked for Edit by any user, checked out by
another user or if there is another object that has the same associated procedures or scripts.
Saving or Compiling in the procedure or script edit window cannot be performed if the
procedures or scripts become Locked for Edit by other users after the edit window was opened.
Procedures or scripts cannot be deleted or modified after the edit window has been opened,
unless the Edit Lock has been released. Edit Locks can be released by any user in the Script or
Procedure Properties screen.

To prevent updates, deletes and modifications to certain procedures or scripts, it is best to use
the Check Out functionality instead. For more information about this functionality, please see
section Check Outs and Check Ins.

640

Procedure Loading and Saving
Procedures are normally stored in the WhereScape RED metadata tables. When a procedure is
opened within RED then the data is retrieved from the meta tables. Likewise when the procedure
is saved it overwrites the existing data in the meta tables.

When a procedure is compiled it is also written to the database system tables. In Teradata, a
compiled procedure can be viewed via the Teradata Administrator by doing a Show Definition of
the procedure located in the meta repository database.

Loading data

As mentioned above, when a procedure is opened for editing the information stored in the
metadata is loaded. Additional text can be loaded into the procedure edit window by selecting the
File>Insert from File menu option which allows the browsing and inserting of a PC based file.
Also, paste buffer data can be inserted in the normal manner. In the previous 'Editing' section,
the viewer window was discussed. This window can also be a source of data via cut and paste.

Saving the Procedure

The default File>Save Procedure menu option overwrites the existing procedure in the
metadata. In addition a procedure can be saved to a Windows disk by selecting the File>Write
procedure to disk menu option. All procedures can be written to disk from the main Builder
menu option Backup>Save Procedures to Disk. This option allows the selection of a directory.
The procedures are then written individually into that directory.

Versions

Multiple versions of a procedure can be stored. Once a version is created that version may be read
but may not be updated. Only the current procedure can be edited. There are a number of ways to
create a version of a procedure. These are:

1 By setting Auto-Version before Procedure Compile under Tools>Options>Metadata
Versioning. If set, a new version of a procedure is created whenever the procedure is
compiled.

2 The Procedure Editor menu option File>Save and Version saves a procedure and creates a
version at the same time.

3 Selecting the Version Control>New Version menu option from the context menu when
right clicking a procedure from right pane in the main Builder window.

4 By selecting the Tools>Version Objects>Version All menu option.

When a version is created via method (2) or (3) above, the following screen appears to enable the
definition of the version. If an auto version is created, then the person creating the version is
recorded along with the reason for the version. (e.g. Version on compile, Version on procedure
delete).

641

• The version name/description appears, when the versions are subsequently browsed.
• The Retain until date is set ten years in the future by default.
• The automated deletion of versions is not supported at this stage.

642

Procedure Comparisons
A procedure can be compared to either an earlier version, or to the currently running code as
compiled/stored in the database. The menu option Tools>Compare to Compiled Source enables
the comparison of the procedure being edited with the code currently compiled and running in
the database. If a viewer window is open (see the procedure editing section), then the
Tools>Compare to Viewer menu option compares the contents of the viewer window with the
current code. Therefore, to compare against an older version, we first load the viewer window
with the older version and perform a Compare to Viewer.

The comparison will highlight the differences, as shown in the example below:

In this example the line SET v_step = 100; has been removed from the current code in the edit
window and the remaining three lines have been inserted.

Once the comparison has been completed you can either remove the compare comments or
accept the compare changes. The menu option Tools>Remove Compare Comments removes
the added blue comments and code. The menu option Tools>Accept Compare Changes
implements the changes highlighted. For the above example the line 'SET v_step = 100;' would be
added and the following three lines deleted.

643

Procedure Compilation
From within the procedure editor a procedure can be compiled by selecting the menu option
Compile>Compile or by clicking the Compile icon. If the procedure compiles successfully a
dialog box appears notifying of a successful compile. If the compile fails, then error message
comments is inserted into the procedure code. In the following example, the error messages are
in red and begin with --E--.

Error comments is inserted at each error point. A compile deletes any previous error comments.
Error comments can also be removed through the menu option Compile>Delete Error
messages.

Note: In some instances, the error comments may not be positioned on the correct line. This can
occur as the result of one or more procedure lines being wrapped. Therefore, ensure the
procedure editor window is maximized when dealing with compile errors.

Procedure Running
Only procedures that conform to the WhereScape scheduler syntax can be executed from within
the procedure editor. Select the Execute>Execute menu option or click the Execute the
procedure icon to run the procedure. A procedure must have been compiled in order to run.

The results of the procedure is displayed in a dialog box. The result code and result messages is
displayed, as well as any additional messages.

644

Procedure Syntax
The procedures managed by the WhereScape scheduler require the following standards. If a
function or procedure is being developed that is not called directly by the scheduler then it does
not need to conform with this standard. If however such a procedure or function wants to log
messages to the audit or error logs then if will need the input parameters included in its
parameter list.

Parameters

The procedure must have the following parameters in the following order:

Parameter name Input or Output Data Type

p_sequence Input Integer

p_job_name Input Varchar(256)

p_task_name Input Varchar(256)

p_job_id Input Integer

p_task_id Input Integer

p_return_msg Output Varchar(256)

p_status Output Integer

The input parameters are passed to the procedure by the scheduler. If the procedure is called
outside the scheduler, then the normal practice is to pass zero (0) in the sequence, job_id and
task_id. A description of the run can be passed in the job name and the task name is typically the
name of the procedure.

The output parameters must be populated by the procedure on completion. The return_msg can
be any string up to 256 characters long that describes the result of the procedures execution. The
status must be one of the following values:

Status Meaning Description

1 Success Normal completion

-1 Warning Completion with warnings

-2 Error Hold subsequent tasks dependent on this task

-3 Fatal Error Hold all subsequent tasks

Note: Multiple SQL statements can be separated using the "end of statement" indicator. This is
<EOS> by default but can be configured in Tools>Options>Code Generation>General.

645

Procedure Properties
The properties screen for procedures and scripts is the same. A procedure can be renamed by
changing the name field.
If a procedure is renamed, then it is also be necessary to change the procedure name within the
actual code. The purpose and owner fields are purely informational.

In the example above, the Delete Lock check box is not selected. Selecting this check box
prevents the procedure from being deleted through the Delete menu option. It also prevents
the procedure from being overwritten, if a new procedure generation is requested.

Also in the example above, the procedure is currently being edited and is shown as being Locked
for Edit by "WhereScape Documentation". If procedures or scripts have already been opened for
editing, they can only subsequently be opened for viewing.
Edit locks and delete operations for procedures and scripts, as well as the regeneration and drop
of procedures are not permitted if the object is currently Locked For Edit by another user.

The Release Edit Lock button to the right of the edit lock message, clears the edit lock. If
WhereScape RED, the database or the PC crashes when a procedure is open, then the check out
needs to be cleared through this screen.

646

The Edit Lock Reason is for information only, and can be used as another comment field if
desired.

The Type drop list enables the selection of Block, Function or Procedure:

Selecting a type of Block enables you to execute a SQL block against another connection.

An additional field on the Properties screen—Default Connect then enables you to select the
connection against which the SQL block will be executed.

647

Macros
WhereScape RED can also retrofit, run, schedule and generate Teradata macros.

Template macros can be generated for moving data into simple staging tables without surrogate
keys. A macro is generated by selecting the *** Create New Macro *** option from a drop-down
box that is used to display the update procedure in a staging table's properties.

A utility is available from WhereScape to mass retrofit large numbers of existing Teradata macros
into the WhereScape RED metadata.

BTEQ Scripts
WhereScape RED can also retrofit, run, schedule and generate Teradata BTEQ scripts.

Template bteq scripts can be generated for moving data into simple staging tables without
surrogate keys. A BTEQ script is generated by selecting the *** Create New Bteq *** option from
a drop-down box that is used to display the update procedure in a staging table's properties.

Script Generation
WhereScape RED generates template scripts to assist in the loading of textual files from
Windows. These scripts are generated when a Windows file is dragged into a Load table target
and one of the two 'Script based' file load options is chosen. Typically, script loads are used when
some complexity prevents the use of the standard file based load. In such a case, the script needs
modification.

Note: Windows script supports both DOS Batch and PowerShell scripts (see "Windows
PowerShell Scripts" on page 653).

648

Script Generation (Windows/Teradata)
A sample Windows script for Teradata is as follows. The key components of the script are
described below:

649

650

 WhereScape RED TIP: Parameters
Parameters can also be added to scripts to facilitate deployment processes or environment
changes without the need to regenerate scripts. They can be added to scripts of Load and Export
tables.
For example: add $P<ParameterName>$ to the script where P is the parameter indicator as
shown below.
Before adding a Parameter to the script, create the desired parameter(s) in Tools>Parameters>
Add Parameter.

The script makes use of a number of environmental variables. These variable are acquired from
both the table and connection properties. These variables are established in the environment by
either RED or the scheduler. If the script is to be executed outside of RED or scheduler control
then these variables will need to be assigned.

The first section of the script defines the variables. The second section provides a timed wait for
the load file to arrive. By default, the WAITSECS variable is set to zero, so that no wait occurs.
This can be set to a number of seconds that the script is to wait for the file to arrive.

651

Once the wait has completed, either through a time expiry or through the location of the file, we
check that the file is present, and if not found report back a warning. This warning can be
changed to an error by changing the first echo statement to "-2". See the syntax section for more
information.

When a trigger file is specified the script looks for a trigger file, and will exit with the specified
status if the file is not found. The following code is included if a trigger file is present.

Such a file (trigger) contains control information about the main file to be loaded and arrives
after the main file to indicate that the main file transfer has completed and that it is okay to load.
This section loads the contents of the trigger file into the Parameters table, so that the table can
be validated. See the section on Post Load procedures for an explanation on how trigger files are
used to validate a load file.

652

This section calls Fastload, Multi-Load or TPT to load the file. It makes use of a temporary file to
build as a control file and then calls Fastload, Multi-Load or TPT to load the data. Note that the
load is actually in a for loop. Wild card file names can be used to load multiple files. Each file to
be loaded must have the same format.

Note that the data being loaded is appended to the database table. As part of the scheduler run
the load table is truncated if the property for truncation is set. In this way multiple files can be
loaded into the database table.

If this script is to be executed outside the control of the WhereScape RED scheduler then a
truncate statement may need to be performed on the database load table. This would normally be
placed before the 'for loop' and would look something like the following:

echo DELETE FROM %LOAD_DB%.%LOAD_TABLE% ALL; | bteq .Logon
%DATABASE%/%USER%,%PWD% >> %FILEAUD%

This next section handles the rename and potential looping. The first block of code renames the
file and also the trigger file if appropriate. This code is only generated if the rename fields in the
file attributes are populated.
The goto label_load statement 9 lines from the end can be used if all the files in a wild card file
load are required. Simply uncomment this goto statement and the script will load each file in the
wild card.

653

654

Windows PowerShell Scripts
In addition to the conventional Windows scripting and other tools, WhereScape RED also
supports Windows PowerShell scripts for loading data into a WhereScape RED managed Data
Warehouse, as well as for exporting data from a WhereScape RED managed Data Warehouse.

The Windows PowerShell command line and scripting environment was introduced by Microsoft
in Windows 7. For more information about PowerShell, please refer to the Microsoft TechNet
website (https://technet.microsoft.com/en-us/library/dd742419.aspx).

Note that WhereScape RED does not automatically create the PowerShell scripts, you must write
them either directly via the WhereScape RED script editor or via a template that generates a
PowerShell script. Each method is described below:

Via the WhereScape RED Script Editor

You can manually write the PowerShell script from scratch, using the Script Editor. You need to
create a Host Script object and set the script type to PowerShell script from the Host Script
Properties screen.

You can then open the blank Host Script created of type PowerShell Script to write your own
script, or you can use the sample PowerShell scripts in WhereScape RED, which can be generated
by selecting Tools > Create Template Script from the Script Editor screen.

655

The contents generated is an actual PowerShell script syntax that you can use to load data into a
WhereScape RED managed Data Warehouse. You can also modify it and use it as a starting
point to write your own PowerShell script for Load or Export objects.

Via the Stub Template

WhereScape RED also provides the Template object wsl_common_powershellscript_stub which
is a basic PowerShell script type stub template that serves as guide on the use of a template to
generate a PowerShell script.

656

Additional PowerShell Templates can be downloaded from the WhereScape website
(https://www.wherescape.com/support/software-downloads-documentation/templates/).

657

You can also create your own Template object and select PowerShell Script under the Type drop-
down of the Template Properties screen.

Similar to the WhereScape RED Script Editor method described above, you can edit the template
created to write your own script or open an existing PowerShell script to copy its contents to your
template.

Note:
WhereScape RED uses the 32-bit version of PowerShell by default. To use the 64-bit version,
the following code must be added as the first line of the script. The script is relaunched and will
be run in 64-bit version.

658

Script Editing
WhereScape RED includes a script editor which enables the maintenance of any host scripts
within the data warehouse. The editor is invoked by double-clicking on a script name in the left
pane or by right-clicking on the script name and selecting Edit the Script.

Indenting code

The tab character inserts four spaces into the text. A shift/tab removes four spaces.

Cut, Copy, Paste and Delete

The normal Windows cut, copy, paste and delete functions are available either through the
toolbar or via the right-click pop up menu.

Indenting a block of text

A selected block of text can be indented by four spaces by depressing the tab character. Each tab
indents by a further four spaces. A shift/tab removes four spaces from the front of each line in the
selected block.

Viewing other scripts

During the editing process it is possible to pop up a window containing other scripts. This
window enables cut and paste operations. In such a way, it can be used as a work area or as a
source of code. Select the Tools>View Script or Template menu option to bring the viewer
window up. A dialog appears.

A number of drop-down lists can be chosen from. Once an item is selected the viewer loads the
code and moves to the right side of the edit window. The various options are:

• Version: A previously saved version of this script. The description and time are shown.
• Script: Some other script stored within the WhereScape metadata.
• Template: A template script as defined in the WhereScape metadata.

Once an item is chosen the viewer appears on the right side of the edit window. The viewer or the
main edit window can receive the focus by clicking the mouse within the appropriate window.
Code can be cut from one window and pasted into the other. Any changes made in the viewer
window cannot be saved.

NOTE: Editing, deleting or compiling Locked for Edit or opened procedures/scripts
Procedures or scripts cannot be deleted if they are Locked for Edit by any user, checked out by
another user or if there is another object that has the same associated procedures or scripts.
Saving or Compiling in the procedure or script edit window cannot be performed if the
procedures or scripts become Locked for Edit by other users after the edit window was opened.
Procedures or scripts cannot be deleted or modified after the edit window has been opened,
unless the Edit Lock has been released. Edit Locks can be released by any user in the Script or
Procedure Properties screen.

To prevent updates, deletes and modifications to certain procedures or scripts, it is best to use
the Check Out functionality instead. For more information about this functionality, please see
section Check Outs and Check Ins.

659

Script Testing
When a host script is scheduled, it is run in the scheduler environment. Therefore, a UNIX
scheduler must be available to run a UNIX script and only a Windows scheduler can run a
Windows script.

It is possible to test a script interactively.

A script is invoked via the Execute>Execute the Script menu option. You can also right click the
script from the Host Script objects list on the left pane and select Execute Script from the
context menu.

The output from the script is shown in a pop-up dialog box.

Script Syntax
There are a number of conventions that must be followed if a host script is to be used by the
WhereScape scheduler. These conventions are:

1 The first line of data in 'standard out' must contain the resultant status of the script. Valid
values are '1' to indicate success, '-1' to indicate a warning condition occurred but the result is
considered a success, '-2' to indicate a handled error occurred and subsequent dependent
tasks should be held, -3 to indicate an unhandled Failure and that subsequent dependent
tasks should be held.

2 The second line of data in 'standard out' must contain a resultant message of no more than
256 characters.

3 Any subsequent lines in 'standard out' are considered informational and are recorded in the
audit trail. The normal practice is to place a minimum of information in the audit trail. All
bulk information should be output to 'standard error'.

4 Any data output to 'standard error' will be written to the error/detail log. Both the audit log
and detail log can be viewed from the WhereScape RED tool under the scheduler window.

Example:

In the following example the first line '@echo off' prevents unwanted information from being
reported to standard out. A Multi-Load script file is built up (echo statements). The mload
command is then executed to run the load.

660

@echo off
echo Loading c:\temp\budget.txt >> wsl_load_budget100001.aud
echo .Logtable WslWarehouse.load_budget_e1; > wsl_load_budget100001.ctl
echo .Logon DemoTDAT/WslWarehouse,wsl; >> wsl_load_budget100001.ctl
echo DROP TABLE WslWarehouse.ET_load_budget; >>
wsl_load_budget100001.ctl
echo DROP TABLE WslWarehouse.UV_load_budget; >>
wsl_load_budget100001.ctl
echo DROP TABLE WslWarehouse.WT_load_budget; >>
wsl_load_budget100001.ctl
echo .Begin Import Mload tables WslWarehouse.load_budget >>
wsl_load_budget100001.ctl
echo Worktables WslWarehouse.WT_load_budget >>
wsl_load_budget100001.ctl
echo Errortables WslWarehouse.ET_load_budget >>
wsl_load_budget100001.ctl
echo WslWarehouse.UV_load_budget; >>
wsl_load_budget100001.ctl
echo .Layout Transaction; >> wsl_load_budget100001.ctl
echo .Field product_code * VARCHAR(50); >> wsl_load_budget100001.ctl
echo .Field customer_code * VARCHAR(33); >> wsl_load_budget100001.ctl
echo .Field budget_quantity * VARCHAR(50); >>
wsl_load_budget100001.ctl
echo .Field budget_sales_value * VARCHAR(50); >>
wsl_load_budget100001.ctl
echo .Field budget_date * VARCHAR(50); >> wsl_load_budget100001.ctl
echo .DML Label Inserts; >> wsl_load_budget100001.ctl
echo INSERT INTO WslWarehouse.load_budget >> wsl_load_budget100001.ctl
echo (product_code>> wsl_load_budget100001.ctl
echo , customer_code>> wsl_load_budget100001.ctl
echo , budget_quantity>> wsl_load_budget100001.ctl
echo , budget_sales_value>> wsl_load_budget100001.ctl
echo , budget_date>> wsl_load_budget100001.ctl
echo) >> wsl_load_budget100001.ctl
echo VALUES >> wsl_load_budget100001.ctl
echo (:product_code>> wsl_load_budget100001.ctl
echo , :customer_code>> wsl_load_budget100001.ctl
echo , :budget_quantity>> wsl_load_budget100001.ctl
echo , :budget_sales_value>> wsl_load_budget100001.ctl
echo , :budget_date (FORMAT 'DD-MMM-YYYY') >>
wsl_load_budget100001.ctl
echo); >> wsl_load_budget100001.ctl
echo .Import Infile 'c:\temp\budget.txt' >> wsl_load_budget100001.ctl
echo From 2 >> wsl_load_budget100001.ctl
echo Format Vartext '^,' >> wsl_load_budget100001.ctl
echo Layout Transaction >> wsl_load_budget100001.ctl
echo Apply Inserts; >> wsl_load_budget100001.ctl
echo .End Mload; >> wsl_load_budget100001.ctl
echo .Logoff; >> wsl_load_budget100001.ctl
mload -b < wsl_load_budget100001.ctl >> wsl_load_budget100001.aud
SET ERRLEV=%errorlevel%
IF %ERRLEV% EQU 0 GOTO LABEL_OKAY
IF %ERRLEV% LEQ 4 GOTO LABEL_WARNING
:LABEL_FAIL
echo -3
IF %ERRLEV% EQU 8 echo Load Failed. A user error occurred in the
loader.
IF %ERRLEV% EQU 12 echo Load Failed. A fatal error occurred in the
loader.

661

IF %ERRLEV% EQU 16 echo Load Failed. No message destination available
from the loader.
type wsl_load_budget100001.aud >&2
:ERR_EXIT
exit
:LABEL_WARNING
echo -1
echo Load Completed Normally, with warnings from the loader.
:LABEL_OKAY
echo 1
echo Load Completed Normally.
type wsl_load_budget100001.aud
exit

Script Environment Variables
The following environment variables are available for all script loads and script exports, both
Windows and UNIX/Linux.

All load scripts

The following variables are available in all load scripts:

Windows variable

UNIX/Linux
variable

Description

WSL_LOAD_FULLNA
ME

LOAD_FULLNAME The fully-qualified load table name.

WSL_LOAD_TABLE LOAD_TABLE The unqualified load table name.

WSL_LOAD_SCHEMA LOAD_SCHEMA

The schema for the load table.

Note: A trailing dot is appended for SQL Server or Oracle
due to historical usage.
A trailing dot is not appended for any other database type
due to historical usage.

However, it is better not to assume the trailing dot is or
isn't appended by using the variable like this, when it is
not empty:

OS

If no trailing dot is
wanted

If a trailing dot is
wanted

Windows !WSL_LOAD_SCHEMA
:.=!

!WSL_LOAD_SCHEMA
:.=!.

UNIX/
Linux

${LOAD_SCHEMA%.} ${LOAD_SCHEMA%.}
.

662

Windows variable

UNIX/Linux
variable

Description

WSL_LOAD_DB LOAD_DB The name of the database for the load table.

WSL_TEMP_DB TEMP_DB Teradata: The name of the database for load temporary
tables.

PDW: The name of the staging database for the load.

Others: Not Used.

WSL_TGT_DSN TGT_DSN The ODBC data source name (DSN) for the load table's
storage connection.

WSL_TGT_SERVER TGT_SERVER The server for the load table's storage connection.

WSL_TGT_DBPORT TGT_DBPORT The database port for the load table's storage connection.

WSL_TGT_DBID TGT_DBID The Database ID property of the load table's storage
connection.
For Teradata this is the Teradata Director Program ID
(TDPID).
For Oracle this is the Oracle SID or TNS Name.

WSL_TGT_USER TGT_USER The user id for the load table's storage connection.

WSL_TGT_PWD TGT_PWD The password for the load table's storage connection.

All load scripts from Database or ODBC connections

In addition to the variables in the previous table, the following variables are available in all load
scripts from Database or ODBC connections:

Windows variable

UNIX/Linux
variable

Description

WSL_SRC_DSN SRC_DSN The ODBC data source name (DSN) for the source
connection.

WSL_SRC_SERVER SRC_SERVER The server for the source connection.

WSL_SRC_DBPORT SRC_DBPORT The database port for the source connection.

WSL_SRC_DBID SRC_DBID The Database ID property of the source connection.
For Teradata this is the Teradata Director Program ID
(TDPID).
For Oracle this is the Oracle SID or TNS Name.

WSL_SRC_DB SRC_DB The name of the database for the source connection.

663

Windows variable

UNIX/Linux
variable

Description

WSL_SRC_SCHEMA SRC_SCHEMA

The Source Schema property of the load.
Note: The property is fetched without modification, so
there may or may not be a trailing dot depending on how it
is configured.

However, it is better not to assume the trailing dot is or
isn't appended by using the variable like this, when it is not
empty:

 OS

If no trailing dot is
wanted

If a trailing dot is
wanted

Windows !WSL_SRC_SCHEMA:.
=!

!WSL_SRC_SCHEMA:.
=!.

UNIX/
Linux

${SRC_SCHEMA%.} ${SRC_SCHEMA%.}.

WSL_SRC_USER SRC_USER The user id for the source connection.

WSL_SRC_PWD SRC_PWD The password for the source connection.

All export scripts

The following variables are available in all export scripts:

Windows variable

UNIX/Linux
variable

Description

WSL_EXP_NAME EXP_NAME The export object name.

WSL_EXP_FULLNA
ME

EXP_FULLNAME The fully-qualified export table name.

WSL_EXP_TABLE EXP_TABLE

The unqualified export table name.
Note: For Windows script exports from PDW, this variable
is initialized with the fully-qualified export table name, due
to historical usage.

To enable this variable to be uniformly described and used
as the unqualified export table name, an additional
variable WSL_EXP_SIMPLENAME is created.
This allows the following command to be explicitly added
to the top of the script by the script author, to be executed
before all other processing:
if defined WSL_EXP_SIMPLENAME (SET WSL_EXP_TABLE=!WSL_EXP_SIMPLENAME!) else SET

WSL_EXP_TABLE=

664

Windows variable

UNIX/Linux
variable

Description

After such a command is executed, the
variable WSL_EXP_TABLE will contain the unqualified
export table name.

WSL_EXP_SCHEMA EXP_SCHEMA

The schema for the export table.

Note: A trailing dot is appended for SQL Server or Oracle
due to historical usage.
A trailing dot is not appended for any other database type
due to historical usage.

However, it is better not to assume the trailing dot is or
isn't appended by using the variable like this, when it is not
empty:

 OS

If no trailing dot is
wanted

If a trailing dot is
wanted

Windows !WSL_EXP_SCHEMA:
.=!

!WSL_EXP_SCHEMA:
.=!.

UNIX/
Linux

${EXP_SCHEMA%.} ${EXP_SCHEMA%.}.

WSL_EXP_DB EXP_DB The name of the database for the export table.

WSL_TEMP_DB TEMP_DB Teradata: The name of the database for export temporary
tables.

Others: Not used.

WSL_SRC_DSN SRC_DSN The ODBC data source name (DSN) for the export table's
storage connection.

WSL_SRC_SERVER SRC_SERVER The server for the export table's storage connection.

WSL_SRC_DBPORT SRC_DBPORT The database port for the export table's storage connection.

WSL_SRC_DBID SRC_DBID The Database ID property of the export table's storage
connection.

For Teradata this is the Teradata Director Program ID
(TDPID).
For Oracle this is the Oracle SID or TNS Name.

WSL_SRC_USER SRC_USER The user id for the export table's storage connection.

WSL_SRC_PWD SRC_PWD The password for the export table's storage connection.

665

All scripts

In addition to the specific variables in the previous tables, the following variables are available in
all scripts:

Windows variable

UNIX/Linux
variable

Description

WSL_META_DSN META_DSN The ODBC data source name (DSN) for the meta-repository
connection.

WSL_META_SERVE
R

META_SERVER The server for the meta-repository connection.

WSL_META_DBID META_DBID The Database ID property of the meta-repository
connection.

For Teradata this is the Teradata Director Program ID
(TDPID).
For Oracle this is the Oracle SID or TNS Name.

WSL_META_DB META_DB The name of the database for the meta-repository
connection.

WSL_META_SCHEM
A

META_SCHEMA

The meta-repository table qualifier, with a trailing dot.

For SQL Server and DB2 this is the schema for the meta-
repository.
For Teradata and Oracle this is not actually a schema
name.

Note: A trailing dot is appended due to historical usage.
However, it is better not to assume the trailing dot is or
isn't appended by using the variable like this, when it is not
empty:

OS

If no trailing dot is
wanted

If a trailing dot is
wanted

Windows !WSL_META_SCHEMA
:.=!

!WSL_META_SCHEMA
:.=!.

UNIX/
Linux

${META_SCHEMA%.} ${META_SCHEMA%.}
.

WSL_META_USER META_USER The user id for the meta-repository connection.

WSL_META_PWD META_PWD The password for the meta-repository connection.

WSL_WORKDIR WORKDIR Windows: The work directory defined in the Windows
connection.
UNIX/Linux: The work directory defined in the UNIX/Linux
or Hadoop connection.

WSL_SEQUENCE SEQ A unique sequence number for the load or export task.

666

Windows variable

UNIX/Linux
variable

Description

WSL_PARAMnnn PARAMnnn Any parameters that start with the load table or export
object name.

Example:
A table called load_abc has a parameter
called load_abc_server defined.
In this case, a variable
called WSL_PARAM_SERVER (Windows)
or PARAM_SERVER (UNIX/Linux) will be created.

667

Calling a Batch File from a Script
Below is an example RED host script which calls a batch file:

@ECHO OFF
SETLOCAL ENABLEDELAYEDEXPANSION
SETLOCAL ENABLEEXTENSIONS
CALL c:\temp\MyBatchFile.bat > c:\temp\MyBatchFile.log 2>&1
IF %ERRORLEVEL% EQU 0 GOTO LABEL_OKAY
ECHO -2
ECHO Batch file returned an error code of %ERRORLEVEL%
TYPE c:\temp\MyBatchFile.log
EXIT
:LABEL_OKAY
ECHO 1
ECHO Batch file completed successfully
TYPE c:\temp\MyBatchFile.log

Where "c:\temp\MyBatchFile.bat" contains this:

ECHO Hello
SET ERRORLEVEL=0

Create the Host Script in RED:

668

Edit the Script and enter the following:

Save the Script:

669

When the script is executed, you will see the following results:

Scheduling Scripts
When a host script is scheduled, it is run in the scheduler environment. Therefore a UNIX
scheduler must be available to run a UNIX script and only a Windows scheduler can run a
Windows script.
It is important to set the default connection on the Properties screen for that script. Right-click
on the host script in the left pane and select Properties.

Set Default Connect to either Windows or Unix and click OK.

670

Note: If you fail to set the default connection for the host script, you will receive a return
message of Invalid Host Type when the host script is executed.

There are a number of conventions that must be followed if a host script is to be used by the
WhereScape scheduler. These conventions are:

1 The first line of data in 'standard out' must contain the resultant status of the script. Valid
values are '1' to indicate success, '-1' to indicate a warning condition occurred but the result is
considered a success, '-2' to indicate a handled error occurred and subsequent dependent
tasks should be held, -3 to indicate an unhandled Failure and that subsequent dependent
tasks should be held.

2 The second line of data in 'standard out' must contain a resultant message of no more than
256 characters.

3 Any subsequent lines in 'standard out' are considered informational and are recorded in the
audit trail. The normal practice is to place a minimum of information in the audit trail. All
bulk information should be output to 'standard error'.

4 Any data output to 'standard error' will be written to the error/detail log. Both the audit log
and detail log can be viewed from the WhereScape RED tool under the scheduler window.

671

Manually created scripts
Individual scripts can also be manually created in RED to perform and schedule tasks that are not
related to load tables.
The example below shows a minimal script that will run successfully.

Please note that you need to use the following codes to determine the script's results meaning. It
is important that one of these codes is the first output of the script.

Output Description

Result Number

Output Result Number:

1 Success.

-1 Warning.
-2 Error.

-3 Fatal/Unexpected Error.

673

Templates provide the ability to customize automatically generated code within RED. This
feature is most suited to users that would like to customize automatically generated code or
would like to expand RED to support non-native database platforms.

Creating templates is an advanced function that requires intimate knowledge of RED operations
and metadata structure. WhereScape recommends that you contact our consulting team to assist
with this feature. However, should you wish to use this feature independently, example templates
and up-to-date reference information is available on our website:

https://www.wherescape.com/support/software-downloads-documentation/wherescape-
red/templates/

Some templates may be included in your RED installation, depending on your license.

Each template is assigned a type and a target database, these properties are used to assist with
filtering when associating table operations to templates. RED supports templates for the
following operations:

Operation Database Template Type

Create DDL All database types DDL

Export Script All database types Windows Script

PowerShell Script

Unix Script

Olap/XMLA Script

Load Script All database types Windows Script

PowerShell Script

Unix Script

Olap/XMLA Script

Update Procedure
Custom Procedure

Post Load Procedure

Custom

Block

PowerShell Script

Hive Block

SQL, Teradata, Oracle and PDW Block

Procedure

C h a p t e r 2 5

Templates

674

Notes:
- Script-based loads and exports on Windows supports both DOS Batch and PowerShell scripts
(see "Windows PowerShell Scripts" on page 653).
- Refer to Rebuilding Update Procedures (on page 199) for details on generating an update
procedure via a template.

Utility type templates can contain common code for use by other templates.

Templates are written in the Pebble template language, for more information on Pebble see
http://www.mitchellbosecke.com/pebble/documentation/guide/basic-usage.

TIP: Detailed logs can be produced during template evaluation by typing FULLLOG in the
Notes of the relevant connection.

In This Chapter

Template Properties ... 674
Template Editor .. 676
Template Usage ... 681

675

Template Properties
The properties screen for a template is shown below.

Name, Purpose and Author fields should be completed to provide background information on
the template, these fields are purely informational.

Created and Last Update fields provide date information on the template.

The Target DB sets the type of database connections for this template. The template will only be
selectable for an operation when the Target DB field matches that of the object. Target DB is
restricted based on your license.

676

• Common (applies to all databases)
• Custom
• DB2
• Greenplum
• Hive
• Netezza
• Oracle
• PDW
• SQL Server
• Tabular
• Teradata

NOTE: Hive and Custom update procedure templates only support Block update procedures so
you should create a block template for these.

The Type field informs RED what this template can be used for. This can be set to one of the
following:

• Block
• DDL
• Function
• OLAP (XML/A) Script
• PowerShell Script
• Procedure
• Unix Script
• Utility
• Windows Script

677

Template Editor
Right-click on a template and select 'Edit Template' or 'View Template' to open the Template
Editor.

678

Evaluating an API Outline Template
An API Outline Template is available to output all object properties relevant to the current
object. Upon evaluation of this template, the status of each property is generated and printed to
the script or procedure file.

NOTE: Template evaluation usually generates a script or procedure file, but the API Outline
Template generates plain text. The output of this template is intended to be viewed or copied to a
text file, it cannot be executed as a script.

To evaluate an API Outline Template:

1 Create a new template. The template can normally be of any type, but in this example, we
will use the DDL template type because viewing the evaluation of DDL templates is simple.
Set Target DB to your source connection database type. In this example, we will set the
Target DB to SQL Server because the load table we are evaluating is stored on a SQL Server
connection.

679

2 Open the template in the Template Editor.

3 Click Tools > Create API Example Outline. The API Example Outline text is added to the
blank template.

680

4 Save and close the template.

5 Open the Properties dialog for the Load Table you wish to evaluate.

6 In the Storage tab, select the template you created in the Create DDL Template drop-down
box.

7 Open the Override Create DDL tab. If the Override DDL field is populated with a custom
DDL statement, copy and paste this statement to a text file for backup purposes.

8 Click the Derive DDL button. A warning dialog box displays informing you that the

association of the DDL template with this table will be saved to the metadata, click OK.

681

9 The results of the API Outline Template are printed to the Override DDL text box. Cut or
copy this text to a text editor and save as a text file for reference purposes.

10 Click Cancel in the Load Table properties dialog.

NOTE: Ensure the Load Table properties are returned to their previous state. The default value
for Storage>Create DDL Template is None and the Overide Create DDL>Override DDL field is
left blank to use the automatically generated DDL statement or ensure your custom DDL
statement remains.

682

Template Usage
If a template exists of the correct Type and Target DB, templates can be specified and evaluated
as follows:

Operation Location to Specify the Template Notes

Create DDL Table Properties>Storage>Create
DDL Template

DDL will be evaluated for the object at
runtime if a template is specified in the
Storage tab.
Alternatively, clicking the Derive DDL
button in the Override Create DDL tab
will generate Override DDL based on
the specified template.
IMPORTANT: If Override DDL is
specified, the Override DDL will be used
at runtime.

Export Script Export Object Properties>File
Attributes>Script Template

Load Script Load Table Properties>Source>
Script Template

Update Procedure When building the Update
Procedure, specify the Template
field on the Update Build
Options>Processing tab.

If a Block template is specified, a SQL
block will be generated.

If a Procedure template is specified an
update procedure will be generated.

To check which Operations are supported by Templates on your Target DB, see Templates (on
page 673).

683

Windows PowerShell Templates
PowerShell Template (wsl_common_powershellscript_stub):

You can use the basic PowerShell stub template available in WhereScape RED that serves as guide
on the use of a template to generate a PowerShell script.

Additional PowerShell Templates can be downloaded from the WhereScape website
(https://www.wherescape.com/support/software-downloads-documentation/templates/).

Notes:
The PowerShell stub template (wsl_common_powershellscript_stub) is listed under the Template
objects pane, along with the other templates available in WhereScape RED. If this stub
template is not visible after installing/upgrading WhereScape RED, use the WhereScape RED
Setup Administrator to Validate the Metadata Repository. For more information, please refer to
the WhereScape RED Installation Guide.

WhereScape provides a Windows application extension called WslMetadataServiceClient that can
be used from Powershell templates to simplify access to RED metadata content. This DDL is
accessed from WSL provided templates in custom database enablement packs. Please contact
your WhereScape customer representative, if you require details on how to use this DDL.

685

The scheduler is accessible by clicking the button from the toolbar. It is also
available as a stand alone utility. In this way operators can be given access to the scheduler
without gaining full access to the data warehouse.

The scheduler runs under Windows (as a system service). It processes pre-defined jobs, recording
the success, failure or otherwise of the job.

Audit trail

Specific information relating to the tasks in the job are recorded to the audit trail. Generally only
summary information is written to this audit trail. The contents of the audit trail are maintained
even after a job is deleted.

Error trail

Detail or error information is written to the error trail. The contents of the error trail are deleted
when the job is deleted.

Administration Views

It is possible to view the status of a job without using the WhereScape RED product. Three views
are provided to assist in this undertaking. They are ws_admin_v_audit, ws_admin_v_error and
ws_admin_v_sched. Queries can be issued using these views to see the results or status of a job.

In This Chapter

Scheduler Options .. 686
Scheduler States ... 691
Scheduling a Job ... 693
Working with Jobs ... 699
Stand Alone Scheduler Maintenance .. 745
SQL to return Scheduler Status .. 748
Reset Columns in Job and Task View .. 749
Stopping a Linux/UNIX Scheduler from within RED .. 750

C h a p t e r 2 6

Scheduler

686

Scheduler Options
An example of the Scheduler screen is shown below.

Toolbar/Jobs menu

Quick access to some job categories are in the toolbar. The complete options are listed under the
Jobs menu and while most are self-explanatory they are described below:

Object Description

All jobs All jobs are listed in the middle pane

Scheduled jobs In the middle pane lists those jobs that are waiting to run or are on
hold.

Last 24 hours Lists the jobs that have run or started to run during the last 24
hours.

Prior 24 hours Lists the jobs that ran during the previous 24 hours.

This weeks Jobs Lists the jobs that have run or are scheduled to run during the
current week

Last weeks Jobs Lists the jobs that ran during the last week.

My Jobs Lists the jobs you have scheduled or have run.

687

Object Description

Job Name Filter Lists the jobs whose names match the filter supplied. This filter only
works as an appended filter to the main filter selected under Jobs,
e.g first enter a filter for Job Name Filter or select a filter from the
drop-down list; and then choose your main filter under Jobs, e.g. All
Jobs, Scheduled Jobs etc.

Recent audit trail

Today's audit trail

Provides listings from the audit trail. The information is useful
when a job fails to start or enters some other unknown state.
Generally the audit trail entries for a job can be found by drilling
down into the job itself.

Scheduler status Lists all schedulers and displays their current status. The status is
updated every few minutes, and a right menu option allows the
polling of a scheduler for status, and the termination of a scheduler.

Top pane

The top pane shows the details of the jobs. Information covers:

Column Description

Job name The name given to the job when created.

Status The status of the job. Refer to the following section for the various
status values.

Sequence This is a unique number assigned to each job iteration and job. If
you enter a new job it will acquire a new sequence number. In
normal daily processing when no new jobs have been created
sequence numbers will be sequential.

Start and Finish times As the names suggest, the start and finish dates and times for the
job.

Elapsed time The time that elapses from start to finish of a job.

Ok These are success messages written to the audit trail.

Inf Informational messages written to the audit trail about the the
running of the job.

Det Lines written to the detail or error logs

Warn The number of warnings written to the audit trail.

Err The number of error messages written to the audit trail.

Who The initials of the person who scheduled the job.

Additional fields can be added via the Tools>Select Job Report Fields option

688

Middle pane

The middle pane shows the tasks related to a selected job. Task information available includes:

Column Description

Task The object name

Action The action to be done to the object

Status Status of the task

Sequence This is a unique number assigned to each job iteration and job. If you
enter a new job it will acquire a new sequence number. In normal daily
processing when no new jobs have been created sequence numbers will
be sequential.

Start and Finish
times

As the names suggest, the start and finish dates and times for the task

Elapsed time The time that elapses from start to finish of a task.

Info Informational messages written to the audit trail about the the running
of the job.

Detail Lines written to the detail or error logs

Warning The number of warnings written to the audit trail.

Result Result of the task

Additional fields can be added via the Tools>Select Task Report Fields option

Bottom pane

The bottom pane shows the audit trail of a selected task/job. Audit trail information includes:

Column Description

Task The object name

Status The status of the message

Sequence This is a unique number assigned to each job iteration and job. If you
enter a new job it will acquire a new sequence number. In normal daily
processing when no new jobs have been created sequence numbers will
be sequential.

Timestamp Time of message output

Message The message

DB Message Message from database

Job Job relating to this message

689

Auto

Auto Refresh

Use auto refresh to automatically refresh all jobs.

Set Refresh Options

Use this setting to control the maximum number of rows that are displayed via the Auto Refresh
option as well as the display refresh interval.

When clicking the Set Refresh Options, the settings dialog allows adding a display limit. The
display of jobs when on auto refresh will stop at the selected number of rows, so when set to 100,
the refresh will stop after first 100 rows (jobs) are returned.

If 0 is selected in the Specify the Limit of Entries to Display, then all rows (jobs) will be displayed.

690

Tools

Select Job Report Fields
The Select Job Report Fields menu option in the scheduler pane enables users to select some
extra fields such as Scheduler, Threads and Frequency fields into the job report.

1 To make these fields available, click Tools->Select Job Report Fields from the top pane.

2 Select the fields you want to add to your job report from the menu and drag them to where
you want to place them on the report.

NOTE: The "Frequency" field is only populated for scheduled jobs. If selected, it will return
blank results for running or completed jobs.

691

Scheduler States
A scheduled job can have the following states:

• Hold
• Waiting
• Blocked
• Pending
• Running
• Failed
• Failed - Aborted
• Completed

State Description

Hold The job is on hold. It can be edited and its state changed in order to
release the job.

Waiting

The job is waiting to start, or waiting for its scheduled time to arrive,
or waiting for a scheduler to become available.

Blocked The job is blocked as a previous instance of the same job is still
running.

Pending This is the first stage of a running job. The scheduler has identified the
job as ready to start and has allocated a thread, or sub task to process
the job. A job is in this state until the thread or sub tasks begins
processing. If a job stays in this state then the scheduler thread has
failed for some reason. The logs can be checked on either the Windows
server on which the scheduler is running.

Running The job is currently running. Double-click on the job name in the right
pane to drill down into the specific tasks.

Failed A failed job is one that had a problem. It can be restarted from the
point of failure and is considered to be running unless subsequently
aborted.

Failed - Aborted The job has been aborted after having failed. Once in this state a job
cannot be restarted. The job exists then only as a log of what occurred
and is no longer regarded as a job.

Completed The job has successfully completed, possibly with warnings. Once in
this state, a job cannot be restarted. The job exists then only as a log of
what occurred and is no longer regarded as a job.

Note: When a job fails and drilling down does not show any errors against the tasks, right-click
on the job and View Audit Trail. The job may have failed because of an error in the JOB level.

692

A scheduled task can have the following states:

• Waiting or Blank
• Held
• Running
• Failed
• Completed
• Error Completion
• Bad Return Status

State Description

Held The task has been held due to a prior dependency failure. The problem
must be rectified and the job restarted.

Waiting (Blank)

Tasks that are waiting to run either due to a shortage of threads, or prior
dependencies normally have a blank status.

Running The task is currently running.

Failed The task has had a fatal error. Any dependencies on this task will be held.
Double click on the task to see more detail error information or review the
audit and error/detail log for the job.

Completed The task has completed successfully.

Error Completion The task has completed with a handled Error. Any dependent tasks will be
held, and the job must be restarted when the problem is rectified.

Bad Return Status The task has returned an unknown status. This normally occurs with
script files that produce unexpected information. The rule for scripts is
that the first line returned must be a status of either 1, -1, -2, or -3. The
second line is a message detailing the result. If the first line does not
contain one of these four values, then this status will be returned and
dependent tasks held. Run the script manually to view the output or check
the logs.

693

Scheduling a Job
To schedule a job

Firstly access the scheduler by clicking the Scheduler button on the toolbar.

Select File | New Job from the menu strip at the top of the screen, or click the New Job button on
the toolbar.

The following Job Definition dialog is displayed.

See Creating a Job (on page 701) for more details on how to create a job.

694

Once the job has been created, click on the All Jobs button on the toolbar. The newly created job
will now be displayed in the scheduler window.

To create a job within a job

It is possible to schedule one job from another job. There are however some limitations and rules
that must be understood when doing this.

1 A job that is called from another job is only ever allocated one thread. All tasks within the
called job will therefore run sequentially.

2 A job can only have one running iteration. Therefore, a called job will be blocked if that job is
already running independently or as part of another job.

3 Any job dependencies for the called job are ignored. The parent's job dependencies are the
only ones that are used.

4 A called job essentially runs as a separate job, so that if it fails both it and the parent job will
show in a failed state. Once the problem is fixed the parent job should be restarted which will
restart the called job.

695

To create a job dependency

It is possible to make a job dependent on another job, using the Dependent On field in the Job
Definition dialog.

696

Click on the Add Parent Job button.

697

In the dialog that follows, select the Parent Job from the drop-down list. In our case we will
choose the job Shared Dimensions Daily Refresh.

The Maximum Time to Look Back for the Parent Job Completion field prevents older
iterations of the parent job as being identified as a completion. In our example, we are starting
both jobs at 3am, so we don't need to look too far back to ensure that the dimension refresh has
run. We have therefore set the look back minutes to 60 to allow for any delays in starting this job.

The Maximum Time to Wait for the Parent Job to Complete specifies how long to await a
successful completion of the parent job. In our example we know that the dimension refresh only
takes a few minutes, but we should allow for the occasional slow network or resource drains
making the dimension refresh take longer; so we have set the maximum wait to 20 minutes. This
means that our job will wait 20 minutes from its own scheduled start time for the parent job to
complete.

The checkbox to fail if the parent job does not complete in time will prevent this job from
running if the parent job (dimension refresh) does not complete successfully. As we do not wish
for the transactional data in our fact deliveries to be flagged with ‘Unknown’ dimensional item(s),
we can leave this checkbox checked to ensure that this job does not run.

Click Add.

NOTE: Clearing the checkbox to fail if the parent fails will simply ensure that this job waits for
the completion of the dimension refresh and, irrespective of the dimensions refresh’s success or
failure, starts.

Click OK to link this data job to the parent dimensional job. In this way, the job Enterprise
Reporting Daily Refresh cannot run until the parent job Shared Dimensions Daily Refresh
has completed successfully; thus the facts will have the latest dimensional keys associated with
them.

698

699

Working with Jobs
When positioned on a Job in the scheduler window, the right-click pop-up menu provides a
number of options for working with the job. Some of the options are discussed in more detail in
the chapters that follow, however a brief overview of the menu options follows:

The View Tasks menu option enables you to view the tasks of a job.

The View Audit Trail option enables you to view the audit trail of a job.

The View Detail Log option enables you to view a detail log of a job.

The Export to CSV File option enables you to export a job to a CSV file.

The Documentation option enables you to create documentation for a job.

The Edit Job option enables you to edit a job. See Editing a Job (on page 711)

The Edit Tasks option enables you to edit the tasks of a job. See Editing Tasks (see "Editing
Tasks in a Job" on page 715)

The Edit Dependencies option enables you to edit the task dependencies of a job. See Editing
Dependencies (see "Editing Task Dependencies" on page 722)

The Insert Copy of Job option enables you to insert a copy of a job. See Inserting a Copy of a Job
(on page 729)

The Delete Job option enables you to delete a job. See Deleting a Job (on page 731)

The Multiple Log Delete option enables you to delete multiple logs of a job. See Deleting Job
Logs (on page 732)

The Start the Job option enables you to start a job. See Starting a Job (on page 734)

700

The Halt the Job option enables you to halt a job. See Halting a Job (on page 735)

The Abort the Job option enables you to abort a job. See Aborting a Job (on page 736)

The Restart the Job option enables you to restart a job. See Restarting a Job (on page 737)

701

Creating a Job

To create a job

Click on the Scheduler tab to open the scheduler window.

Click on the New Job button to create a new job.

A Job Definition dialog is displayed.

702

Complete the fields and click OK. The main fields are described in the following table:

Field Description

Job Name The Scheduler defaults to the next job number in the sequence. You can
alter this to any alphanumeric.

Note: Only alphanumerics, spaces and the underscore are supported in the
name.

Description A description of the job

Frequency When the job runs. The options available in the drop-down list are:

• Once Only - job is deleted on completion
• Once and Hold - runs and puts another copy of the job on hold
• Hold - puts the job on hold for manual release
• Daily - runs the job daily
• Custom - enables custom definition
• Weekly - runs the job weekly
• Monthly - runs the job monthly
• Annually - runs the job annually

Start Date and Start
Time

• The date and time for the job to start.

Max Threads The maximum number of threads allocated to run the job, e.g. if some tasks
can run in parallel then if more than one thread is allocated then they will
run in parallel.

Scheduler It is possible to have multiple schedulers running. Select the desired
scheduler from this drop-down. The valid options are:

Windows Preferred, Windows Only, or the name of a specific scheduler can
be entered (e.g. WIN0002)

Dependent On A job can be dependent on the successful completion of one or more other
jobs. Click the Add Parent Job button to select a job that this job will be
dependent on. The maximum time to look back for parent job completion
field prevents older iterations of the parent job as being identified as a
completion. The maximum time to wait specifies how long to await a
successful completion of the parent job. The action if that wait expires can
also be set.

See the Dependency example in Scheduling a Job (on page 693)

Logs Retained Specify the number of logs to retain for the job. By default all logs are
retained. This field can be used to reduce the build up of scheduler logs by
specifying a number of logs to retain.

703

Field Description

Okay command and
Failure command

These are Windows shell commands depending on which scheduler is used.
They are executed if the condition is met. Typically, these commands would
mail or page on success or failure.

Notes:

1. The RED scheduler does not check return codes from called commands,
scripts and programs.

2. It is recommended that all output from commands, scripts and programs
is redirected to a log file. For example, add this to the end of any
SUCCESS/FAILURE commands:

>> c:\scheduler\success_failure_prod.log 2>&1

The following fields are available if a frequency of Custom is chosen:

Field Description

Interval between jobs
(Minutes)

Specify the number of minutes between iterations of the job. For example
to run a job every 30 minutes set this value to 30. If a job is to run only
once but on selected days set this value to 1440 (daily)

Start at or after
HHMM

The time that the job may run from. To run anytime set to 0000.

Do not start after
HHMM

If multiple iterations are being done then this is the time after which a new
iteration will not be started. For example if a job is running every 10
minutes it will continue until this time is reached. To run till the end of
day set to 2400.

Active on the days Select each day of the week that the custom job is to be active on.

704

Once the job itself has been defined, tasks then need to be added to the job. The Define tasks
window is shown below.

The screen has two main areas. The right pane shows the tasks to be run for this job and the left
pane lists all the objects.

To add a task

Double click on an object to add it to the left pane. Normally objects such as load or fact tables
are scheduled rather than procedures.

To set the action on a task

Each task can have a specific action that is to be performed on its object.

The default action for load tables is process. This means that when the task is actioned it will
drop any indexes that are due to be dropped, or have pre-drop set, then load the table and
perform any post-load procedures or transformations and then re-create any dropped indexes.

The default action for all other tables is the same as above, except it will execute the update
procedure rather than loading the table.

705

You can change the action on a task by right-clicking on the task in the right pane. The menu
options are shown below.

The following task actions are available:

Action Description

Drop Drop table, view, join index or index.

Create Create table, view, join index or index.

Truncate Delete all rows from the table.

Initial Build Drop All Indexes then Custom then Build All Indexes.

706

Action Description

Drop All Indexes Drop all indexes on the table.

Pre Drop Indexes Drop all indexes on the table marked as "Pre Drop".

Load Load the table (Load tables only).

Custom Run the custom procedure on the table.

Update Run the update procedure on the table.

Execute Execute the procedure or host scripts.

Process Pre Drop Indexes then Update and then Build Indexes.

Process and Statistics Process then Default Stats as defined on Table Properties/
Statistics/Process and statistics method (DB2 only).

Build Indexes Build the indexes on the table marked as "Pre Drop".

Build All Indexes Build all indexes on the table.

Stats Refreshes predefined statistics on a table or index:

COLLECT STATISTICS ON DatabaseName.TableName;
COLLECT STATISTICS ON DatabaseName.TableName INDEX
IndexName;

Quick Stats Refreshes predefined statistics on an index using sampling:

COLLECT STATISTICS USING SAMPLE ON
DatabaseName.TableName INDEX IndexName;

Analyze Refreshes predefined statistics on a table or index:

COLLECT STATISTICS ON DatabaseName.TableName;
COLLECT STATISTICS ON DatabaseName.TableName INDEX
IndexName;

Quick Analyze Refreshes predefined statistics on an index using sampling:
COLLECT STATISTICS USING SAMPLE ON
DatabaseName.TableName INDEX IndexName;

Note: Not all actions are available on all object types.

707

To set the state of a task

Each task can be set to a state:

The following states are available:

State Description

Enable Job Task is enabled.

Disable Job Task is disabled.

Disable Once Job Task is disabled once and reverts to enabled next time the Job
is released by the Scheduler.

708

To create dependencies between tasks

It is possible to create dependencies between tasks in the list by selecting one or more tasks and
right-clicking to bring up the dependency options.

The following task dependency options are available from the menu:

Task Option Description

Group Selected Tasks Groups two or more selected tasks to have the same order value,
allowing them to run in parallel if the maximum threads setting
allows.

Ungroup Selected Tasks Un-group selected tasks.

709

Task Option Description

Sync with Item Above Changes a selected task to have the same order value as the task
above it, allowing them to run in parallel if the maximum threads
setting allows.

Sync with Item Below Changes a selected task to have the same order value as the task
below it, allowing them to run in parallel if the maximum threads
setting allows.

Decrease the Order Changes a selected task to an order number one less than its
current value. The task will now run immediately before it would
have previously.

Increase the Order Changes a selected task to an order number one more than its
current value. The task will now run immediately after it would
have previously.

To order or group the tasks

The Order column shows the order in which the tasks are to be run, e.g. 20.20 If the two numbers
are the same as another task then those tasks can run in parallel. If the two numbers are different
then those tasks run sequentially. This is an initial definition of dependencies. These
dependencies can be altered specifically once the job has been created.

Tasks can be moved up or down by selecting the task and clicking the Move Up or Move

Down buttons.

710

To re-space the order of the tasks; to group or un-group object types, use the buttons at the
bottom of the Define tasks dialog.

• Respace Order

This button will respace the order numbers. The existing dependency structure and groupings
are retained. The purpose of this button is simply to allow room between tasks to fit new
tasks. So for example if we have two tasks that have an order of 20.19.5 and 20.20.6 and we
want to add a task between these two tasks we can click the Respace Order button to open
up a gap between the two tasks.

• Group Object Types

This option will put all objects of the same type into groups. For example all load tables will
be able to run in parallel, all dimensions etc.

• Ungroup All
This button will remove all groupings and make all tasks sequential. New groupings can be
made by selecting a range of sequentially listed tasks in the left pane and using the right-click
menu option Group Selected Tasks. Tasks that are grouped have the same first two numbers
in the order and can execute at the same time if the job has multiple threads.

Upon completion of adding tasks, click OK.

711

Editing a Job
Once jobs have been created they can be edited.

Note: A job can only be edited when it is not in a running state and only if the job is a scheduled
job. Completed jobs remain in the list but only logs remain.

To edit a job

Select the job from the scheduler middle pane. Right-click on the job and select Edit Job from the
drop-down list.

712

The Job Definition is displayed.

Edit the fields as required and click OK. The main fields are described in the following table:

Field Description

Job Name The Scheduler defaults to the next job number in the sequence. You
can alter this to any alphanumeric.
Note: Only alphanumerics, spaces and the underscore are supported
in the name.

Description A description of the job

713

Field Description

Frequency When the job runs. The options available in the drop-down list are:

• Once Only - job is deleted on completion
• Once and Hold - runs and puts another copy of the job on hold
• Hold - puts the job on hold for manual release
• Daily - runs the job daily
• Custom - enables custom definition
• Weekly - runs the job weekly
• Monthly - runs the job monthly
• Annually - runs the job annually

Start Date and Start
Time

• The date and time for the job to start.

Max Threads The maximum number of threads allocated to run the job, e.g. if some
tasks can run in parallel then if more than one thread is allocated
then they will run in parallel.

Caution: Users must be aware that adding additional threads to a job
increases the communication overhead with the DB server containing
the Data Warehouse repository. Each job thread holds a dedicated
connection to the server for its lifetime.

Scheduler It is possible to have multiple schedulers running. Select the desired
scheduler from this drop-down. The valid options are:
Windows Preferred, Windows Only, or the name of a specific
scheduler can be entered (e.g. WIN0002)

Dependent On A job can be dependent on the successful completion of one or more
other jobs. Click the Add Parent Job button to select a job that this
job will be dependent on. The maximum time to look back for parent
job completion field prevents older iterations of the parent job as
being identified as a completion. The maximum time to wait specifies
how long to await a successful completion of the parent job. The
action if that wait expires can also be set.

See the Job Dependency example in Scheduling a Job (on page 693)

Logs Retained Specify the number of logs to retain for the job. By default all logs are
retained. This field can be used to reduce the build up of scheduler
logs by specifying a number of logs to retain.

714

Field Description

Okay command and
Failure command

These are Windows shell commands depending on which scheduler is
used. They are executed if the condition is met. Typically, these
commands would mail or page on success or failure.

Notes:
1. The RED scheduler does not check return codes from called
commands, scripts and programs.

2. It is recommended that all output from commands, scripts and
programs is redirected to a log file. For example, add this to the end of
any SUCCESS/FAILURE commands:

>> c:\scheduler\success_failure_prod.log 2>&1

The following fields are available if a frequency of Custom is chosen:

Field Description

Interval between jobs
(Minutes)

Specify the number of minutes between iterations of the job. For
example to run a job every 30 minutes set this value to 30. If a job is
to run only once but on selected days set this value to 1440 (daily)

Start at or after
HHMM

The time that the job may run from. To run anytime set to 0000.

Do not start after
HHMM

If multiple iterations are being done then this is the time after
which a new iteration will not be started. For example if a job is
running every 10 minutes it will continue until this time is reached.
To run till the end of day set to 2400.

Active on the days Select each day of the week that the custom job is to be active on.

715

Editing Tasks in a Job
Once jobs have been created, you can edit their tasks.

Note: A job can only be edited when it is not in a running state and only if the job is a scheduled
job. Completed jobs remain in the list but only logs remain.

JOB TASK LIMIT - There is maximum number of 999 tasks that can be added to a job.

To edit the tasks of a job

Select the job from the scheduler middle pane. Right-click on the job and select Edit Tasks from
the drop-down list.

716

The Define tasks window is shown below.

The screen has two main areas. The right pane shows the tasks to be run for this job and the left
pane lists all the objects.

To add a task

Double click on an object to add it to the left pane. Normally objects such as load or fact tables
are scheduled rather than procedures.

To set the action on a task

Each task can have a specific action that is to be performed on its object.

The default action for load tables is process. This means that when the task is actioned it will
drop any indexes that are due to be dropped, or have pre-drop set, then load the table and
perform any post-load procedures or transformations and then re-create any dropped indexes.

The default action for all other tables is the same as above, except it will execute the update
procedure rather than loading the table.

717

You can change the action on a task by right-clicking on the task in the right pane. The menu
options are shown below.

The following task actions are available:

Action Description

Drop Drop table, view, join index or index.

Create Create table, view, join index or index.

Truncate Delete all rows from the table.

Initial Build Drop All Indexes then Custom then Build All Indexes.

718

Action Description

Drop All Indexes Drop all indexes on the table.

Pre Drop Indexes Drop all indexes on the table marked as "Pre Drop".

Load Load the table (Load tables only).

Custom Run the custom procedure on the table.

Update Run the update procedure on the table.

Execute Execute the procedure or host scripts.

Process Pre Drop Indexes then Update and then Build Indexes.

Process and Statistics Process then Default Stats as defined on Table Properties/
Statistics/Process and statistics method (DB2 only).

Build Indexes Build the indexes on the table marked as "Pre Drop".

Build All Indexes Build all indexes on the table.

Stats Refreshes predefined statistics on a table or index:

COLLECT STATISTICS ON DatabaseName.TableName;
COLLECT STATISTICS ON DatabaseName.TableName INDEX
IndexName;

Quick Stats Refreshes predefined statistics on an index using sampling:

COLLECT STATISTICS USING SAMPLE ON
DatabaseName.TableName INDEX IndexName;

Analyze Refreshes predefined statistics on a table or index:

COLLECT STATISTICS ON DatabaseName.TableName;
COLLECT STATISTICS ON DatabaseName.TableName INDEX
IndexName;

Quick Analyze Refreshes predefined statistics on an index using sampling:
COLLECT STATISTICS USING SAMPLE ON
DatabaseName.TableName INDEX IndexName;

Note: Not all actions are available on all object types.

719

To create dependencies between tasks

It is possible to create dependencies between tasks in the list by selecting one or more tasks and
right-clicking to bring up the dependency options.

The following task dependency options are available from the menu:

Task Option Description

Group Selected Tasks Groups two or more selected tasks to have the same order value,
allowing them to run in parallel if the maximum threads setting
allows.

Ungroup Selected Tasks Un-group selected tasks.

720

Task Option Description

Sync with Item Above Changes a selected task to have the same order value as the task
above it, allowing them to run in parallel if the maximum threads
setting allows.

Sync with Item Below Changes a selected task to have the same order value as the task
below it, allowing them to run in parallel if the maximum threads
setting allows.

Decrease the Order Changes a selected task to an order number one less than its
current value. The task will now run immediately before it would
have previously.

Increase the Order Changes a selected task to an order number one more than its
current value. The task will now run immediately after it would
have previously.

721

To order or group the tasks

The Order column shows the order in which the tasks are to be run, e.g. 20.20 If the two numbers
are the same as another task then those tasks can run in parallel. If the two numbers are different
then those tasks run sequentially. This is an initial definition of dependencies. These
dependencies can be altered specifically once the job has been created.
Tasks can be moved up or down by selecting the task and clicking the Move Up or Move Down
buttons.
To respace the order of the tasks; to group or ungroup object types, use the buttons at the
bottom of the Define tasks dialog.

• Respace Order
This button will respace the order numbers. The existing dependency structure and groupings
are retained. The purpose of this button is simply to allow room between tasks to fit new
tasks. So for example if we have two tasks that have an order of 20.19.5 and 20.20.6 and we
want to add a task between these two tasks we can click the Respace Order button to open
up a gap between the two tasks.

• Group Object Types
This option will put all objects of the same type into groups. For example all load tables will
be able to run in parallel, all dimensions etc.

• Ungroup All
This button will remove all groupings and make all tasks sequential. New groupings can be
made by selecting a range of sequentially listed tasks in the left pane and using the right-click
menu option Group Selected Tasks. Tasks that are grouped have the same first two numbers
in the order and can execute at the same time if the job has multiple threads.

Upon completion of editing tasks, click OK.

722

Editing Task Dependencies
Once jobs have been created they can be edited.

Note: A job can only be edited when it is not in a running state and only if the job is a scheduled
job. Completed jobs remain in the list but only logs remain.

To edit task dependencies

Select the job from the scheduler middle pane. Right-click on the job and select Edit
Dependencies from the drop-down list.

723

The Dependencies dialog will be displayed, showing the dependencies between the tasks of the
job. The list consists of Parent Tasks on the left and Child Tasks on the right. A child task is
thus dependent on its parent task in that it cannot run until its parent has run.

Edit the dependencies and close the dialog.

724

To add a task dependency

To add a task dependency, right-click anywhere in the Dependencies pane and select Add
Dependency.

Select the Parent and Child tasks from the drop-down lists to create the dependency and click
OK.

725

To modify a task dependency

To modify a task dependency, right-click on the dependency in the Dependencies pane and select
Modify Dependency.

Change the Parent and Child tasks to modify the dependency and click OK.

726

To delete a task dependency

To delete a task dependency, right-click on the dependency in the Dependencies pane and select
Delete Dependency.

The dependency will be deleted without warning.

727

Show Dependencies Diagram
Select the Show Dependency Diagram option from the right-click menu of any job to see all job
dependencies displayed as a Diagram from RED's Diagram view tab.

728

Job Dependency Diagram view

729

Inserting a Copy of a Job

To insert a copy of a job

A copy of a job can be inserted by right-clicking on the job and choosing Insert Copy of Job.

730

The new job will immediately be visible and the Status will be On Hold.

731

Deleting a Job

To delete a job

A job can be deleted by right-clicking on a job in the scheduler window and choosing Delete Job.

A warning message will be displayed; click Yes to delete.

732

Deleting Job Logs

To delete multiple job logs

Multiple job logs can be deleted by right-clicking on a job in the scheduler window and choosing
Multiple Log Delete.

733

The Delete Multiple Job Logs dialog is displayed. Select or enter the appropriate options to
delete the range of job logs required.

A warning message is displayed. Click Yes to delete.

734

Starting a Job

To start a job

Multiple job logs can be deleted by right-clicking on a job in the scheduler window and choosing
Multiple Log Delete.

735

Halting a Job

To halt a job

A job can be halted by right-clicking on a job in the scheduler window and choosing Halt the Job.

736

Aborting a Job

To abort a job

A job can be aborted by right-clicking on the job in the scheduler window and choosing Abort
Job.

Once in this state, a job cannot be restarted. The job now exists only as a log of what occurred
and is no longer regarded as a job.

Effects of aborting a job

Load and update processes are not stopped for all objects in Teradata repositories.

737

Restarting a Job

To restart a job

A job can be restarted by right-clicking on a job in the scheduler window and choosing Restart
the Job.

Before restarting a job, it is possible to edit the status of the job tasks so that only certain tasks
will be run again or be skipped over.

738

To run a task again

View the job tasks by double-clicking on the failed job. The tasks will be displayed in the bottom
pane.

To rerun a task, right-click on the completed task and select Change to On Hold.

739

Click OK on the message dialog.

Double-click on the job again to display the tasks. You will see that the selected task now has a
status of Hold and will thus be rerun when you restart the job.

To skip over a task

View the job tasks by double-clicking on the failed job. The tasks will be displayed in the bottom
pane.

740

To skip over a task, right-click on the task and select Change to Completed.

Click OK on the message dialog.

741

Double-click on the job again to display the tasks. You will see that the selected task now has a
status of Completed and will thus be skipped when you restart the job.

742

Creating an Application from a Job

To Create an Application from a Job
1 Right-click on the job in the scheduler window and select Create Application.

743

2 Edit the application as required.

3 Edit the objects to add or replace as required.

744

Note: Creating an application from a job will save the objects in the job and the job, but not
the associated objects.

4 Click OK when finished.
5 A dialog will display, confirming the creation of the application files. Click OK.

745

Stand Alone Scheduler Maintenance
WhereScape RED includes a stand alone scheduler maintenance screen. This screen provides all
the scheduler control functionality found in the main RED utility, but with no access to the main
metadata repository.

Scheduler maintenance logon

The logon screen differs in that the user name and password do not have to be that of a valid
metadata repository. This user name/password combination can be any valid database user.

Scheduler maintenance grants

Statement Reason

grant select on ws_dbc_connect to dsssched; Repository access

grant select on ws_meta to dsssched; Repository access

grant select on ws_meta_tables to dsssched; Repository access

grant select on ws_meta_names to dsssched; Repository access

grant select on ws_obj_type to dsssched; Repository access

grant select on ws_obj_object to dsssched; Object access (job create)

grant select on ws_obj_pro_map to dsssched; Object access (job create)

grant select on ws_obj_project to dsssched; Object access (job create)

grant select on ws_obj_group to dsssched; Object access (job create)

746

Statement Reason

grant select on ws_pro_gro_map to dsssched; Object access (job create)

grant select on ws_wrk_audit_log to dsssched; Scheduler status

grant select,insert,update on ws_user_adm to
dsssched;

Repository access

grant select,delete on ws_wrk_error_log to
dsssched;

Scheduler status, and job deletion

grant select,update on ws_wrk_scheduler to
dsssched;

Scheduler status, poll

grant select,insert,update,delete on
ws_wrk_dependency to dsssched;

Job creation, maintenance

grant select,insert,update,delete on
ws_wrk_job_ctrl to dsssched;

Job creation, maintenance

grant select,insert,delete on ws_wrk_job_log to
dsssched;

Job maintenance

grant select,update,delete on ws_wrk_job_run to
dsssched;

Job maintenance

grant select,insert,update,delete on
ws_wrk_dependency to dsssched;

Job maintenance

grant select,insert,update,delete on
ws_wrk_job_dependency to dsssched;

Job maintenance

grant select,delete on ws_wrk_job_thread to
dsssched;

Job maintenance

grant select,insert on ws_wrk_sequence to
dsssched;

Job creation

grant select,insert,update,delete on
ws_wrk_task_ctrl to dsssched;

Task maintenance

grant select,update,delete on ws_wrk_task_run
to dsssched;

Task maintenance

grant select,insert,delete on ws_wrk_task_log to
dsssched;

Task maintenance

grant select,insert,update on dss_parameter to
dsssched;

Task maintenance

grant select on ws_pro_header to dsssched; Right-click used by option in parameters
listing

747

Statement Reason

grant select on ws_pro_line to dsssched; Right-click used by option in parameters
listing

grant select on ws_scr_header to dsssched; Right-click used by option in parameters
listing

grant select on ws_scr_line to dsssched; Right-click used by option in parameters
listing

grant select on ws_load_tab to dsssched; Right-click used by option in parameters
listing

grant select on ws_load_col to dsssched; Right-click used by option in parameters
listing

grant select on ws_stage_tab to dsssched; Right-click used by option in parameters
listing

grant select on ws_stage_col to dsssched; Right-click used by option in parameters
listing

grant select on ws_dim_tab to dsssched; Right-click used by option in parameters
listing

grant select on ws_dim_col to dsssched; Right-click used by option in parameters
listing

grant select on ws_agg_tab to dsssched; Right-click used by option in parameters
listing

grant select on ws_agg_col to dsssched; Right-click used by option in parameters
listing

A sample script to grant these privileges is shipped with WhereScape RED. This script is called
'grant_sched_access.sql' and can be found in the WhereScape program directory.

The scheduler maintenance utility does not require a WhereScape license key. The WhereScape
RED software can be installed onto a PC, and this utility utilized without having to use the
WhereScape 'Setup Administrator' utility.

748

SQL to return Scheduler Status
This SQL returns the scheduler status:

SELECT CASE
WHEN ws_stop_date IS NOT NULL
THEN 'STOPPED'
WHEN ((DATEDIFF(mi,ws_active_date,GETDATE()) -
CONVERT(INTEGER,DATEDIFF(mi,ws_active_date,GETDATE())/60)*60) > 15)
OR (CONVERT(INTEGER,DATEDIFF(mi,ws_active_date,GETDATE())/60)>0)
THEN 'NOT ACTIVE'
WHEN (((DATEDIFF(mi,ws_active_date,GETDATE()) -
CONVERT(INTEGER,DATEDIFF(mi,ws_active_date,GETDATE())/60)*60)>((ws_inter
val/60)+10)
OR CONVERT(INTEGER,DATEDIFF(mi,ws_active_date,GETDATE())/60)>0)
AND ws_poll_flag=1)
THEN 'NOT ACTIVE'
ELSE 'Running'
END
FROM dbo.ws_wrk_scheduler
WHERE ws_name = 'YourSchedulerName'

The procedure sets the status in the metadata.

749

Reset Columns in Job and Task View
Job and Task Report headings can be reset by selecting the View/Reset Display Headings menu
option from the scheduler window. The short-cut keys are Alt+V-R.

A dialog will ask you to confirm the request.

If you selected Yes to reset the display settings, then a dialog will confirm once the reset has
occurred.

750

Stopping a Linux/UNIX Scheduler from within RED
To stop a Linux/UNIX Scheduler from within RED, follow the steps below:

1 Edit the crontab and comment out the ws_sched_check_nnn.sh entry. This will stop the
scheduler restarting within the next 20 minutes.

Note: There may be several different versions of the scheduler files for a given database and
platform (UNIX or Linux). For example, there may be different folders in
...\WhereScape\Teradata\Linux\: Version_550 and Version_600. The highest version number
script less than or equal to the version of RED in use should always be used.

751

2 Start RED and click on the Scheduler tab.

3 Click on Scheduler in the toolbar and then select Scheduler Status.

4 Right-click on the displayed UNIX/Linux scheduler entry and choose Shutdown Scheduler.

Sometime within the next poll interval of the scheduler, the scheduler will gracefully stop.

753

Indexes may exist on any table defined in RED. By default, RED will auto-generate a number of
indexes during the drag and drop process and when building procedures.

The Enable Automatic Creation of Indexes option in the Connection Properties window
enables you to turn ON/OFF the automatic creation of metadata for indexes when creating
objects. Neither the RED metadata nor the physical index is created, if this setting is not enabled.

These indexes can be altered or deleted. New indexes can be created as desired.

NOTE: The maintenance of the indexes is performed as part of the normal scheduler processing.

In the left pane, right-click on a table to:

• Display indexes
• Add indexes

In This Chapter

Index Definition ... 754

C h a p t e r 2 7

Indexes

754

Index Definition
By right-clicking on a table in the left pane and selecting Display Indexes the middle pane will
display the indexes for that table. Alternatively, you can double-click on the Index object type in
the left pane to display all indexes in the repository or a specific group or project.

In the middle pane, right-click on an index and the following options are available:

• Properties
• Create Index
• Drop Index
• Delete Metadata and Drop Index
• Create via Scheduler
• Projects

Properties

The properties screen (see example below) can be selected via the right-click menu when
positioned on an index name in the middle pane. The Update Buttons: Update <- and Update ->
are used to move to the previous and next index respectively. The Update Buttons are not
available when browsing all indexes in a group, project or repository.

755

The fields are described below:

Field Description

Index name Typically, the table short name followed by:

• _idx_0 indicating primary key
• _idx_x where x = any letter a to z indicating business keys
• _idx_PR indicating primary index

Index description Free flow description of the index

756

Field Description

Rebuild frequency When the index is rebuilt by the scheduler. Select an option from the
drop-down list:

• Never (default)
• Daily
• End Month
• Start Month
• Saturday
• Sunday
• Monday
• Tuesday
• Wednesday
• Thursday
• Friday

Active checkbox • When selected means the index is in use.
• When not selected means the index is not managed by the scheduler.
• The active checkbox on a primary index may not be turned off as all

tables in Teradata require a primary index.

Artificial Key When checked indicates that this is the surrogate (artificial) key
generated by the system.

Business Key Denotes a business key.

Unique Specifies that the index is a unique index

Note: If both unique and artificial are set it is assumed to be a primary
key constraint and it is added as such.

Primary Index Specifies that the index is a Primary Index

Drop before Update The index is dropped before the update procedure runs on the table and
is reinstated after the update is completed.
The Drop before update checkbox on a primary index may not be turned
on as all tables in Teradata require a primary index.

Hash Index Defines the index as a Teradata hash index. This limits the hash-ordering
to one column, rather than all columns of the index (the default).

Index columns Shows the columns in the order that will be applied to the index. The
order can be changed using the up/down buttons on the left. For a
primary index without any indexed columns, the table is created as NOT
PRIMARY INDEX table. See example below.

Table columns Shows all columns in the table that can be indexed. These table columns
can be added or removed by highlighting the column and checking the
appropriate button.

Indexes are normally managed by the scheduler as part of the normal processing of a table.

757

Below is an example of a NO PRIMARY INDEX index definition:

759

WhereScape RED includes the ability to document the data warehouse, based on the information
stored against the metadata for all the tables and columns in the data warehouse.

The documentation will only be meaningful if information is stored in the meta data. The
business definition and a description should be stored against all columns that will be visible to
end users.

The following sections describe how to generate (see "Creating Documentation" on page 760) and
read (see "Reading the Documentation" on page 764) the documentation.

In This Chapter

Creating Documentation .. 760
Batch Documentation Creation .. 763
Reading the Documentation ... 764
Diagrams ... 765

C h a p t e r 2 8

Documentation and Diagrams

760

Creating Documentation
Create documentation

To create the documentation for the components of the data warehouse, select Doc from the
builder menu bar, then Create Documentation.

If the repository has projects or groups in use, then the following dialog appears to enable the
selection of a specific group or project. The default is all objects in the repository.

A file dialog appears next. Select a file path (directory) where the saved the HTML files that will
be produced.

A style sheet called mainstyle.css is created if it does not exist. If this style sheet exists then it is
not overwritten. The style sheet can therefore be modified to match an existing intranet
standard.

The next screen allows for the inclusion of a banner and user defined links. It also provides some
build options:

761

The Sizes checkbox instructs the documentation generator to examine the size of all tables and
indexes in the database. This process may be slow in some situations, so should normally only be
used for final documentation.

The sorted checkbox sorts the columns within the tables into alphabetical order. By default, the
columns are in the order that they appear within the tables.

Creating a header

If you check the banner frame option, then a banner (heading) is created at the top of each page
in the documentation. You will be prompted for height of the banner frame in pixels (default is
60), an image file (jpg or gif) and any banner text. It is recommended that any image be relatively
small (60 pixels high or approximately 1/2 an inch) as it will appear on every page.

Adding Links

Custom information can be linked into the generated documentation.

This means that every time the documentation is regenerated, custom information will be
included. In this way the complete documentation for the data warehouse can be viewed in one
location.

If you select the add Links option, then you will be prompted to include personalized links from
index pages. These links must be to previously created HTML files.

762

Index pages (linkage points) are available at three points:

• index - initial page
• techindex - technical documentation initial page
• indexuser - user documentation initial page

Multiple links can be added to each index page by using the More option.

Adding glossary elements

As part of the user documentation a glossary is produced defining all the business terms and
column names used in the data warehouse. This glossary is primarily based off the columns in the
model tables. Additional information can, however, be added via the 'Ws_Api_Glossary' procedure
defined in the procedures chapter. This procedure allows the manual inclusion of glossary
elements that will be stored in the metadata repository and added to the glossary whenever the
documentation is recreated.

763

Batch Documentation Creation
WhereScape RED includes the ability to document the data warehouse based on the information
stored against the metadata for all the tables and columns in the data warehouse. In a larger
environment, it may be a good idea to generate documentation in batch mode.

The following syntax chart illustrates the options available:

med.exe /BD { /U UserName { /P Password } } /C OdbcSource /M
MetaDatabase { /N FullName } /D Directory { /G GroupName | ProjectName }
/S NumHops { /I- }

Note: {} indicates an optional parameter and | indicates alternative values.

Parameter Descriptions

The following parameters are available:

Parameter Specify Value? Mandatory? Description

BD No Yes Indicates batch documentation mode.

U Yes Sometimes *1 Username parameter.

P Yes Sometimes *1 Password parameter.

C Yes Yes ODBC data source parameter.

M Yes Yes Metadata database parameter.

N Yes No Full user name parameter, only for logging
purposes.

D Yes Yes Directory name where documentation is created.

G Yes No Group or Project name if specified. All Objects if
not included.

S Yes Yes Number of processes/hops in the source
diagrams.

I- No No Exclude Impact Analysis on load tables (reduces
the time required to generate documentation)

Note: User Name and Password are not required when using a trusted connection or operating
system authentication.

764

Example

The following example connects to a Teradata repository using the WslWarehouse ODBC data
source, a username of Jack, a password of fly1nG, a metadata database of ProdMeta and generates
documentation into the C:\Temp\my_doco directory with 4 hops in diagrams:

med.exe /BD /UJack /P fly1nG /C "WslWarehouse" /M "ProdMeta" /D
"C:\Temp\my_doco" /S "4"

Reading the Documentation
To read the documentation you have created, select Doc from the builder menu bar, then Read
Documentation. This will launch a browser and display the contents of index.html. Alternatively
you can access the HTML pages directly from their saved location.

765

Diagrams

Types of Diagrams
Six types of diagrams are provided to give visual representation of what has been created. These
are:

• The Schema Diagram (on page 767)
• The Source Diagram (on page 769)
• The Joins Diagram (on page 773)
• The Links Diagram (on page 774)
• The Impact Diagram (on page 775)
• The Dependency Diagram (on page 776)

1 To display the Diagram Selection dialog, click on the diagrammatic view button

766

2 Choose the object to diagram by optionally choosing the Type to limit the selection list; and
then selecting the Object. The diagram type buttons on the right will then become active and
you can choose the type of diagram to display.

767

Schema Diagram
A star schema diagram can be displayed for a fact_table, aggregate table, fact view or OLAP cube.
It shows the central table with the outlying dimensions.

An example of a Schema diagram in Standard Diagram format is displayed below.

768

An example of a Schema diagram in Detail Diagram format is displayed below.

Note: A star schema diagram for a fact view will display only the selected fact view and related
dimension views.

The star schema diagrams are produced in Standard Diagram format as part of the user and
technical documentation when you select Doc > Create Documentation from the main builder
window.

769

Source Diagram
A source tracking diagram can be displayed for any table. It shows connections back from the
chosen table to the source tables from which information was derived. Hovering the cursor over a
line shows additional information. For lines going into load tables, the source of the data will be
displayed; while for other lines in the diagram, the procedure used to move data between two
tables is displayed.

An example of a Source diagram in Standard Diagram format is displayed below.

770

An example of a Source diagram in Detail Diagram format is displayed below.

The Source diagrams are produced in Standard Diagram format as part of the technical
documentation when you select Doc > Create Documentation from the main builder window.

Creating a Job from a Source Tracking Diagram

Once a source tracking diagram has been created for a table, a scheduler job can be generated
from the diagram. This job will be called Process_to_table_name, where table_name is the name
of the table the track back diagram was run for.

To create a Job, select Create Job from the Tools menu after the diagram is displayed:

771

The Job Definition is then displayed:

Make any changes here that are required and click OK.

772

For the diagram above, a job is created with the following tasks:

Note: It is also possible to display the source tracking diagram by right-clicking on a table and
choosing Impact/Track Back Diagram:

773

Joins Diagram
A data join track back diagram can be displayed for any table. It shows connections back from the
chosen table to the source tables from which information was derived and includes dimension
table joins. Hovering the cursor over a line shows additional information. For lines going into
load tables, the source of the data will be displayed; while for other lines in the diagram, the
procedure used to move data between two tables is displayed.

An example of a Joins diagram in Standard Diagram format is displayed below.

774

Links Diagram
A linked tables diagram can be displayed for any table. It shows relationships between tables,
looking out from the chosen table a selected number of hops. The number of hops is determined
by table relationships and source and target relationships.

An example of a linked tables diagram in Standard Diagram format is displayed below.

Notes:

1. A linked table diagram for a model object will display only related model objects, aggregate
objects and views of type "Model View".

2. A linked table diagram for an aggregate object will display only related model objects,
aggregate objects and views of type "Model View".

3. A linked table diagram for a view of type "Model View" will display only related model objects,
aggregate objects and views of type "Model View".

4. A linked table diagram for a view of type "View" will display only related views of type "View".

775

Impact Diagram
A track forward impact diagram can be displayed for any table. It shows connections forward from
the chosen table to the subsequent tables built with columns from this table.

A track back impact diagram can be displayed for any table. It shows connections backwards from
the chosen table to the previous tables.

An example of an Impact diagram in Standard Diagram format is displayed below.

Note: It is also possible to display the track back / forward diagram by right-clicking on a table
and choosing Impact > Track Back Diagram or Impact > Track Forward Diagram:

776

Dependency Diagram
A job dependency diagram can be displayed for any job defined in the WhereScape RED
scheduler. It shows the parent and child relationships between tasks within a job.

An example of a Dependency diagram in Standard Diagram format is displayed below.

Editing a Job's Dependencies from a Job Dependency diagram

Once a Job Dependency diagram has been created for a job, its dependencies can be edited from
the diagram. To do this, select Launch Dependency Editor from the Tools menu:

777

The dialog that follows allows you to edit the dependencies within a job:

778

Working with Diagrams

Diagram Display

Once displayed there are two modes for diagram display; standard and detailed. To move between
displays, select File > Detail Diagram / Standard Diagram (Toggle)

or use the toggle button.

Diagram Save

A diagram can be saved either as a meta file or as a jpeg image. If saved as a meta file, it can be
subsequently reloaded and re-edited. A jpeg cannot be reloaded into WhereScape RED.

The diagram can be saved by selecting File > Save As ...

Note: By default the diagram is saved as a meta file.

779

Diagram Load

If a diagram has been saved as a meta file, it can be reloaded. To reload a saved meta file, switch
to diagrammatic view and select the menu option File > Load Diagram. A dialog box will allow
you to choose a windows meta file (*.wmf). If the meta file had previously been saved in
WhereScape RED, then the diagram will be loaded.

Diagram Print

A diagram can be printed by selecting File > Print ...

780

Diagram Refresh

Once a diagram has been displayed, it can be refreshed by choosing Tools > Refresh Diagram, or
by pressing F5.

781

Creating a Job from a Diagram
A job can be created from a Source diagram or a Joins diagram.

To Create a Job from a Diagram
1 Once the diagram is displayed, select Tools/Create Job.

782

2 Edit the job as required and click OK.

783

Creating an Application from a Diagram
An application can be created from a Source diagram or a Joins diagram.

To Create an Application from a Diagram
1 Once the diagram is displayed, select Tools/Create Application.

784

2 Edit the application as required and then click OK.

3 A dialog will display, confirming the creation of the application files. Click OK.

Note: Creating an application from a diagram will save the objects in the diagram and the
associated objects, including indexes.

785

Creating a Project from a Diagram
A project can be created from a Source diagram or a Joins diagram.

To Create a Project from a Diagram
1 Once the diagram is displayed, select Tools/Create Project.

2 Select an existing group or create a new group.

3 Select to Create new Project.

786

4 Enter the name of the new project and click OK.

5 Click OK.

The objects in the diagram will be moved into the selected project. If the Include Associated
Objects checkbox is selected, this will include all associated procedures, scripts and indexes.
The checkbox is selected by default.

787

WhereScape RED includes reports for analyzing columns, tables, procedures, indexes, objects and
jobs.

When these reports are run, the results are displayed in a separate tab in the bottom pane of the
RED screen.

The following sections describe the purpose, parameters and results for each report.

In This Chapter

Dimension-Fact Matrix ... 788
OLAP Dimension-Cube Matrix ... 789
Dimension Views for a Specified Dimension .. 790
Column Reports .. 791
Table Reports .. 799
Procedure Reports .. 806
Object Reports .. 808
Job Reports .. 816
Operational Reports.. 820

C h a p t e r 2 9

Reports

788

Dimension-Fact Matrix
This report shows dimension tables used by each fact and aggregate table in the metadata as a
matrix.

Objects Included

The following WhereScape RED object types are included in this report:

• Dimension Tables
• Fact Tables
• Aggregate Tables
• Dimension Views

Note: WhereScape RED version 8.1.1.0 and above no longer supports the Dimension View object
type when creating new objects. However, users that have existing Dimension View objects in
their data warehouse can retain and continue to use them.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of refreshed objects in the metadata repository
with the following columns:

• Dimensions (the dimension name)
• Fact/Aggregate Table 1
• Fact/Aggregate Table 2
• ...
• Fact/Aggregate Table n

The cells in the crosstab have a 1 to indicate the dimension is used by the fact or aggregate table
and blank otherwise. The result set is not sortable.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

789

OLAP Dimension-Cube Matrix
This report shows the relationships between cube measure groups and OLAP dimensions in the
metadata as a matrix.

Objects Included

The following WhereScape RED object types are included in this report:

• OLAP Dimensions
• OLAP Measure Groups

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of refreshed objects in the metadata repository
with the following columns:

• Dimensions (the dimension name)
• Measure Group 1
• Measure Group 2
• ...
• Measure Group n

The cells in the crosstab have a value to indicate the relationship else 'No Relationship' if no
relationship exists between the Measure Group and the OLAP Dimension. The result set is not
sortable.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

790

Dimension Views for a Specified Dimension

Note: WhereScape RED version 8.1.1.0 and above no longer supports the Dimension View object
type when creating new objects. However, users that have existing Dimension View objects in
their data warehouse can retain and continue to use them.

This report shows Views built on a specified Dimension table.

Objects Included

The following WhereScape RED object types are included in this report:

• Views (Dimension View table type only)

Parameters

This report has one parameter:

• Dimension table name

Results

The results of this report are displayed as a list of objects in the metadata repository with the
following columns:

• Dimension Name (the name of the Dimension table)
• Dimension View Names

The result set is sortable by clicking on the appropriate column heading.

Report Example

791

Sending Results to Microsoft Excel

Right-click the result set and click Output to File to send the results of this report to Microsoft
Excel.

Column Reports
There are five reports for analyzing Columns:

• Columns Without Comments
• All Column Transformations
• Re-Usable Column Transformations
• Column Track-Back
• Column Track-Forward

Columns without Comments
This report shows table object columns in the metadata that don't have descriptions. The
report prompts the user with the option to only display user facing table object columns or all
table object columns.

Objects Included

The following WhereScape RED object types are included in this report:

• Views
• Aggregate Tables
• Join Indexes
• Hubs, Satellites and Links

Note: The EUL object are set in Tools>Options>Object Types>Object Type End User Setting (see
"Object Type End User Setting" on page 86).

792

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects and columns in the metadata that are
missing comments with the following columns:

• Table name (the name of the table)
• Column Name
• Table type

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

793

All Column Transformations
This report shows all columns that have a column transformation and the details of the
transformation.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables
• Stage Tables
• Aggregate Tables
• Join Indexes
• Views
• Exports
• Hubs, Satellites and Links

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository with the
following columns:

• Table name (the name of the table)
• Column name
• Transformation

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

794

Re-Usable Column Transformations
This report shows all reusable transformations as defined via Tools>Define Re-usable
Transformations.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of Re-Usable transformations with the following
columns :

• Template Name
• Description

The result set is not sortable.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

795

Column Track-Back
This report shows the lineage of a specified column in a specified table, including any
transformations.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables
• Stage Tables
• Model Tables
• Aggregate Tables
• Join Indexes
• Views
• Exports
• Hubs, Satellites and Links

Parameters

This report has the following parameters:

• Groups
• Projects
• Table
• Column

796

Results

If you left the Exclude Intermediate Steps checkbox unchecked, then the results screen will be
as follows, showing the line of origins for the selected tables:

If however, you selected Exclude Intermediate Steps, then the results screen will be as follows,
showing only the original source table for the selected tables:

The results of this report are displayed as a list of source tables and columns, the order of the
result set determining the immediate lineage. The report includes the following columns:

• Tables (the name of a selected table)
• Columns (the name of a selected column)
• Source Tables
• Source Columns

The result set is NOT sortable, as the order of the result set determines the immediate lineage.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

797

Column Track-Forward
This report lists the columns derived from the selected objects.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables
• Stage Tables
• Dimension Tables and Views
• Fact Tables
• Aggregate Tables
• Exports
• Hubs, Satellites and Links

Parameters
• Groups
• Projects
• Table
• Column

798

Results

If you left the Exclude Intermediate Steps checkbox unchecked, then the results screen will be
as follows, showing the impacted tables for the selected tables:

If however, you selected Exclude Intermediate Steps, then the results screen will be as follows,
showing only the final impacted table for the selected tables:

The results of this report are displayed as a list of impacted tables and columns, the order of the
result set determining the immediate impact. The report includes the following columns:

• Tables (the names of selected tables)
• Columns (the names of selected columns)
• Impact Tables
• Impact Columns

The result set is NOT sortable, as the order of the result set determines the immediate lineage.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

799

Table Reports
There are four reports for analyzing Tables:

• Tables Without Comments
• Load Tables by Connection
• Export Objects by Connection
• External Source Table/Files

Tables without Comments
This report shows table objects in the metadata that don't have descriptions. The report prompts
the user with the option to only include end user facing table objects or all table objects.

Objects Included

The following WhereScape RED object types can be included in this report:

• All Tables objects or
• Only End User Layer (EUL) objects

Note: The EUL object are set in Tools>Options>Object Types>Object Type End User Setting (see
"Object Type End User Setting" on page 86).

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata that are missing
comments with the following columns:

• Table name
• Table type

800

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

801

Load Tables by Connection
This report shows load tables in the metadata repository with their Connection and Source
schema or database.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository with the
following columns:

• Load table (the name of the load table)
• Connection
• Source schema (the name the database or schema the load table is source from - blank for

files)

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

802

Export Objects by Connection
This report shows export tables in the metadata repository with their Connection and Source
schema or database.

Objects Included

The following WhereScape RED object types are included in this report:

• Export Tables

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository with the
following columns:

• Export table (the name of the export table)
• Connection
• Script Name
• File Path
• File Name
• Export Format
• Export Routine

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

803

Records that failed a Dimension Join
This report shows the dimension business key(s) that could not be found in a specified dimension
when a specified staging table was last updated. This report will show null values, blank values
and business keys not found in the dimension.

Objects Included

The following WhereScape RED object types are included in this report:

• Stage Tables

Parameters

This report requires two parameters to be specified:

• Stage Table Name (the staging table to be checked)
• Dimension Table Name (the dimension table or dimension view of the dimension key in the

selected staging table)

Note: WhereScape RED version 8.1.1.0 and above no longer supports the Dimension View object
type when creating new objects. However, users that have existing Dimension View objects in
their data warehouse can retain and continue to use them.

Results

The report contains a list of values not found in the dimension and a count for each value. Each
column is sortable by clicking on the appropriate column heading.

804

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

805

External Source Tables/files
This report shows external sources for load tables in the metadata repository.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository with the
following columns:

• Source name (the name of the object's source)
• Object name (the name of the object)
• Type (the type of object the source is: Table or File)
• Connection
• Other information (for tables, the source schema/database.source table; for files, the file

name)

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

806

Procedure Reports
There are two reports for analyzing Procedures:

• Modified Procedures
• Custom Procedures

Modified Procedures
This report shows modified procedures in the metadata repository with their creation and
modification dates.

Objects Included

The following WhereScape RED object types are included in this report:

• Procedures

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of modified procedures in the metadata repository
with the following columns:

• Name (the name of the object)
• Dated Created
• Date Modified (last modification date)

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

807

Custom Procedures
This report shows custom procedures in the metadata repository with their creation and
modification dates.

Note: Custom procedures are procedures attached to any table object as a Custom Procedure.

Objects Included

The following WhereScape RED object types are included in this report:

• Procedures

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of custom procedures in the metadata repository
with the following columns:

• Name (the name of the object)
• Table Name (the table object the procedure is attached to)
• Dated Created
• Date Modified (last modification date)

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

808

Object Reports
There is five reports for analyzing Objects:

• Objects-Project Matrix
• Modified Objects (excluding indexes)
• Objects Checked-out
• Loaded or Imported Objects
• Objects with Extended Properties

Objects-Projects Matrix
This report lists all objects that exist in one or more projects (other than All Objects) and the
project(s) they exist in.

Objects Included

All object types are included in this report.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the metadata repository that are in
one or more projects (other than All Objects) with the following columns as a grid:

• Objects (the name of the object)
• Project Name 1 (heading is the name of the first project, value is a 1 to indicate the object is in

this project, blank otherwise)
• Project Name 2 (heading is the name of the second project, value is a 1 to indicate the object

is in this project, blank otherwise)
• ...
• Project Name n (heading is the name of the nth project, value is a 1 to indicate the object is in

this project, blank otherwise)

The result set is sortable by clicking on the appropriate column heading.

809

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

Modified Objects (excluding indexes)
This report lists objects in the metadata repository with their creation and modification dates.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables
• Stage Tables
• Model Tables
• Aggregate Tables
• Join Indexes
• Views
• Exports
• Procedures
• Host Scripts

Parameters

There are no parameters for this report.

810

Results

The results of this report are displayed as a list of objects in the metadata repository with the
following columns:

• Name (the name of the object)
• Object Type
• Dated Created
• Date Modified (last modification date)

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

811

Objects Checked-out
This report lists all objects currently checked out.

Objects Included

All object types and data warehouse tables can be included in this report.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed with the following columns:

• Name (The name of the object)
• Object Type (The type of the object, e.g. Fact, Dimension, etc.)
• Checked Until (The date the object will be automatically checked back in)
• Checked By (The name of the WhereScape RED user who checked out the object)
• Reason (The reason provided for checking out the object)
• Contact (The contact details provided when the object was checked out)

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

812

Loaded or Imported Objects
This report lists objects in the metadata repository that have been refreshed or imported from
another repository.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables
• Stage Tables
• Model Tables
• Aggregate Tables
• Join Indexes
• Views
• Cubes
• Exports
• Procedures
• Host Scripts

Notes:
- Indexes are not included.
- Objects created via Application Load must have Auto Version enabled to be included in the
report.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of refreshed objects in the metadata repository
with the following columns:

• Object Name
• Date (of last refresh or import)
• Description (the kind of import or refresh)
• Detail (not currently used)

The result set is sortable by clicking on the appropriate column heading.

813

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

Objects with Extended Properties
This report lists objects in the metadata repository with Extended Properties defined.

Objects Included

The following WhereScape RED object types are included in this report:

• Connections
• Load Tables
• Stage Tables
• Data Store Tables
• Hub Tables
• Link Tables
• Satellite Tables
• EDW 3NF Tables
• Dimension Tables and Views
• Fact Tables
• Aggregate Tables
• Join Indexes
• Views
• Exports

Parameters

There are no parameters for this report.

814

Results

The results of this report are displayed as a list of refreshed objects in the metadata repository
with the following columns:

• Object Name
• Variable Name (The unique variable name in the format it is accessed from the RED

metadata service and included into scripts)
• Display Name (The extended property name displayed in the Connection or Table properties)

The result set is sortable by clicking on the appropriate column heading.

815

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

816

Job Reports
There are three reports for analyzing Jobs:

• Object by Scheduler Job
• Jobs with an Object
• Tasks of a Job

Object-Job Matrix
This report shows all jobs and objects, as well as the object actions. Table and Cube objects not in
any jobs are displayed with a job name of No Job.

Objects Included

All object types are included in this report.

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of jobs with the following columns:

• Table Name (the name of the table or cube)
• Action
• Job Name (the name of the job)
• Job Status
• Job Last Run
• Job Next Run

817

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

818

Jobs with an Object
This report shows all jobs a specified object appears in and its action.

Objects Included

All object types are included in this report.

Parameters

This report has one parameter:

• Object Name

Results

The results of this report are displayed as a list of jobs with the following columns:

• Jobs including object_name
• Action

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

819

Tasks of a Job
This report shows all tasks for a selected job including dependencies.

Objects Included

All object types are included in this report.

Parameters

This report has one parameter:

• Job Name

Results

The results of this report are displayed as a list of task dependencies with the following columns:

• Task name (the table, Index, procedure or script name)
• Action
• Order (the order number as shown in the edit tasks dialog in the scheduler)
• Depends On (the task(s) and order number this task depends on)

Report Example

820

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

821

Operational Reports
There are three Operational Reports:

• Object Performance History
• Job Performance History
• Task Performance History

Object Performance History
This report shows the audit trail for a selected object from the scheduler logs.

Objects Included

All object types are included in this report.

Parameters

This report has one parameter:

• Object Name

Results

The results of this report are displayed as a list of audit log entries with the following columns:

• Sta (the type of audit log entry)
• Time (the date and time the audit log entry was written)
• Seq (the job sequence of the job writing the audit log entry)
• Message (the message in the Audit log)
• Task (the object name)
• Job (the name of the job that ran the task)

822

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

Job Performance History
This report shows the performance (duration) of a specified job over time.

Objects Included

All object types are included in this report.

Parameters

This report has one parameter:

• Job Name

823

Results

The results of this report are displayed as a list of job instances with the following columns:

• Job name (the name of the job)
• Start time (the date and time the job started)
• Elapsed hh:mi (the duration of the job)

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

Task Performance History
This report shows the performance (duration) of a specified task within a specified job over time.

Objects Included

All object types are included in this report.

Parameters

This report has two parameters:

824

• Job Name
• Task Name (including action)

Results

The results of this report are displayed as a list of task instances for the selected job with the
following columns:

• Task name (the table, Index, procedure or script name)
• Action
• Start time (the date and time the task started)
• Elapsed hh:mi (the duration of the task)

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

825

When these Validate processes are run, the results are displayed in the middle pane of the RED
screen; the results of the other reports are displayed in a separate tab in the bottom pane of the
RED screen.

In This Chapter

Validate Meta-data ... 826
Validate Workflow Data .. 826
Validate Table Create Status .. 826
Validate Load Table Status ... 827
Validate Procedure Status .. 827
List Meta-data Tables not in the Database ... 827
List Database Tables not in the Meta-data ... 828
List Tables with no related Procedures or Scripts .. 829
List Procedures not related to a Table .. 831
Teradata: View of Model Validate .. 832
Query Data Warehouse Objects .. 833

C h a p t e r 3 0

Validate

826

Validate Meta-data
This process validates the Meta data. If problems are encountered, the results are displayed in the
middle pane.

Use the right-click option against each identified issue to apply a repair.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

Validate Workflow Data
This process validates the Workflow data. If problems are encountered, the results are displayed
in the middle pane.

Use the right-click option against each identified issue to apply a repair.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel

Validate Table Create Status
This process validates a table structure in the meta data against the table in the database.

• Select one or more tables and click the Validate Selected button or click the Validate All
button to validate all the tables.

1 If a table is found to be different then it can be altered by using the right-click menu option
when positioned over the table name.

2 If the update date and the modified in database date imply a change that is not apparent then
these dates can be re-synced in the same way.

Sync Column order with database

Right click on the result set and select Sync Column order with database to reorder the
metadata columns to match the column order in the database table.

Sending Results to Microsoft Excel

Right click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

827

Validate Load Table Status
This process compares a load table in the meta data with the table in the source system. It
compares the columns and column data types.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

Validate Procedure Status
This process compares a procedure in the meta data with the compiled version of the same
procedure stored within the database. The subsequent display will report either a match or a
difference.

If a procedure is found to differ then you can use the procedure editor to examine the exact
differences by selecting the Tools>Compare to Compiled Source option.

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

List Meta-data Tables not in the Database
This report shows database table objects in the metadata that don't exist in the data warehouse
database.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables
• Stage Tables
• Model Tables
• Aggregate Tables
• Join Indexes
• Views
• Retro Copies (but not Retro Definitions)

Parameters

There are no parameters for this report.

828

Results

The results of this report are displayed as a list of objects in the metadata not in the data
warehouse database.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

List Database Tables not in the Meta-data
This report shows database table objects that exists in the Teradata database but not in the
metadata.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables
• Stage Tables
• Model Tables
• Aggregate Tables
• Join Indexes
• Views
• Retro Copies (but not Retro Definitions)

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of objects in the Teradata database not in the
metadata.

829

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

List Tables with no related Procedures or Scripts
This report shows all table objects (certain types of objects only - see below) in the metadata
repository that don't have an associated update procedure.

Objects Included

The following WhereScape RED object types are included in this report:

• Load Tables (script based loads only)
• Stage Tables
• Model Tables
• Aggregate Tables

Parameters

There are no parameters for this report.

830

Results

The results of this report are displayed as a list of table objects in the metadata repository with
the following columns:

• Table name

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

831

List Procedures not related to a Table
This report shows all procedures and host scripts in the metadata repository that aren't
associated with a table object.

Objects Included

The following WhereScape RED object types are included in this report:

• Procedures
• Host Scripts

Parameters

There are no parameters for this report.

Results

The results of this report are displayed as a list of code objects in the metadata repository with
the following columns:

• Procedure/Script name

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

832

Teradata: View of Model Validate
This report shows any views built on model tables that do not have the same columns or column
properties.

Objects Included

The following WhereScape RED object types are included in this report:

• Views

Parameters

This report has two alternate parameters:

• View Name OR
• Project/Group/All Objects

Results

The results of this report are displayed as a list of differing view columns with the following
columns:

• View Name
• Model Name (the name of the model table the view is based on)
• Column Name (the column where a difference exists)
• Validates (further details of the difference)

The result set is sortable by clicking on the appropriate column heading.

833

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

Query Data Warehouse Objects
This report enables SQL queries to be run as the user signed into the repository.

Objects Included

All object types and data warehouse tables can be included in this report.

Parameters

This report has one parameter:

• The SQL Query

834

Results

The results of this report are displayed with the following columns:

• First SQL column SELECTed
• Second SQL column SELECTed
• ...
• nth SQL column SELECTed

The result set is sortable by clicking on the appropriate column heading.

Report Example

Sending Results to Microsoft Excel

Right-click on the result set and click Output to File to send the results of this report to
Microsoft Excel.

835

This chapter covers the promotion of metadata objects between environments. Various methods
exist for getting new or changed metadata from one repository into another repository.

It is of course possible and in fact desirable to have multiple metadata repositories. At the very
least we would normally have a development and a production environment.

In some situations it may also be desirable to have multiple child development repositories with
one master repository where all elements are brought together. WhereScape RED supports this
type of structure but does not include source control or co-ordination of the repositories. It is up
to the data warehouse manager to manually ensure that the various objects are kept in sync and
coordinated.

As with any software system there are issues around how code is moved from a development
environment into a testing or production environment.

This promotion of objects can be achieved via a number of different methods. Each is discussed
below. In summary they are:

1 Updating a repository with an application or application patch.

2 Importing objects from another repository.

3 Restoring a full metadata set into a repository

In This Chapter

Applications .. 836
Importing Object Metadata .. 843
Importing Language Files ... 845
Data Warehouse Testing ... 846

C h a p t e r 3 1

Promoting Between Environments

836

Applications
The definition of an application is discussed in the following section on applications and the
loading and updating of applications is discussed at some length in the Installation and
Administration Guide. Only the concepts of the use of applications will be covered here.

An application is defined for our purposes as a group of objects. An application is a method of
loading objects into a metadata repository. It can be used to upgrade or provide patches to an
existing metadata repository. As such an application can be used to distribute and remotely
maintain a specific data warehousing solution.

An application consists of a series of Windows' files, which can be distributed to remote sites.

A list of the applications that have been applied to the metadata repository can be acquired via
the Tools>List Loaded Deployment Applications menu option.

An application is created through the Tools>Build Deployment Application menu option. This
application can then update a metadata repository through the Setup>Administration utility. In
this manner the application model can be used to update a metadata repository in an ordered and
controlled fashion. Loading an application inserts various objects into the chosen metadata
repository. An application is best defined as a set of objects that are shipped to allow inclusion of
those objects in a remote repository.

Note: An application can only be loaded into a metadata repository running on the same
database type as that of the application creator (e.g. a Teradata application can only be loaded
into a Teradata metadata repository, etc.).

837

Application Creation

Creating an Application
An application is created by selecting the Tools>Build Deployment Application menu option.
The following dialog box is displayed. Once the application is defined and the objects selected,
the application files are generated when the OK button is clicked.
If procedures are compiled as part of the subsequent application load, the compiles occur in the
order they are listed in the application. This way if there are procedure dependencies, ensure
their ordering in the application object list is correct.
There are three tabs in the Build Deployment Application screen.
The first tab defines the application, the second lists the objects to add or replace in the
destination repository and the third tab lists the objects to delete in the destination repository.

Define an Application distribution

838

Output Directory
The directory to which the application files will be written. By default this will be the WhereScape
program directory.

• To browse for the required folder, click on the Browse... button.
• The Make New Folder button allows you to create a new folder in the currently selected

directory.

Application Identifier

The application identifier is a four character code used to uniquely identify the application. This
identifier is used in the naming of the files that are created to contain the application data.

Application Version

The version is a character string that provides a version number for reference purposes. This
version number is displayed when applications are being loaded, and is used in the naming of the
files that are created to contain the application data. As such it must contain characters that are
valid in a Windows file name.

Application Name

The name by which the application is known. This name is displayed during the choosing of an
application to load and is recorded in the metadata of the repository into which an application is
loaded. It is not used apart from documentation purposes.

839

Description

This description is displayed during the choosing of an application to load. It is not used at any
other point apart from documentation purposes.

Application Files

When an application is created the following files are built, where XXXX is the application
identifier and NNNNN is the application version.

File Purpose

App_data_XXXX_NNNNN.wst This file contains the scripts and data required to
rebuild the objects in the new metadata repository.

App_id_XXXX_NNNNN.wst This control file identifies the application and its
version.

App_obj_XXXX_NNNNN.wst This file contains control information and each
object in the application.

App_con_XXXX_NNNNN.wst A list of all the connections either in the application
or used by objects in the application.

App_map_XXXX_NNNNN.wst A list of all the project and group mappings for the
objects in the application.

Previous Application

Click on the Browse button next to Previous application to choose a previously built
application to use as a list of objects to include in the new application. After using a previous
application as a starting point for this application, additional objects can be added or removed
from the application.

Pre Application Load SQL

This box allows the entry of a SQL Statement that will be executed before the application is
loaded. For example, we may wish to drop the date dimension before loading the application
because we have changed the primary key constraint. In such a case, we would enter 'drop table
dim_date' in this field to have the table dropped before the application is loaded.

Post Application Load SQL

This box allows the entry of a SQL Statement that will be executed after the application is loaded.
For example, we could execute a function to populate a table.

840

Objects to Add/Replace
Objects can be moved from the left object tree by double clicking on an object name or by using
the > button. This tab allows you to select the objects to add or replace in the destination
repository.

NOTE: Maximum number of objects in an application

5000 objects (including jobs)
2000 source views of views
1000 jobs

841

Objects to Delete
Objects can be moved from the left object tree by double clicking on an object name or by using
the > button. This tab allows you to select the objects to delete in the destination repository.

NOTE: To set the objects available for selection, choose from the Available drop-down list. The
options are Archived Objects, Current Objects and All Objects. The default is Archived Objects.

842

Application Loading
Note: Applications can only be loaded into the same relational database type from which they
were created. (e.g. a Teradata application can only be loaded into a Teradata database).

Applications are loaded via the Setup Administrator utility. The normal process for implementing
an application would be as follows:

1 Run the Setup Administrator utility.

2 Change the application directory to the application's location.
3 Turn on logging in the Setup Administrator utility using Tools/Start logging.

4 Load the application via the Setup Administrator utility.

5 Choose the level of metadata application. There are several levels, from load metadata only
through to load metadata and apply changes to all tables.

6 Resolve any connections and tablespaces to those present in the target environment.

7 Create/Re-create/Alter database tables, if selected in (5).
8 Compile database procedures, if selected in (5).

9 Turn off logging.

10 Review the output in the Setup Administrator utility.

11 Review the log file.

Note: Some database operations, such as converting an existing non-partitioned table to a
partitioned table, cannot be done using a deployment application. In these cases, some manual
intervention may be required to update the target databases to match the new metadata.

Refer to the Setup Administrator manual for more information about loading an application.

843

Creating and Loading Applications from the Command Line
It is possible to create and load applications from the command line by running a bat file.
For more detailed instructions, please see section 12.2 Creating and Loading Applications
from the Command Line in the RED Installation Guide.

Importing Object Metadata
Any group of objects can be imported into the current metadata repository from another
repository. If an object already exists in the target repository then it is either skipped or replaced
depending on the type of import undertaken. If an object is to be replaced as part of an import, a
version of the object is created prior to its replacement.

To import an object or group of objects select the Tools>Import Metadata Objects menu
option. A dialog as below will appear. The two options are IMPORT or REFRESH. An import will
not replace an existing object of the same name. A refresh will version and replace any existing
object of the same name.

Enter the connection, and a database user name and password that has access to the source
metadata repository. Finally, enter the user name of the metadata repository you want to import
from. In most situations the 'user name' and 'meta repository' would be the same. However, if you
only have read access to a meta repository then it may be necessary to login to the database
under a different user name from that of the repository you are trying to import from.

844

You are not permitted to select the current meta repository in the Meta Repository field, but are
permitted to login using the existing repository username. Once a successful logon is completed
the contents of the source repository are loaded and the following dialog appears.

Select an object by double-clicking on it or by selecting and using the > button. If an object such
as a table is chosen then any related scripts, procedures and indexes are also selected. They can
be removed if required. A target project can be selected.

Once all required objects are selected the import will commence when the OK button is clicked.

On completion, a dialog box appears, notifying the number of each type of object imported, and
skipped.

Note: The repository from which you are importing should be the same metadata version as the
target repository.

845

Importing Language Files

Note: Applications can only be loaded into the same relational database type from which they
were created. (For example, a Teradata application can only be loaded into a Teradata database).

Language Files are loaded via the Setup Administrator utility. The normal process for
implementing a Language file would be as follows:

1 Run the Setup Administrator utility.

2 Go to the Languages menu item in the top command bar and select Load Languages.

3 Right-click on the Language file to be loaded and select Install Language.

4 Select the ODBC data source and Log on to the target meta repository.
5 Select the language to be updated.

6 Review the output in the Setup Administrator utility.

Refer to the Setup Administrator manual for more information about loading a Language File.

846

Data Warehouse Testing

Note: Applications can only be loaded into the same relational database type from which they
were created. (For example, a Teradata application can only be loaded into a Teradata database).

Testing applications are loaded via the Setup Administrator utility. Refer to the Setup
Administrator manual for more information on how to load an application.

A testing application set consists of a Procedure and an XML script and provides the ability to
define a series of tests against data warehouse objects; either comparing them to an expected
value or to the results of a query.

Once the application set has been loaded, the Procedure and the XML script will be visible in the
left pane.

847

The XML script contains the test definitions. Each test is a new XML node in the comparison
query. The procedure simply runs the test and determines whether the tests are passed or not.
This is most likely to be run as a scheduled job within WhereScape RED.

848

To create a job
1 Click the Scheduler Button.

2 Choose File and then New Job.
3 Enter the definition of the job.

849

4 To select the test procedure as a task, open the Procedure object heading in the left pane.
Choose dss_test and the > button. Click OK.

5 To run the job, click on the All Jobs button and then right-click on the job and select Start
the Job.

851

This chapter covers the moving, saving and reloading of metadata repository objects. The backup
section describes the methods for backing up the metadata repository. It can also be backed up
via normal database backup procedures. The load/restore section covers the metadata restoration
functions available.

Various methods exist for getting new or changed metadata from one repository into another
repository. These methods are covered in the applications, and managing multiple repositories
sections.

In This Chapter

Backup using DB Routines .. 852
Unloading Metadata ... 853
Loading an Unload .. 856

C h a p t e r 3 2

Backing Up and Restoring Metadata

852

Backup using DB Routines
The backup of the metadata repository can be undertaken as a separate exercise from the general
backup of the data warehouse. The metadata backup does not backup any of the actual data
warehouse tables. It only saves the table definitions, index definitions, procedures etc., so is not
normally large.

The backup includes any tables that begin with "dss_". In this way, key metadata tables such as
dss_parameter, dss_source_system and dss_fact_table are included in the backup. These tables are
required if the restored metadata is to function correctly.

It is recommended that the metadata back up is used to augment existing database back up
strategies that are implemented independently from RED.

Windows Backup - WhereScape Unload and Load

WhereScape RED provides a generic unload and load utility for backing up and restoring the
metadata. This is a Windows backup option that exists within WhereScape RED, which is a
database independent backup that is designed for the restoration/migration of RED metadata but
does not offer protection/security of data warehouse objects.

The unload and load utility can also be used to share metadata with WhereScape support, while
troubleshooting issues. These options have the advantage of being database, and database
version independent, so can be used to backup the metadata regardless of the version of the
database client running on the PC.

It is possible to Load the metadata from a different database. For example, the metadata from a
Teradata unload can be loaded into an Oracle or SQL Server database. There is, however,
additional work in order to successfully move the metadata in this fashion. If such a move is
required, please contact WhereScape support.

The unload and load process is detailed in the succeeding sections.

853

Unloading Metadata
WhereScape RED provides a generic unload utility for backing up the metadata. The advantage of
this backup is that it is database, and database version independent. It can be used to backup the
metadata regardless of the version of the database client running on the PC. It is possible to
transport the metadata from one database platform to another using unload and load. For
example, the metadata from a SQL Server unload can be loaded into an Oracle database.

After performing a cross platform unload and load:

• Transformations must be altered manually to use the correct syntax for the new database.
• Generated procedures regenerated.
• Modified and custom procedures must be changed to use the procedure language of the new

database platform.

Performing an Unload

An unload can be performed within the WhereScape RED tool by selecting the Backup>Unload
the metadata to disk menu option.

A popup window asks for confirmation to proceed with the unload. Click Yes.

An additional pop-up window asks for a file name for the export. A directory should be chosen
and a name entered. Click Save.

854

Enter a comment for the unload and click OK.

Finally, click Yes or No on the include version history dialog:

855

This either includes or excludes version history metadata in the unload.

The unload starts, and indicates progress with a progress bar.

856

Loading an Unload
WhereScape RED metadata can be restored from a prior unload.

Performing a Load

An unload of a metadata repository can be loaded over the top of an existing repository. This
action replaces the existing repository in its entirety. To load an unload, select the menu option
Backup>Load the Metadata from disk to begin the load process.

A popup window asked for confirmation a load is intended. Click Yes.

A dialog box appears. The word RESTORE needs to be entered. The ODBC connection needs to be
chosen, along with the username and password where the metadata is to be restored to. The
username does not have to be that of the current metadata repository, but it must be a valid
repository. Click OK.

857

The next dialog box asks for the folder for the metadata to be loaded from. Browse to the
contents of the directory where the unload is located and click Select Folder.

858

Confirm the load will overwrite the existing repository by clicking Yes:

A pop-up window asks if a restore log is required. Click Yes for a log, or No otherwise.

859

If a cross platform load is being performed, the following dialog is displayed. Click Yes.

The metadata load now runs. Once the load has completed, start WhereScape Administrator and
validate the metadata repository that has just been loaded.

861

This chapter provides information on how to change and manipulate the data warehouse once it
has been established.

New source columns or changes to the source systems from which the data warehouse is built,
will require modifications to both the metadata and the data warehouse tables and procedures.

In This Chapter

Validating Tables .. 862
Validating Source (Load) Tables ... 864
Validating Procedures... 865
Altering Tables ... 866
Validating Indexes .. 867
Recompiling Procedures ... 867

C h a p t e r 3 3

Altering Metadata

862

Validating Tables
The metadata as stored and maintained by RED does not necessarily reflect the actual tables and
procedures in use in the data warehouse. For example, if a new column is added to the metadata
for a table then that change is not automatically made in the actual physical table residing in the
data warehouse. Likewise if a column is deleted from the metadata then that column may still
exist in the physical database table.

This situation may be particularly apparent after an application patch or upgrade. The menu
option Validate>Validate Table Create Status , and the right-click menu options in either the
left or middle panes all provide a means of comparing the metadata to the physical tables in the
database. A table, range of tables or all tables can be chosen. Each chosen table is a table in the
metadata and it is compared against the physical database table if it exists.

The following example is the output from a validation.

In this example we see five different scenarios.

1 The metadata for table load_customer matches the physical table in the database.

2 The metadata for the table model_forecast does not match the physical table. The metadata
has an additional column called 'product_line'. This column was not found in the physical
table. The table can be altered if desired. See the next section on Altering Tables.

3 The physical database table model_customer has an additional column not found in the
metadata. The column is 'address'. The table can be altered if desired. See the next section on
Altering Tables.

4 The table stage_customer has the same columns in both the metadata and the physical table,
but the column order is different. This is probably not an issue for most tables, but may be a

863

problem for some type of load tables, where the column order is important. This could be the
result of a previous alter of the table. The table must be re-created if the order is important.

5 The table load_state is defined in the metadata but has not been physically created in the
database. The table can be created in the normal manner.

Using outdated metadata in drag and drop

When dragging from a data warehouse table to create another data warehouse table (e.g.
model_table to create view_table) a check is made to ensure that the metadata matches the
database table. If the two are found to be out of sync the following message will appear:

If a subsequent validate of the table in question shows that it validates, this message will mean
that the dates are somehow out of sync. This can occur for example after an import where the
metadata has been replaced, but the underlying table still matches the metadata. Another
common occurrence is where a new column is added and then deleted. To prevent the message
from re-occurring in such a situation, proceed as follows.

Use the right-click menu to select Alter Table when positioned on the table name in the validate
results screen (event though the table validates OK). The metadata update time will be set back to
that of the last database table create.

864

Validating Source (Load) Tables
Changes to the source systems from which the data warehouse is built can be detected to a
limited degree. The menu option Validate>Validate Load Table Status allows a comparison
between load tables and the source tables from which they were built. This comparison is not
available for flat file or script based loads. A load table or group of load tables are selected and the
results are displayed in the middle pane. An example screen from a load table validate is as
follows:

The table load_forecast is a Windows file load and as such cannot be validated.

The table load_customer shows additional columns in the source table. Such a scenario will not
cause problems for the continued operation of the data warehouse. It simply means that more
columns are present in the source table than have been loaded into the data warehouse. This may
have been the result of an initial partial selection or as a result of new columns. Further
investigation of the source table would be required to ascertain if there was new information
available.

The table load_state reflects a problem for the continued operation of the data warehouse. The
source table does not have a column that was previously identified as having come from that
table. This will probably cause the load of that table to fail. This scenario would also require an
investigation into the source table. The resolution may be to delete the column. The potential
impact on later tables (stage and model) and procedures in the data warehouse can be ascertained
by using the right-click menu when positioned over a load table name.

865

Validating Procedures
The menu option Validate>Validate Procedure Status compares procedures as stored in the
metadata with those compiled and running in the data warehouse. This option provides a listing
in the middle pane of each selected procedure and its status. The status will be Validates OK,
Not compiled, or Compare failed.

Where a procedure is marked as Not compiled this means that the procedure exists in the
metadata but has not been compiled into the database.

Where a procedure fails to compare the Procedure, the Editor must be used to find the actual
differences. Start the editor by double clicking on the procedure name in the left pane. Use the
Tools>Compare to Compiled Source menu option to display the differences between the
procedure in the metadata and that compiled in the database.

866

Altering Tables
The previous section covered the process of validating a table as defined in the metadata with the
physical table as defined in the database. If a table is found to be different it is possible to alter
the table.

Note: Care should be taken when altering large data warehouse tables. A number of factors such
as the time required to perform the alter, access to the table and the optimum storage of the table
come into play.

To alter a table first validate the table through the Validate>Validate Table Create Status
menu option, or the right-click menu option from the object name. Then in the middle pane (the
validation listing) select the table that has not validated. Position on the table name and using
the right mouse, select the Alter Table pop-up menu option. A screen similar to the one below
will appear advising of the planned changes.

In this example, the dim_product table is to be altered. The new column 'State' will be added to
the table. Comments at the top of the screen, show the reason(s) for the alteration and the actual
alter command(s) follow.

867

The alter table window is an edit window. The command to be executed can be changed or
additional commands entered. The command may also be cut to be executed in some other
environment or at some later stage.

Clicking the Alter Table button will proceed to alter the table. In effect, it will execute any
command in the window.

Validating Indexes
Index validate is not available on Teradata.

Recompiling Procedures
Procedures can be invalidated as a result of changes to underlying tables, or child procedures. A
procedure can be recompiled through the procedure editor or via the menu option
Tools>Compile Procedures. This menu option displays the following dialog box:

As each procedure is compiled, it is displayed in the middle pane of the builder window. If a
procedure fails to compile, a failure message is displayed along side the procedure name.
Procedures that fail to compile will need to be investigated through the procedure editor, as no
specific error information is provided by this bulk compiler.

Compile Selected

A selected group of procedures may be compiled. Selection is done via standard Windows multi
selection using the shift and CTRL keys. By selecting projects or groups, it is possible to compile
all procedures associated with the projects or groups. Click on the Compile Selected button to
compile/re-compile the selected procedures.

Compile All

Click on the Compile All button to compile/re-compile all procedures in the metadata
repository.

Compile Missing

The Compile Missing button compiles all procedures in the metadata repository that do not
exist in the metadata database in Teradata.

869

In This Chapter

Introduction to Callable Routines .. 870
Ws_Api_Glossary ... 877
Ws_Connect_Replace .. 879
Ws_Job_Abort .. 880
Ws_Job_Clear_Archive ... 882
Ws_Job_Clear_Logs .. 885
Ws_Job_Clear_Logs_By_Date ... 887
Ws_Job_Create .. 889
Ws_Job_CreateWait ... 893
Ws_Job_Dependency ... 897
Ws_Job_Release ... 900
Ws_Job_Restart ... 902
Ws_Job_Schedule .. 905
Ws_Job_Status ... 907
Ws_Load_Change .. 913
Ws_Maintain_Indexes ... 915
Ws_Version_Clear ... 918
WsParameterRead... 921
WsParameterReadF ... 922
WsParameterReadG .. 923
WsParameterWrite ... 925
WsWrkAudit .. 926
WsWrkAuditBulk .. 929
WsWrkError .. 932
WsWrkErrorBulk ... 935
WsWrkTask ... 938

C h a p t e r 3 4

Callable Routines

870

Introduction to Callable Routines

Callable Routines API
WhereScape RED callable routines provide an Application Program Interface (API) to the
WhereScape RED metadata using the following SQL-invoked routines:

Routine Name Description

 Ws_Api_Glossary (on page
877)

Adds an entry to the documentation glossary.

 Ws_Connect_Replace (on
page 879)

Replaces the contents of a connection with details from
another connection.

 Ws_Job_Abort (on page 880) Aborts a job if it is in a running state.

 Ws_Job_Clear_Archive (on
page 882)

Purges archived job logs that are older than the specified age
in days.

 Ws_Job_Clear_Logs (on page
885)

Archives job logs when the maximum number of current logs
to retain is exceeded.

 Ws_Job_Clear_Logs_By_Date
(on page 887)

Archives job logs that are older than the specified age in days.

 Ws_Job_Create (on page 889) Creates a job based on an existing job and optionally starts it
immediately.

 Ws_Job_CreateWait (on page
893)

Creates a job based on an existing job and schedules it to start
later.

 Ws_Job_Dependency (on
page 897)

Adds or removes a child-to-parent dependency between two
jobs to control the child job.

 Ws_Job_Release (on page
900)

Starts a job if it is a holding or waiting state.

 Ws_Job_Restart (on page
902)

Starts a job if it is in a failed state.

 Ws_Job_Schedule (on page
905)

Schedules a job if it is in a holding or waiting state.

 Ws_Job_Status (on page 907) Returns the current status of a job.

 Ws_Load_Change (on page
913)

Changes the Connection or Schema of a load table.

 Ws_Maintain_Indexes (on
page 915)

Drops and/or builds database indexes that are defines in the
WhereScape RED metadata.

 Ws_Version_Clear (on page
918)

Purges metadata versions for all objects that do not meet the
specified retention criteria.

871

Routine Name Description

 WsParameterRead (on page
921)

Returns the value and comment (for most RDBMS) of a
WhereScape RED metadata Parameter.

 WsParameterReadF (on page
922)

Returns the value of a WhereScape RED metadata Parameter.
[SQL Server only]

 WsParameterReadG (on
page 923)

Returns the value of a "global" WhereScape RED metadata
Parameter that relates to a load table.

 WsParameterWrite (on page
925)

Updates the value and comment of a WhereScape RED
metadata Parameter or creates it.

 WsWrkAudit (on page 926) Records a message in the Audit Log.

 WsWrkAuditBulk (on page
929)

Records multiple messages in the Audit Log.

 WsWrkError (on page 932) Records a message in the Error/Detail Log.

 WsWrkErrorBulk (on page
935)

Records multiple messages in the Error/Detail Log.

 WsWrkTask (on page 938) Updates row counts for a task in the Task Log.

872

Callable Routines per RDBMS
Each WhereScape RED Callable Routine exists in the database as either a Stored Procedure or a
User-defined Function that can be invoked from SQL. A Callable Procedure is invoked by a SQL
call/execute statement and a Callable Function is invoked in a SQL SELECT statement or a value
expression. The Callable Routines are typically implemented as procedures in most database
systems due to RDBMS limitations of user-defined functions when the WhereScape RED API was
originally developed.

Routine Name Teradata

 Ws_Api_Glossary (on page 877) Procedure

 Ws_Connect_Replace (on page 879) Procedure

 Ws_Job_Abort (on page 880) Procedure

 Ws_Job_Clear_Archive (on page 882) Procedure

 Ws_Job_Clear_Logs (on page 885) Procedure

 Ws_Job_Clear_Logs_By_Date (on page 887) Procedure

 Ws_Job_Create (on page 889) Procedure

 Ws_Job_CreateWait (on page 893) Procedure

 Ws_Job_Dependency (on page 897) Procedure

 Ws_Job_Release (on page 900) Procedure

 Ws_Job_Restart (on page 902) Procedure

 Ws_Job_Schedule (on page 905) Procedure

 Ws_Job_Status (on page 907) Procedure

 Ws_Load_Change (on page 913) Procedure

 Ws_Maintain_Indexes (on page 915) Procedure

 Ws_Version_Clear (on page 918) Procedure

WsParameterRead (on page 921) Procedure

 WsParameterReadF (on page 922) Procedure

 WsParameterReadG (on page 923) Procedure

 WsParameterWrite (on page 925) Procedure

 WsWrkAudit (on page 926) Procedure

 WsWrkAuditBulk (on page 929) Procedure

 WsWrkError (on page 932) Procedure

 WsWrkErrorBulk (on page 935) Procedure

 WsWrkTask (on page 938) Procedure

873

Callable Routines Names Qualifier
The WhereScape RED Callable Routines can be invoked using the unqualified routine name for
SQL Server and Oracle. However, for Teradata and DB2 it is necessary to qualify the routine name
with the owner/schema of the WhereScape RED metadata repository. All RED-generated
procedures in a Teradata or DB2 repository that invoke a WhereScape RED Callable Routine do so
by qualifying the routine name with [METABASE] e.g. [METABASE].routine_name. When RED
creates/compiles a procedure in a Teradata or DB2 database it automatically replaces the
[METABASE] "token" with the repository owner/schema.

When you edit a RED-generated procedure or create your own custom procedure in Teradata or
DB2 you can qualify each callable routine name by either hard-coding the owner/schema or by
using the [METABASE] "token" that RED will replace when the procedure is created/compiled in
the database. The Teradata and DB2 examples in this chapter use the [METABASE] "token" but if
you invoke a WhereScape RED Callable Routine interactively or from outside a RED-compiled
procedure/function then the actual owner/schema must be specified because RED won’t have the
chance to replace the "token".

Callable Routines Common Input
The following input parameters are common to most of the WhereScape RED Callable Routines,
which are primarily used for integration with the WhereScape RED Scheduler.

 Input Parameter Name Description

Job Instance Identifier p_sequence Unique identifier of the running job (i.e. the
running instance of a held or scheduled job) that
executed the routine.

When invoked from a WhereScape RED
Scheduler the routine will be passed the
parameter argument.

When invoked manually or externally to the
WhereScape RED Scheduler, then any integer
value can be used.

Job Name p_job_name Name of the running job that executed the
routine.

When invoked from a WhereScape RED
Scheduler the routine will be passed the
parameter argument.

When invoked manually or externally to the
WhereScape RED Scheduler, then any name can
be used.

874

 Input Parameter Name Description

Task Name p_task_name Name of the running task (of a running job)
that executed the routine.
When invoked from a WhereScape RED
Scheduler the routine will be passed the
parameter argument.

When invoked manually or externally to the
WhereScape RED Scheduler, then any name can
be used.

Job Identifier p_job_id Unique identifier of the held or scheduled job
that the running job is a specific instance of.
When invoked from a WhereScape RED
Scheduler the routine will be passed the
parameter argument.

When invoked manually or externally to the
WhereScape RED Scheduler, it is recommended
to use 0 (zero).

Task Identifier

p_task_id Unique identifier of the running task (of a
running job) that executed the routine.
When invoked from a WhereScape RED
Scheduler the routine will be passed the
parameter argument.

When invoked manually or externally to the
WhereScape RED Scheduler, it is recommended
to use 0 (zero).

Note: Typically, the parameter names of the WhereScape RED Callable Routines use a p_ prefix
as indicated but in some routines a v_ prefix is used instead. In addition, for SQL Server all
parameter names are also prefixed by @. The RDBMS-specific parameter names are included in
the subsequent details of each Callable Routine.

Callable Routines Invocation
This chapter includes examples of each WhereScape RED Callable Routine to illustrate how to
invoke the routine for each RDBMS, along with the necessary variable declarations. Typically, the
routines are executed from a Stored Procedure so the routine-specific examples illustrate that
scenario and use parameters/arguments that are passed by position (as in a RED-generated
procedure). However, it can be useful to execute a Callable Routine using other methods such as
the following.

875

Alternative Invocation Methods
Invocation via ODBC

The following examples illustrate how to invoke a WhereScape RED Callable Routine via an
ODBC connection (using a tool such as WhereScape SQL Admin), which uses both input and
output parameters. The examples work for a SQL Server RED repository but for another RDBMS,
the routine name may need to be qualified with the appropriate owner/schema. Refer to the
detailed description of the Ws_Connect_Replace routine for an explanation of the
parameters/arguments.

The following invocations via ODBC are equivalent and the only difference is the formatting as
the first command uses a single line while the second command is formatted across multiple
lines:

-- OBDC Example 1 (single line).
{ CALL Ws_Connect_Replace(0,'Test Job Name', 'Test Task Name', 0, 0,
'REPLACE', 'Connection1', 'Connection2', ?, ?, ?) };

-- OBDC Example 2 (same command formatted using multiple lines).
{ CALL Ws_Connect_Replace
 (0
 , 'Test Job Name'
 , 'Test Task Name'
 , 0
 , 0
 , 'REPLACE'
 , 'Connection1'
 , 'Connection2'
 , ?
 , ?
 , ?
)
};

The result of the Ws_Connect_Replace invocation can be confirmed by checking the target
connection. In addition, a log entry is created using the specified job and task names that can be
viewed via the Logs – Recent Audit Trail Logs menu item of the WhereScape RED Scheduler.

Invocation via the Command-Line

Each WhereScape RED Callable Routine can also be invoked from the command-line, using an
RDBMS-specific tool such as:

 RDBMS SQL Command-Line-Interface (CLI) Tool

Teradata Basic Teradata Query (BTEQ) i.e. bteq.

These tools can be used to invoke a WhereScape RED Callable Routine by connecting to the
database, executing SQL statements, and disconnecting from the database. Refer to the RDBMS-
specific documentation for details of how to connect and execute SQL via the relevant CLI tool as
well as details of tool’s return codes.

876

Typically, the CLI command will include options to specify the database, connection credentials,
and the SQL to execute. Multiple SQL statements can typically be executed by
terminating/delimiting each statement using a semi-colon (;). In most cases, the SQL needs to
be quoted (typically double-quoted) when specified on the command-line and if the SQL
statements include embedded quotes (such as single-quotes around literals) then they may need
to be "escaped" depending on the CLI tool and the platform. Most of the tools also allow the
SQL commands to be read from a file instead of from standard input.

877

Ws_Api_Glossary
Synopsis

Adds an entry to the documentation glossary.

Description

Adds the specified entry to the documentation glossary, which is included in documentation that
is subsequently generated by WhereScape RED.

Input

Input Description

Object Name Item that appears in the left column of the glossary, which normally
represents the business name of a column in a dimension or fact table
(although it can be used for other purposes).

Glossary Term Item that appears under the analysis area heading of the glossary, which
normally represents a dimension ot fact table name (although it can be
used for other purposes).

Glossary Description Description of the term being defined.

Action Either ADD or DELETE the specified glossary entry.

Output

Output Description

Result Text A message to indicate whether or not the glossary term was successfully
added/deleted.

Teradata Parameters: Ws_Api_Glossary

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_object_name VARCHAR(64) IN

p_term VARCHAR(256) IN

p_comments VARCHAR(4000) IN

878

Parameter Name Datatype Mode

p_option VARCHAR(64) IN

p_result VARCHAR(256) OUT

Teradata Examples: Ws_Api_Glossary

DECLARE v_result_txt varchar(256);
CALL [METABASE].Ws_Api_Glossary
('Data Warehouse'
, 'Overview'
, 'A repository of business information'
, 'ADD'
, v_result_txt
);

879

Ws_Connect_Replace
Synopsis

Replaces the contents of a connection with the details from another connection.

Description

Copies the details of the specified Source connection to the specified Target connection.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Action REPLACE the details of the specified Target connection.

Source Connection The name of the Source connection whose details will be copied.

Target Connection The name of the Target connection whose details will be changed.

Output

Output Description

Return Code Output Return Code:

S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number Output Result Number:
1 Success.

-2 Error.

-3 Fatal/Unexpected Error.

880

Teradata Parameters: Ws_Connect_Replace

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_action VARCHAR(64) IN

p_source VARCHAR(64) IN

p_target VARCHAR(64) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Connect_Replace

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Connect_Replace
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'REPLACE', 'Connection1', 'Connection2'
, v_return_code
, v_return_msg
, v_result_num
);

881

Ws_Job_Abort
Synopsis

Aborts a job if it is in a running state.

Description

Aborts the specified job if it is in a running state, which changes it to a failed state, fails all
running tasks, and holds all waiting tasks.

Input

Input Description

Abort Job Name The name of the job to be aborted. The specified name must exactly
match the job name as displayed by the WhereScape RED Scheduler.
The specified job must be in a running or failed state in order to be
aborted.

Job Instance
Identifier

Unique identifier of the running job (that may be in a failed state).

Abort Job Message
Text

Custom message text to be recorded in the WhereScape RED Audit Log
for the aborted job and the WhereScape RED Task Log for each aborted
task.

Teradata Parameters: Ws_Job_Abort

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_job_name VARCHAR(64) IN

p_job_sequence INTEGER IN

p_job_msg VARCHAR(256) IN

Teradata Examples: Ws_Job_Abort

CALL [METABASE].Ws_Job_Abort
('Daily Run'
, 1234
, 'Job aborted via manual execution of Ws_Job_Abort.'
);

882

Ws_Job_Clear_Archive
Synopsis

Purges archived job logs that are older than the specified age in days.

Description

Deletes job-related logs that were previously archived (into the WX_WRK_AUDIT_ARCHIVE and
WX_WRK_ERROR_ARCHIVE tables via a RED Scheduler and/or RED callable routines such as
Ws_Job_Clear_Logs and Ws_Job_Clear_Logs_By_Date) depending on their age in days.

When the maximum age of the archived logs to retain is exceeded all the older logs are deleted.
For example, if 90 days are retained then all the archived logs that are older than 90 days are
deleted. If a maximum age of 0 days is specified then all the archived logs are deleted.
Alternatively, the TRUNCATE option can be used to remove all the archived logs, which
overrides all other criteria.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Maximum Days to
Retain

The maximum age (in days) of the archived logs to retain. If 90 days are
retained then all the archived logs that are older than 90 days are
purged/deleted. If 0 days are retained then all the archived logs are
purged/deleted.

Job Name to Purge The name of the job whose archived logs are to be purged. Wild cards
are supported. Specifying % will match ALL jobs.

Options The TRUNCATE option can be used to remove ALL the archived logs,
which overrides all other criteria i.e. irrespective of the days to retain or
job name.

Output

Output Description

Return Code Output Return Code:

S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

883

Output Description

Result Number

Output Result Number:

1 Success.
-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Clear_Archive

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_day_count INTEGER IN

p_job VARCHAR(64) IN

p_options VARCHAR(256) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

884

Teradata Examples: Ws_Job_Clear_Archive

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Job_Clear_Archive
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 90, 'Daily Run', ''
, v_return_code
, v_return_msg
, v_result_num
);

885

Ws_Job_Clear_Logs
Synopsis

Archives job logs when the maximum number of current logs to retain is exceeded.

Description

Moves job-related logs from the current log tables (such as WS_WRK_AUDIT_LOG and
WS_WRK_ERROR_LOG) to the corresponding archive log tables (such as
WX_WRK_AUDIT_ARCHIVE and WX_WRK_ERROR_ARCHIVE) depending on the number of logs
to retain.

When the maximum number of current logs to retain is exceeded the oldest logs are archived for
the specified job(s) to reduce the number of current logs to the specified retention limit. For
example, if 10 is specified then only the latest 10 logs are retained. If a retained count of 0 is
specified then all the current logs are archived for the specified job(s).

Note: Equivalent functionality is available via a WhereScape RED Scheduler and the "Logs
Retained" property of a job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Job Name(s) to
Archive

The name of the job(s) whose current logs are to be archived. Wild
cards are supported. Specifying % will match ALL jobs.

Maximum Logs to
Retain

The maximum number of logs to retain. When the maximum is
exceeded the oldest logs are archived to reduce the number of current
logs to the specified retention limit.

Output

Output Description

Return Code Output Return Code:

S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.
-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

886

Teradata Parameters: Ws_Job_Clear_Logs

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_job_to_clean VARCHAR(64) IN

p_log_keep INTEGER IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Clear_Logs

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Job_Clear_Logs
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'Daily Run', 10
, v_return_code
, v_return_msg
, v_result_num
);

887

Ws_Job_Clear_Logs_By_Date
Synopsis

Archives job logs that are older than the specified age in days.

Description

Moves job-related logs from the current log tables (such as WS_WRK_AUDIT_LOG and
WS_WRK_ERROR_LOG) to the corresponding archive log tables (such as
WX_WRK_AUDIT_ARCHIVE and WX_WRK_ERROR_ARCHIVE) depending on their age in days.

When the maximum age of the current logs to retain is exceeded all the older logs are archived
for the specified job(s). For example, if 90 days are retained then all the current logs that are older
than 90 days are archived.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Job Name(s) to
Archive

The name of the job(s) whose current logs are to be archived. Wild
cards are supported. Specifying % will match ALL jobs.

Maximum Days to
Retain

The maximum age (in days) of the current logs to retain. If 90 days are
retained, then all the current logs that are older than 90 days are
archived.

Output

Output Description

Return Code Output Return Code:
S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

888

Teradata Parameters: Ws_Job_Clear_Logs_By_Date

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_job_to_clean VARCHAR(64) IN

p_day_count INTEGER IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Clear_Logs_By_Date

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Job_Clear_Logs_By_Date
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'Daily Run', 90
, v_return_code
, v_return_msg
, v_result_num
);

889

Ws_Job_Create
Synopsis

Creates a job based on an existing job and optionally starts it immediately.

Description

Creates a job from the specified existing job, if it is in either a holding or waiting state. The new
job can be started immediately. Typically, this routine is used to create & start a job from within
another job. Only jobs that are in a holding or waiting state can be used as a template for the new
job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Template Job Name The name of the job to be used as a template for the new job. The
specified name must exactly match the job name as displayed by the
WhereScape RED Scheduler. The specified job must be in a holding or
waiting state in order to be used as a template.

New Job Name The name of the job to be created. The new job name cannot already
exist.

Job Description A description of the new job. When not specified the setting of the
Template job is copied.

New Job Status The initial status/frequency of the new job:

HOLD - The status of the new job will show as 'On Hold'. The job will
not run until it is subsequently released.

ONCE - The new job will start immediately and upon successful
completion the new job will be deleted.
ONCE+HOLD - The new job will start immediately and upon successful
completion the status will show as 'On Hold'.

Thread Count The number of threads for the new job. When not specified the setting
of the Template job is copied.

Scheduler
Preference

A scheduler type or a specific scheduler name that is allowed to run the
job. When not specified the setting of the Template job is copied.
Note: Some jobs/tasks can only run in a specific environment such as
Windows or UNIX/Linux

Maximum Logs to
Retain

The maximum number of logs to retain. When not specified the setting
of the Template job is copied.

890

Input Description

Success Command A command-line action to execute upon successful completion of the
new job. When not specified the setting of the Template job is copied.
The command must be executable within the context of the scheduler
that runs the job so it must be a valid Windows/UNIX/Linux command
that is appropriate to the scheduler environment.

Failure Command A command-line action to execute upon failure of the new job. When
not specified the setting of the Template job is copied. The command
must be executable within the context of the scheduler that runs the job
so it must be a valid Windows/UNIX/Linux command that is appropriate
to the scheduler environment.

Output

Output Description

Return Code Output Return Code:

S Success.

N No action because the Template Job is not in a holding or
waiting state.
P No action because the New Job name already exists.
E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-1 Template Job is not in a holding/waiting state or the New
Job name already exists.
-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Create

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

891

Parameter Name Datatype Mode

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_template_job VARCHAR(64) IN

p_new_job VARCHAR(64) IN

p_description VARCHAR(256) IN

p_state VARCHAR(10) IN

p_threads INTEGER IN

p_scheduler VARCHAR(8) IN

p_logs INTEGER IN

p_okay VARCHAR(256) IN

p_fail VARCHAR(256) IN

p_att1 VARCHAR(4000) IN

p_att2 VARCHAR(4000) IN

p_att3 VARCHAR(4000) IN

p_att4 VARCHAR(4000) IN

p_att5 VARCHAR(4000) IN

p_att6 VARCHAR(4000) IN

p_att7 VARCHAR(4000) IN

p_att8 VARCHAR(4000) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

892

Teradata Examples: Ws_Job_Create

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Job_Create
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'Daily Run', 'New Daily Run', 'This is the New Daily Run job.', 'ONCE'
, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL
, v_return_code
, v_return_msg
, v_result_num
);

893

Ws_Job_CreateWait
Synopsis

Creates a job based on an existing job and schedules it to start later.

Description

Creates a job from the specified existing job, if it is in either a holding or waiting state. The new
job is scheduled to start later at the specified release time. Typically, this routine is used to create
& schedule a job from within another job. Only jobs that are in a holding or waiting state can be
used as a template for the new job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Template Job Name The name of the job to be used as a template for the new job. The
specified name must exactly match the job name as displayed by the
WhereScape RED Scheduler. The specified job must be in a holding or
waiting state in order to be used as a template.

New Job Name The name of the job to be created. The new job name cannot already
exist.

Job Description A description of the new job. When not specified the setting of the
Template job is copied.

New Job Status The initial status/frequency of the new job:

HOLD - The status of the new job will show as 'On Hold'. The job will
not run until it is subsequently released.
ONCE - The new job will start immediately and upon successful
completion the new job will be deleted.

ONCE+HOLD - The new job will start immediately and upon successful
completion the status will show as 'On Hold'.

Scheduled Release
Date/Time

The date/time when the new job is scheduled to be run.

Thread Count The number of threads for the new job. When not specified the setting
of the Template job is copied.

Scheduler
Preference

A scheduler type or a specific scheduler name that is allowed to run the
job. When not specified the setting of the Template job is copied.

Note: Some jobs/tasks can only run in a specific environment such as
Windows or UNIX/Linux

894

Input Description

Maximum Logs to
Retain

The maximum number of logs to retain. When not specified the setting
of the Template job is copied.

Success Command A command-line action to execute upon successful completion of the
new job. When not specified the setting of the Template job is copied.
The command must be executable within the context of the scheduler
that runs the job so it must be a valid Windows/UNIX/Linux command
that is appropriate to the scheduler environment.

Failure Command A command-line action to execute upon failure of the new job. When
not specified the setting of the Template job is copied. The command
must be executable within the context of the scheduler that runs the job
so it must be a valid Windows/UNIX/Linux command that is appropriate
to the scheduler environment.

Output

Output Description

Return Code Output Return Code:

S Success.
N No action because the Template Job is not in a holding or
waiting state.
P No action because the New Job name already exists.
E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.
-1 Template Job is not in a holding/waiting state or the New
Job name already exists.
-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

895

Teradata Parameters: Ws_Job_CreateWait

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_template_job VARCHAR(64) IN

p_new_job VARCHAR(64) IN

p_description VARCHAR(256) IN

p_state VARCHAR(10) IN

p_release_time TIMESTAMP IN

p_threads INTEGER IN

p_scheduler VARCHAR(8) IN

p_logs INTEGER IN

p_okay VARCHAR(256) IN

p_fail VARCHAR(256) IN

p_att1 VARCHAR(4000) IN

p_att2 VARCHAR(4000) IN

p_att3 VARCHAR(4000) IN

p_att4 VARCHAR(4000) IN

p_att5 VARCHAR(4000) IN

p_att6 VARCHAR(4000) IN

p_att7 VARCHAR(4000) IN

p_att8 VARCHAR(4000) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

896

Teradata Examples: Ws_Job_CreateWait

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Job_CreateWait
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'Daily Run', 'New Daily Run', 'This is the New Daily Run job.', 'ONCE'
, (CURRENT_TIMESTAMP + INTERVAL '1' MONTH)
, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL
, v_return_code
, v_return_msg
, v_result_num
);

897

Ws_Job_Dependency
Synopsis

Adds or removes a child-to-parent dependency between two jobs to control the child job.

Description

Adds or removes a child-to-parent dependency between two jobs to control the child job. The
dependent child job can be defined to fail (if necessary) when the parent job does not complete
successfully in the required timeframe. The acceptable timeframe can be defined in terms of the
maximum minutes in the past to look back and the maximum minutes in the future to wait for
successful completion of the parent job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Action Either ADD or DELETE the job dependency.

Parent Job Name The name of Parent Job that the Child Job will depend on.

Child Job Name The name of the Child Job that will be dependent on the Parent Job.

Parent Success
Required

Indicates whether or not the Child Job will fail when the Parent Job does
not complete successfully in the required time frame.

Maximum Look Back
Minutes

The Maximum minutes in the past to look back for successful
completion of the Parent Job.

Maximum Wait
Minutes

The Maximum minutes in the future to wait for successful completion of
the Parent Job.

Output

Output Description

Return Code Output Return Code:

S Success.

W Warning. Dependency already exists (ADD action) or does
not exist (DELETE action).

E Error.

F Fatal/Unexpected Error.

898

Output Description

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.
-1 Warning. Dependency already exists (ADD action) or does
not exist (DELETE action).

-2 Error. e.g. Due to invalid job name or job not running.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Dependency

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_action VARCHAR(10) IN

p_parent VARCHAR(64) IN

p_child VARCHAR(64) IN

p_required VARCHAR(1) IN

p_look_back INTEGER IN

p_max_wait INTEGER IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

899

Teradata Examples: Ws_Job_Dependency

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Job_Dependency
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'ADD', 'Daily Run', 'Daily Run Part2', 'Y', 60, 60
, v_return_code
, v_return_msg
, v_result_num
);

900

Ws_Job_Release
Synopsis

Starts a job if it is in a holding or waiting state.

Description

Releases the specified job if it is in a holding or waiting state, which sets the start time to the
current time so that it starts immediately. Typically, this routine is used to start a job from within
another job or via a third-party scheduler (rather than a WhereScape RED Scheduler).

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Release Job Name The name of the job to be started/released. The specified name must
exactly match the job name as displayed by the WhereScape RED
Scheduler. The specified job must be in a holding or waiting state in
order to be released.

Output

Output Description

Return Code Output Return Code:

S Success.

N No action because the Template Job is not in a holding or
waiting state.
E Error.
F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-1 No action because the job is not in a holding or waiting
state.
-2 Error.

-3 Fatal/Unexpected Error.

901

Teradata Parameters: Ws_Job_Release

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_release_job VARCHAR(64) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Release

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Job_Release
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'Daily Run'
, v_return_code
, v_return_msg
, v_result_num
);

902

Ws_Job_Restart
Synopsis

Starts a job if it is in a failed state.

Description

Releases the specified job if it is in a failed state, which sets the start time to the current time so
that it starts immediately. This routine can be executed as part of a database start-up sequence to
restart each failed job that may have stopped due to an earlier database shutdown.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Restart Job Name The name of the job to be restarted/released. The specified name must
exactly match the job name, as displayed by the WhereScape RED
Scheduler. The specified job must be in a failed state in order to be
restarted.

Output

Output Description

Return Code Output Return Code:

S Success.

N No action because the job is not in a failed state.
R No action because the job is currently running.
U No action because the job is in an unusual state due to an
error (result number -2). The job is classified as running but it is
NOT actually running or failed so it cannot be restarted. This may
occur if the scheduler has failed and the job is in a pending state.
E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

903

Output Description

Result Number

Output Result Number:

1 Success.
-1 No action because the job is not in a failed state or it is
currently running.
-2 Error.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Job_Restart

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_restart_job VARCHAR(64) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

904

Teradata Examples: Ws_Job_Restart

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Job_Restart
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'Daily Run'
, v_return_code
, v_return_msg
, v_result_num
);

905

Ws_Job_Schedule
Synopsis

Schedules a job if it is in a holding or waiting state.

Description

Schedules the specified job if it is in a holding or waiting state, which will start at the specified
time. Typically, this routine is used to schedule a job from within another job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Schedule Job Name The name of the job to be scheduled. The specified name must exactly
match the job name as displayed by the WhereScape RED Scheduler.
The specified job must be in a holding or waiting state in order to be
scheduled.

Scheduled Release
Time

The date/time that the job is to be scheduled to be released/started.

Output

Output Description

Return Code Output Return Code:

S Success.

N No action because the job is not in a holding or waiting
state.
E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-1 No action because the job is not in a holding or waiting
state.
-2 Error.
-3 Fatal/Unexpected Error.

906

Teradata Parameters: Ws_Job_Schedule

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_release_job VARCHAR(64) IN

p_release_time TIMESTAMP IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Job_Schedule

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Job_Schedule
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'Daily Run', CURRENT_TIMESTAMP + INTERVAL '1' DAY
, v_return_code
, v_return_msg
, v_result_num
);

907

Ws_Job_Status
Synopsis

Returns the current status of a job.

Description

Returns the current status of the specified job as recorded by a WhereScape RED Scheduler.
Typically, this routine is used by a third-party scheduler or a user-defined procedure/script to
check on a job.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Job Sequence The unique integer identifier of the job to return the status of. This
input is optional but when it is specified, the started within and started
after inputs should not be specified.

Job Name The name of the job to return the status of. The specified name must
exactly match the job name as displayed by the WhereScape RED
Scheduler.

Started Within Last
Minutes

The maximum minutes [0-148599] (up to ~103.1 days) in the past to
look back for the job to have started. This input is optional but when it
is specified, the job name must be specified and the job sequence and
started after inputs should not be specified. Note: If multiple instances
of the job have started in the specified time frame then the last job to
start is returned (i.e. the job with the highest sequence number).

Started After Time The date/time after which to look for the job to have started. This input
is optional but when it is specified, the job name must be specified and
the job sequence and started within inputs should not be specified.
Note: If multiple instances of the job have started in the specified time
frame then the last job to start is returned (i.e. the job with the highest
sequence number).

908

Output

Output Description

Return Code Output Return Code:

S - Success.

N - The job exists but it was NOT started within the specified time
frame.
E - Error.
F - Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 - Success.
-1 - The job exists but it was NOT started within the specified time
frame.
-2 - Error.
-3 - Fatal/Unexpected Error.
0 - see note below.

Simplified Job
Status Code

Simplified Job Status Code:

N - Not Running.

R - Running.

F - Failed.

C - Completed.

0 - see note below.

909

Output Description

Standard Job Status
Code

Standard Job Status Code:

H - On Hold. The job is on hold. A held job can be edited and/or started.

W - Waiting. The job is waiting to start (it is either waiting for the
scheduled time to arrive or is waiting for an available scheduler).

B - Blocked. The job is blocked because a previous instance of the same
job is still running.
P - Pending. This is the initial interim status of an "about to start
running" job. The scheduler has identified that the job is ready to start
and is preparing to run it. A job should only be pending for a brief period
so if it remains pending for a prolonged period then an unexpected error
has occurred.

R - Running. The job is currently running.

F - Failed. The job failed due to an error.
C - Completed. The job completed successfully (but it may have
warnings). A completed job cannot be restarted.

G - Failed - Aborted. The job failed and was subsequently aborted. An
aborted job cannot be restarted.

E - Error Completion.
0 - see note below.

910

Output Description

Enhanced Job
Status Number

Enhanced Job Status Number that returns an integer rather than the
standard alphabetic code. The running and completed statuses are
enhanced to distinguish errors or warnings.

1 - On Hold. The job is on hold. A held job can be edited and/or started.

2 - Waiting. The job is waiting to start (it is either waiting for the
scheduled time to arrive or is waiting for an available scheduler).

3 - Blocked. The job is blocked because a previous instance of the same
job is still running.
4 - Pending. This is the initial interim status of an "about to start
running" job. The scheduler has identified that the job is ready to start
and is preparing to run it. A job should only be pending for a brief period
so if it remains pending for a prolonged period then an unexpected error
has occurred.
5 - Running. The job is currently running and no tasks have failed or
produced warnings.

6 - Running with Errors. The job is currently running but some tasks
have failed. The job will ultimately fail when all the tasks that are NOT
dependent on the failed tasks have finished.

7 - Running with Warnings. The job is currently running and some
tasks have produced warnings.
8 - Failed. The job failed due to an error.

9 - Completed. The job completed without warnings. A completed job
cannot be restarted.

10 - Completed with Warnings. The job completed with warnings. A
completed job cannot be restarted.
11 - Failed - Aborted. The job failed and it was subsequently aborted.
An aborted job cannot be restarted.

12 - Error Completion.

*** Note:***

All three returned status values can also return '0' in any of the following situations:

- Illegal combination of parameters specified.
- Unable to locate specified job sequence.
- Unable to locate specified job name.
- Job Not Found having started in the last SpecifiedMinutes minutes.
- Job Not Found having started after SpecifiedDateTime.

911

Teradata Parameters: Ws_Job_Status

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_check_sequence INTEGER IN

p_check_job VARCHAR(64) IN

p_started_in_last_mi INTEGER IN

p_started_after_dt TIMESTAMP IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

p_job_status_simple VARCHAR(1) OUT

p_job_status_standard VARCHAR(1) OUT

p_job_status_enhanced VARCHAR(2) OUT

912

Teradata Examples: Ws_Job_Status

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
DECLARE v_job_status_simple varchar(1);
DECLARE v_job_status_standard varchar(1);
DECLARE v_job_status_enhanced varchar(2);
CALL [METABASE].Ws_Job_Status
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, NULL, 'Daily Run', 10, NULL
, v_return_code
, v_return_msg
, v_result_num
, v_job_status_simple, v_job_status_standard, v_job_status_enhanced
);

913

Ws_Load_Change
Synopsis

Changes the Connection or Schema of a load table.

Description

Changes either the Connection or the Schema of the specified load table. Only the Connection or
Schema can be changed so two calls are required to change both.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Change Property Change either the SCHEMA or the CONNECTION of the specified load
table. Separate calls must be made if both the schema and connection
need to be changed.

Load Table Name The name of the load table to be changed.

New Property Value Either the new schema name or the new connection name.

Output

Output Description

Return Code Output Return Code:
S Success.

E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

Result Number

Output Result Number:

1 Success.

-2 Error.

-3 Fatal/Unexpected Error.

914

Teradata Parameters: Ws_Load_Change

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_action VARCHAR(64) IN

p_table VARCHAR(64) IN

p_new_value VARCHAR(255) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

Teradata Examples: Ws_Load_Change

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Load_Change
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'CONNECTION', 'load_customer', 'Connection2'
, v_return_code
, v_return_msg
, v_result_num
);

915

Ws_Maintain_Indexes
Synopsis

Drops and/or builds database indexes that are defined in the WhereScape RED metadata.

Description

Drops and/or builds indexes for a specified table or a specified index. Only indexes that are
defined in the WhereScape RED metadata are supported. Typically, this routine is used by a
WhereScape RED Scheduler and RED-generated procedures to automatically maintain indexes.
However, it is also valid for user-defined custom procedures/scripts to execute this routine to
control when indexes are dropped and/or created.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Table Name Table Name to process the relevant indexes of.
Note: The Table Name is ignored when the optional Index Name is
specified.

Index Name Optional Index Name to only process the specified index. When NOT
specified all the relevant indexes of the table are processed.

Note: The Table Name is ignored when the Index Name is specified.

Note: Must be specified to use the DROP or BUILD index actions.

Index Action Action that specifies whether indexes are dropped or built and what
types of indexes are applicable:

DROP Drop the specified index (Index Name must be
specified).

DROP ALL Drop ALL the indexes of the table.

PRE DROP Drop the indexes of the table that are defined as pre-drop.

BUILD Build the specified index (Index Name must be
specified). Otherwise, build all the indexes of the table that were pre-
dropped.

BUILD ALL Build ALL the indexes of the table.

916

Output

Output Description

Result Number

Output Result Number:
1 Success.

-1 Warning.
-2 Error.

-3 Fatal/Unexpected Error.

Note: Ws_Maintain_Indexes does NOT include a Return Code or Return Message like most of the
WhereScape RED Callable routines but it does output a Result Number.

Teradata Parameters: Ws_Maintain_Indexes

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_table_name VARCHAR(64) IN

p_parameter VARCHAR(4000) IN

p_index_name VARCHAR(64) IN

p_option VARCHAR(20) IN

p_result INTEGER OUT

917

Teradata Examples: Ws_Maintain_Indexes

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
CALL [METABASE].Ws_Maintain_Indexes
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 'load_customer', NULL, NULL, 'DROP ALL'
, v_result_num
);

918

Ws_Version_Clear
Synopsis

Purges metadata versions for all objects that do not meet the specified retention criteria.

Description

Deletes metadata versions for all objects that do not meet the specified retention criteria, which
can be specified as the maximum number of versions to retain per object and/or the maximum
age (in days) of versions to retain. For example, it is possible to specify that a maximum of 5
versions are retained for each object and/or that versions are retained for a maximum of 90 days.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Maximum Days to
Retain

The maximum age (in days) of the versions to retain. If 90 days are
retained, then all the versions that are older than 90 days are
purged/deleted to reduce the number of versions to the specified
maximum number of versions per object. If not specified, then the
retention date of each version determines whether it is deleted.

Maximum Versions
per Object to Retain

The maximum number of versions to retain for each object. If 5 is
specified, then the last 5 versions are retained per object regardless of
the specified maximum age to retain.

Options Currently NOT used.

Output

Output Description

Return Code Output Return Code:

S Success.
E Error.

F Fatal/Unexpected Error.

Return Message Output message indicating the action applied or the reason for no
action.

919

Output Description

Result Number

Output Result Number:

1 Success.
-2 Error.

-3 Fatal/Unexpected Error.

Teradata Parameters: Ws_Version_Clear

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_sequence INTEGER IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_day_count INTEGER IN

p_keep_count INTEGER IN

p_options VARCHAR(256) IN

p_return_code VARCHAR(1) OUT

p_return_msg VARCHAR(256) OUT

p_result INTEGER OUT

920

Teradata Examples: Ws_Version_Clear

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
DECLARE v_return_code varchar(1);
DECLARE v_return_msg varchar(256);
CALL [METABASE].Ws_Version_Clear
(p_sequence, p_job_name, p_task_name, p_job_id, p_task_id
, 90, 5, NULL
, v_return_code
, v_return_msg
, v_result_num
);

921

WsParameterRead
Synopsis

Returns the value and comment (for most RDBMS) of a WhereScape RED metadata Parameter.

Description

Returns the value and comment (for most RDBMS) of the specified parameter from the
DSS_PARAMETER metadata table. For SQL Server, Teradata, and DB2 this routine is a
PROCEDURE that returns both the parameter value and comment. However, for Oracle this
routine is a FUNCTION that only returns the parameter value. For SQL Server, there is also a
WsParameterReadF FUNCTION.

Typically, this routine is used by procedures to read information that is written by another
process (automatically or manually via the RED Tools>Parameters menu item), which is external
to the procedure.

Input

Input Description

Parameter Name The case-sensitive name of the WhereScape RED metadata parameter to
be retrieved. The name must exactly match an existing parameter,
otherwise a NULL value is returned.

Output

Output Description

Parameter Value The retrieved value of the parameter. Corresponds to the "Value"
property that is visible and maintainable via Tools >Parameters.

Parameter
Comments

The retrieved comments of the parameter. Corresponds to the
"Comments" property that is visible and maintainable via
Tools>Parameters.

Teradata Parameters: WsParameterRead

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_parameter VARCHAR(64) IN

p_value VARCHAR(2000) OUT

p_comment VARCHAR(256) OUT

922

Teradata Examples: WsParameterRead

DECLARE v_current_date varchar(4000); -- Same length as
DSS_PARAMETER.dss_parameter_value.
DECLARE v_comment varchar(256);
CALL
[METABASE].WsParameterRead('CURRENT_DATE',v_current_date,v_comment);

WsParameterReadF
Synopsis

Returns the value of a WhereScape RED metadata Parameter [SQL Server only].

Description

Returns the value of the specified parameter from the DSS_PARAMETER metadata table. This
routine is a FUNCTION that is only available for SQL Server. For SQL Server, Teradata, and DB2
there is a WsParameterRead PROCEDURE that returns both the parameter value and comment.
For Oracle, the WsParameterRead FUNCTION is equivalent to the SQL Server WsParameterReadF
FUNCTION.

Typically, this routine is used by procedures to read information that is written by another
process (automatically or manually via the RED Tools - Parameters menu item), which is external
to the procedure.

Input

Input Description

Parameter Name The name of the WhereScape RED metadata parameter to be retrieved.
The case-sensitive name must exactly match an existing parameter,
otherwise a NULL value is returned.

Output

Output Description

Parameter Value The value of the parameter. Corresponds to the "Value" property that is
visible and maintainable via Tools - Parameters.

923

WsParameterReadG
Synopsis

Returns the value of a "global" WhereScape RED metadata Parameter that relates to a load table.

Description

Returns the value of an internal parameter that is defined and populated by WhereScape RED,
which is available to a procedure that is currently processing a load table.

The supported parameters are $$TABLE_NAME and $$SOURCE_TABLE.

Input

Input Description

Global Parameter
Name

The supported global parameters are:

$$TABLE_NAME returns the Load Table Name that the procedure is
executing against. Only available for load tables.
$$SOURCE_TABLE returns the maximum value of the Source Table
property from the columns of the Load Table that the procedure is
executing against. Only available for load tables. Note: Typically, a Load
Table has a single Source Table but if it has multiple sources then the
maximum (alphabetically) Source Table Name will be returned.

Job Identifier Unique identifier of the held or scheduled job that the running job is a
specific instance of. When invoked from a WhereScape RED Scheduler
the routine will be passed the parameter argument. When invoked
manually or externally to the WhereScape RED Scheduler, it is
recommended to use 0 (zero).

Task or Object
Identifier

Unique identifier of the running task (of a running job) that executed
the routine. When invoked from a WhereScape RED Scheduler, the
routine will be passed the parameter argument. When invoked manually
or externally to the WhereScape RED Scheduler, it should be the object
key.

Output

Output Description

Result Table Name The requested Load Table Name or Source Table Name.

924

Teradata Parameters: WsParameterReadG

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_parameter VARCHAR(64) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_value VARCHAR(2000) OUT

Teradata Examples: WsParameterReadG

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE v_source_name varchar(256);
CALL [METABASE].WsParameterReadG('$$SOURCE_TABLE', p_job_id, p_task_id,
v_source_name);

925

WsParameterWrite
Synopsis

Updates the value and comment of a WhereScape RED metadata Parameter or creates it.

Description

Updates the value and comment of the specified parameter in the DSS_PARAMETER metadata
table. If the specified parameter is not found then it is added.

Typically, this routine is used by procedures to write information that is read by another process
(automatically or manually via the RED Tools>Parameters menu item), which is external to the
procedure.

Input

Input Description

Parameter Name The case-sensitive name of the WhereScape RED metadata parameter to
be updated or added.

Parameter Value The new value of the parameter to be assigned. Corresponds to the
"Value" property that is visible and maintainable via Tools>Parameters.

Parameter
Comments

The new comments of the parameter to be assigned. Corresponds to the
"Comments" property that is visible and maintainable via
Tools>Parameters.
The parameter comments will not be modified if a NULL value is
specified.

Teradata Parameters: WsParameterWrite

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_parameter VARCHAR(64) IN

p_value VARCHAR(2000) IN

p_comment VARCHAR(256) IN

Teradata Examples: WsParameterWrite

CALL [METABASE].WsParameterWrite('LAST_INVOICE_ID', '123456', 'The last invoice ID
loaded');

926

WsWrkAudit
Synopsis

Records a message in the Audit Log.

Description

Adds the specified message to the WS_WRK_AUDIT_LOG workflow metadata table, which is
referred to as the Audit Log or Audit Trail. A variety of message types are supported such as
Information, Warning, and Error that are included in the corresponding message type counts for
the task and job. Audit Log messages are accessible via the "Scheduler" tab/window and/or the
WS_ADMIN_V_AUDIT view of the WS_WRK_AUDIT_LOG table.

NOTE: Both the Audit Log and Error/Detail Log support similar information and in user-defined
custom procedures either or both logs can be used. However, in RED-generated
procedures/scripts the Audit Log is used for higher-level or summary messages while the
Error/Detail Log is used for more detailed supporting information.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)
Note: Refer to the RDBMS-specific parameters for the relative positions
(they are NOT declared as the first parameters)

Audit Message Type
Code

Audit Message Type Code:
B Beginning of a Job or Task.

I Information.

S Success.

W Warning.

E Error.

F Fatal Error.

Audit Message Text
Custom message text to be recorded in the WhereScape RED Audit Log.

RDBMS Code RDBMS-specific message code. e.g. The Oracle special variable
SQLCODE. It is optional but recommended to populate this when an
error occurs.

RDBMS Message RDBMS-specific message. e.g. The Oracle special variable SQLERRM. It
is optional but recommended to populate this when an error occurs.

927

Output

Output Description

Result Number

Output Result Number:

1 Success.

-3 Error.

Teradata Parameters: WsWrkAudit

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_status_code VARCHAR(1) IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_sequence INTEGER IN

p_message VARCHAR(255) IN

p_db_code VARCHAR(10) IN

p_db_msg VARCHAR(255) IN

p_task_key INTEGER IN

p_job_key INTEGER IN

928

Teradata Examples: WsWrkAudit

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
CALL [METABASE].WsWrkAudit
('I', p_job_name, p_task_name, p_sequence
, 'The task has started.'
, NULL
, NULL
, p_task_id
, p_job_id
);

929

WsWrkAuditBulk
Synopsis

Records multiple messages in the Audit Log.

Description

Adds the specified multiple messages to the WS_WRK_AUDIT_LOG workflow metadata table,
which is referred to as the Audit Log or Audit Trail. A variety of message types are supported,
such as Information, Warning, and Error that are included in the corresponding message type
counts for the task and job. Audit Log messages are accessible via the "Scheduler" tab/window
and/or the WS_ADMIN_V_AUDIT view of the WS_WRK_AUDIT_LOG table.

NOTE: Both the Audit Log and Error/Detail Log support similar information and in user-defined
custom procedures, either or both logs can be used. However, in RED-generated
procedures/scripts the Audit Log is used for higher-level or summary messages while the
Error/Detail Log is used for more detailed supporting information.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)
Note: Refer to the RDBMS-specific parameters for the relative positions
(they are NOT declared as the first parameters)

Audit Message Type
Code

Audit Message Type Code:

B Beginning of a Job or Task.

I Information.

S Success.

W Warning.

E Error.
F Fatal Error.

Audit Message(s)
Text

Custom message(s) text to be recorded in the WhereScape RED Audit
Log. Multiple messages can be specified but each is limited to 256
characters. Each message must be separated by either a new-line (ASCII
10) or tilde (~) character. e.g. Message1~Message2~Message3 will create
3 messages.

RDBMS Code RDBMS-specific message code. e.g. The Oracle special variable
SQLCODE. It is optional but recommended to populate this when an
error occurs.

RDBMS Message RDBMS-specific message. e.g. The Oracle special variable SQLERRM. It
is optional but recommended to populate this when an error occurs.

930

Output

Output Description

Result Number

Note: Not provided for all RDBMS.
Output Result Number:

1 Success.

-2 Error

-3 Fatal/Unexpected Error.

Teradata Parameters: WsWrkAuditBulk

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_status_code VARCHAR(64) IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_sequence INTEGER IN

p_message VARCHAR(61440) IN

p_db_code VARCHAR(10) IN

p_db_msg VARCHAR(256) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_result INTEGER OUT

931

Teradata Examples: WsWrkAuditBulk

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
CALL [METABASE].WsWrkAuditBulk
('I', p_job_name, p_task_name, p_sequence
, 'Message1~Message2~Message3'
, NULL
, NULL
, p_job_id --### NOTE order.
, p_task_id --### NOTE order.
, v_result_num
);

932

WsWrkError
Synopsis

Records a message in the Error/Detail Log.

Description

Adds the specified message to the WS_WRK_ERROR_LOG workflow metadata table, which is
referred to as the Error Log or Detail Log. A variety of message types are supported such as
Information, Warning, and Error that are included in the "detail" message counts for the task and
job (viewable via the "Scheduler" tab/window). Error/Detail Log messages are accessible via the
"Scheduler" tab/window and/or the WS_ADMIN_V_ERROR view of the WS_WRK_ERROR_LOG
table.

NOTE: Both the Audit Log and Error/Detail Log support similar information and in user-defined
custom procedures either or both logs can be used. However, in RED-generated
procedures/scripts the Audit Log is used for higher-level or summary messages while the
Error/Detail Log is used for more detailed supporting information.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)
Note: Refer to the RDBMS-specific parameters for the relative positions
(they are NOT declared as the first parameters)

Error/Detail
Message Type Code

Error/Detail Message Type Code:
E Error.

I Information.

W Warning.

Error/Detail
Message Text

Custom message text to be recorded in the WhereScape RED
Error/Detail Log.

RDBMS Code RDBMS-specific message code. e.g. The Oracle special variable
SQLCODE. It is optional but recommended to populate this when an
error occurs.

RDBMS Message RDBMS-specific message. e.g. The Oracle special variable SQLERRM. It
is optional but recommended to populate this when an error occurs.

Custom Message
Type Code

Custom Message Type Code. For custom usage and has no meaning
within the WhereScape RED metadata.

933

Output

Output Description

Result Number

Output Result Number:

1 Success.

-3 Error.

Teradata Parameters: WsWrkError

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_status_code VARCHAR(1) IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_sequence INTEGER IN

p_message VARCHAR(255) IN

p_db_code VARCHAR(10) IN

p_db_msg VARCHAR(255) IN

p_task_key INTEGER IN

p_job_key INTEGER IN

p_msg_type VARCHAR(10) IN

934

Teradata Examples: WsWrkError

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
CALL [METABASE].WsWrkError
('I', p_job_name, p_task_name, p_sequence
, 'This is an INFO message in the Error/Detail Log.'
, NULL
, NULL
, p_task_id
, p_job_id
, NULL
);

935

WsWrkErrorBulk
Synopsis

Records multiple messages in the Error/Detail Log.

Description

Adds the specified multiple messages to the WS_WRK_ERROR_LOG workflow metadata table,
which is referred to as the Error Log or Detail Log. A variety of message types are supported such
as Information, Warning, and Error that are included in the "detail" message counts for the task
and job (viewable via the "Scheduler" tab/window). Error/Detail Log messages are accessible via
the "Scheduler" tab/window and/or the WS_ADMIN_V_ERROR view of the WS_WRK_ERROR_LOG
table.

NOTE: Both the Audit Log and Error/Detail Log support similar information and in user-defined
custom procedures, either or both logs can be used. However, in RED-generated
procedures/scripts the Audit Log is used for higher-level or summary messages while the
Error/Detail Log is used for more detailed supporting information.

Input

Input Description

Common Input Includes all 5 inputs of the Callable Routines Common Input (on page
873)

Note: Refer to the RDBMS-specific parameters for the relative positions
(they are NOT declared as the first parameters)

Error/Detail
Message Type Code

Error/Detail Message Type Code:

E Error.

I Information.

W Warning.

Error/Detail
Message(s) Text

Custom message(s) text to be recorded in the WhereScape RED
Error/Detail Log. Multiple messages can be specified but each is limited
to 256 characters. Each message must be separated by either a new-line
(ASCII 10) or tilde (~) character. e.g. Message1~Message2~Message3 will
create 3 messages.

RDBMS Code RDBMS-specific message code. e.g. The Oracle special variable
SQLCODE. It is optional but recommended to populate this when an
error occurs.

RDBMS Message RDBMS-specific message. e.g. The Oracle special variable SQLERRM. It
is optional but recommended to populate this when an error occurs.

Custom Message
Type Code

Custom Message Type Code. For custom usage and has no meaning
within the WhereScape RED metadata.

936

Output

Output Description

Result Number

Note: NOT provided for all RDBMS.
Output Result Number:

1 Success.

-2 Error.

-3 Fatal/Unexpected Error.

Teradata Parameters: WsWrkErrorBulk

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_status_code VARCHAR(64) IN

p_job_name VARCHAR(64) IN

p_task_name VARCHAR(64) IN

p_sequence INTEGER IN

p_message VARCHAR(61440) IN

p_db_code VARCHAR(10) IN

p_db_msg VARCHAR(256) IN

p_job_id INTEGER IN

p_task_id INTEGER IN

p_msg_type VARCHAR(10) IN

p_result INTEGER OUT

937

Teradata Examples: WsWrkErrorBulk

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_result_num integer;
CALL [METABASE].WsWrkErrorBulk
('I', p_job_name, p_task_name, p_sequence
, 'Message1~Message2~Message3'
, NULL
, NULL
, p_job_id --### NOTE order.
, p_task_id --### NOTE order.
, NULL
, v_result_num
);

938

WsWrkTask
Synopsis

Updates row counts for a task in the Task Log.

Description

Updates row counts for the specified task in the Task Log. Task Log messages (and row counts)
are accessible via the "Scheduler" tab/window and/or the WS_ADMIN_V_TASK view of the
WS_WRK_TASK_RUN and WS_WRK_TASK_LOG tables.

This routine is intended to be executed by a task of a job since it requires a valid job, task, and job
sequence number that are provided by a WhereScape RED Scheduler.

Input

Input Description

Common Input Includes 3 inputs of the Callable Routines Common Input (on page
873)

Inserted Row Count The number of rows inserted by the task.

Updated Row Count The number of rows updated by the task.

Replaced Row Count The number of rows replaced by the task.

Deleted Row Count The number of rows deleted by the task.

Discarded Row
Count

The number of rows discarded by the task.

Rejected Row Count The number of rows rejected by the task.

Error Row Count The number of rows with an error that were failed by the task.

Output

Output Description

Result Number

Output Result Number:

0 Success.
-1 Warning.
-3 Fatal/Unexpected Error.

939

Teradata Parameters: WsWrkTask

Callable Routine Type: PROCEDURE.

Parameter Name Datatype Mode

p_job_key INTEGER IN

p_task_key INTEGER IN

p_sequence INTEGER IN

p_inserted INTEGER IN

p_updated INTEGER IN

p_replaced INTEGER IN

p_deleted INTEGER IN

p_discarded INTEGER IN

p_rejected INTEGER IN

p_errored INTEGER IN

Teradata Examples: WsWrkTask

-- The p_ VARIABLES are normally PARAMETERS in a RED-generated
Procedure.
DECLARE p_sequence integer;
DECLARE p_job_name varchar(256);
DECLARE p_task_name varchar(256);
DECLARE p_job_id integer;
DECLARE p_task_id integer;
DECLARE p_return_msg varchar(256);
DECLARE p_status integer;
DECLARE v_insert_count integer;
DECLARE v_update_count integer;
CALL [METABASE].WsWrkTask
(p_job_id, p_task_id, p_sequence
, v_insert_count, v_update_count, 0, 0, 0, 0, 0
);

941

Admin views provide a means of interacting with the WhereScape RED metadata from within
your chosen reporting tools.

The following admin views are available:

Name Description

ws_admin_v_audit Created from the ws_wrk_audit_log table

ws_admin_v_error Created from the ws_wrk_error_log table

ws_admin_v_sched Created from the ws_wrk_job_log table

ws_admin_v_task Created from the ws_wrk_task_run and ws_wrk_task_log tables

In This Chapter

Ws_admin_v_audit .. 942
Ws_admin_v_error ... 943
Ws_admin_v_sched ... 944
Ws_admin_v_task .. 947

C h a p t e r 3 5

Ws_admin_v Views

942

Ws_admin_v_audit
This Audit view is created using columns from the ws_wrk_audit_log table.

Columns

The following columns are created:

Column Description

wa_time_stamp the date or time at which this view was created

wa_sequence See Callable Routines Common Input (on page 873)

wa_job See Callable Routines Common Input (on page 873)

wa_task See Callable Routines Common Input (on page 873)

wa_status See Callable Routines Common Input (on page 873)

wa_message the message associated with this audit log

wa_db_msg_desc the database message associated with this audit log

943

Ws_admin_v_error
This Error view is created using columns from the ws_wrk_error_log table.

Columns

The following columns are created:

Column Description

wd_time_stamp the date or time at which this view was created

wd_sequence See Callable Routines Common Input (on page 873)

wd_job See Callable Routines Common Input (on page 873)

wd_task See Callable Routines Common Input (on page 873)

wd_status See Callable Routines Common Input (on page 873)

wd_message the message associated with this audit log

wd_db_msg_desc the database message associated with this audit log

944

Ws_admin_v_sched
This Scheduled Job view is created from the ws_wrk_job_log table.

Columns

The following columns are created:

Column Description

type "Waiting"

job_name the name of the job

status a character value indicating the job status
H - on hold

R - running

P - pending

W - waiting

C - completed

B - blocked
F - failed

G - failed - aborted

E - error completion

else unknown

sequence sequence number of the job

started_scheduled

completed date completed

hours_elapsed hours elapsed since job started

minutes_elapsed minutes elapsed since job started

okay okay count

info info count

warn warning count

detail detail count

error error count

Ws_admin_v_task
This Task view is created from the ws_wrk_task_run and ws_wrk_task_log tables.

945

Columns

The following columns are created:

Column Description

result

task_name the name of the task

status a character value indicating the task status

H - on hold

R - running

P - pending

W - waiting

C - completed
B - blocked

F - failed

G - failed - aborted

E - error completion

else unknown

sequence sequence number of the task

started

completed

hours_elapsed hours elapsed since the task started

minutes_elapsed minutes elapsed since the task started

info info count

warn warning count

detail detail count

inserted record inserted

updated record updated

replaced record replaced

deleted record deleted

discarded record discarded

rejected record rejected

errored record errored

947

WhereScape RED includes an advanced retrofit capability that can be used to:

1 Migrate an existing data warehouse from one relational database to another (known as fork-
lifting).

2 Load a data model from a modeling tool.

Retrofitting is achieved using the Retro object type in WhereScape RED and the Retrofit tables
wizard.

For information on migrating an existing data warehouse, see Migrating the Data Warehouse
Database Platform (see "OLAP Retrofitting an OLAP Object" on page 588, on page 948).

For information on importing a data model, see Importing a Data Model (on page 957).

In This Chapter

Migrating the Data Warehouse Database Platform .. 948
Importing a Data Model .. 957
Re-Targeting Source Tables .. 964
Retro Column Properties .. 966

C h a p t e r 3 6

Retrofitting

948

Migrating the Data Warehouse Database Platform
WhereScape RED has an advanced retrofitting wizard for migrating an existing data warehouse
from one relational database to another.

The process to migrate an existing data warehouse is:

1 Create a connection object to the existing warehouse database.

2 Create Retro objects based on the source tables in the existing warehouse database.

3 Set the Retro objects as Retro Copy type objects.

4 Run a Scheduler task to build the Retro Copy objects from the source tables.

5 Set the Retro objects back to Retro (Retro Definition) type objects.

6 Convert the Retro objects to the Target Object types.

The steps to use this wizard are:

1 Create a connection object for the old data warehouse database, populating the following
fields:

• Connection Name

• Connection Type => ODBC
• ODBC Source

• Work Directory

• Extract user name

• Extract password

OR

• Teradata Wallet User ID / Teradata Wallet String

Note: The extract user/ Teradata Wallet user must be able to select from all tables to be
migrated.

949

2 Ensure all naming standards in Tools>Options are set to match the objects being retrofitted.
This saves work later.

3 Ensure Enable Retro is selected in the Tools>Options>Object Types menu.
4 Right-click on the Retro object group in the object tree in the left pane and then click Select

Source Tables.

5 The Retrofit Tables dialog appears. In the Source Connection drop-down list choose the
connection set up in step 1. A list of databases appears in the left pane.

950

6 Double-click on the database/user/schema in the left pane. A list of tables in the database is
displayed in the middle pane.

951

7 Select all the required tables from the middle pane list and click > to move them to the right
pane. Then click the Add Ancillary Columns (e.g. dss_update_time) check box and then
click OK.

952

8 WhereScape RED acquires the metadata for the tables being migrated and creates a new
WhereScape RED Retro object for each.

9 Double-click on the Retro object group in the left pane. Select all Retros in the middle pane.
Right-click and select Set Table Type to Copy. This allows the data in the legacy data
warehouse to be copied across to the new data warehouse.

10 Click on the Scheduler button on the toolbar.

11 Create a new job to run straight away.

Note: A scheduler must be running on the data warehouse connection for this job to
complete, please refer to section 17. Scheduler Installation and Configuration of the RED
Setup Administrator Guide.

953

954

12 Add all Retro objects created in steps (3) to (9) and click on Group Object Types.

13 Once the job has completed, return to the WhereScape RED builder. Double-click on the
Retro Object group. Select all objects in the middle pane and from the right-click menu
select Set Table Type to Definition. This indicates the data has been copied into the Retro
objects and the Retros can now be converted to the target objects.

955

14 In the middle pane, select all objects. Right-click and select Convert to Target Object.
WhereScape RED now converts the Retro objects to the appropriate object types.

Note: If the appropriate Target Object Type has not been set for one or more Retro objects; in
the right click menu select Change Target Object Type and select the correct Object Type.

956

15 There are no longer any Retro objects. They have been converted to Load, Stage, Dimension
or Fact objects.

16 Change the source table and source column values on all of the retrofitted objects using
either the Re-target source table dialog, or by editing column properties. See Re-target
source tables (see "Re-Targeting Source Tables" on page 964) for more information.

17 Convert the old data warehouses code to WhereScape RED procedure in the new data
warehouse database. See Integrate Procedures (see "Integrating, Procedures" on page 981)
for more information.

18 If necessary, create new connections to be used with any migrated load tables. Attach a
connection to each load table. See Loading Data (on page 215) for more information.

957

Importing a Data Model
WhereScape RED provides functionality for importing data models from modeling tools.

The process to import a model is:

1 Create the physical data model in the modeling tool.
2 Generate DDL for the physical model in the modeling tool.

3 Run the DDL in the data warehouse database to create empty versions of the model tables.

4 Retrofit the tables in the dummy database into the WhereScape RED metadata as Retro
objects.

5 Convert the Retro objects to Dimensions and Facts.

The following instructions outline steps 4 and 5 above:

1 Right-click on the Retro object group in the object tree in the left pane and then click Select
Source Tables.

958

2 The Retrofit tables dialog is displayed. In the Source Connection drop-down list choose the
Data Warehouse connection. A list of databases appears in the left pane (your list will be
different).

959

3 Double click on the required database in the left pane list. A list of tables in the database is
displayed in the middle pane.

960

4 Click on the required tables in the middle pane list and click > to move them to the right
pane. Then click the Add Ancillary columns (e.g. dss_update_time) check box. Click OK.

5 Double click on the Retro object group in the object tree in the left pane. You should see
something like this.

961

6 In the middle pane, select the tables. Right-click and select Set table type to Definition.

7 In the middle pane, select the tables. Right-click and select Convert to Target Object.

Note: If the appropriate Target Object Type has not been set for one or more Retro objects; in
the right click menu select Change Target Object Type and select the correct Object Type.

962

963

8 The new tables have been imported.

9 At this stage you have created the table metadata only. To create the tables in the data
warehouse, double click on the object group in the object tree in the left pane. In the middle
pane highlight the tables, then right-click and select Create (ReCreate).

964

Re-Targeting Source Tables
Objects that have been retrofitted into the WhereScape RED metadata have themselves as their
source table:

They can be re-targeted to the correct source table(s), using the WhereScape RED re-target
wizard as follows.

1 Right-click on a table object in the left pane and select Change Column(s).

2 Select the Column Source Table checkbox. Select dim_product from the Original Value
drop-down list. Select load_product from the New Value drop-down list. Click Apply.

965

3 A message will be displayed to show that the source columns have been changed. Click OK.

4 Click Close.
5 Confirm the Source Table column in the middle pane.

966

Retro Column Properties
Each Retro column has a set of associated properties. The definition of each property is defined
below.

If the Column name or Data type is changed for a column, then the metadata will differ from
the table as recorded in the database. Use the Validate>Validate Table Create Status menu
option to compare the metadata to the table in the database. When positioned on the table name
after the validate has completed, a right-click menu option Alter Table will alter the database
table to match the metadata definition.

TIP: If a database table's definition is changed in the metadata then the table will need to be
altered in the database. Use the Validate>Validate Table Create Status to compare metadata
definitions to physical database tables. The option also provides the ability to alter the database
table, through a pop-up menu option from the validated table name.

Table Name

The table to which the column belongs. Read only.

Column Name

The database name of the column. This name must conform to database column naming
standards. Typically, such standards exclude the use of spaces etc. A good practice is to only use
alphanumerics and the underscore character. Changing this field alters the table's definition.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Title

This defines how the business refers to this column. Although it would not be normal practice to
provide end user access to Retro tables, the contents of this field are passed through to the fact
table during the drag and drop operation, so this field can be commented for later use in the fact
table if desired. This field does not affect the physical table definition.

Note: A case conversion button on the right converts the text between different cases: UPPER
CASE, Capitalized Case and lower case. The mode cycles to the next case in the sequence each
conversion.

Column Description

Normally this field will contain the strategy for acquiring or populating a column. It is a useful
place to record specific problems with the source data.

In the case of dimension keys, this field is used to show the join between the Retro table and the
dimension, once it has been defined as part of the Retro table update procedure generation.

Column Order

This numeric field provides the ordering of the columns in the database table create statement.
The lowest numbered column will appear first in the table. Although this affects the physical

967

table definition no action will be taken unless the table is re-created in the database. The
columns can be re-numbered based on the existing order by choosing the Respace Order
Number pop-up menu option when positioned over any column in the table. This action will
number the columns in increments of 10 starting at 10. In addition to a simple change of the
order field, the column order can be changed by first displaying the columns in the middle pane
and then using drag and drop to move the columns around. This drag and drop process will
automatically renumber the columns as required.

Data Type

This is the database specific data type. It must be a valid data type for the data warehouse
database platform. Typical Teradata databases often have integer, numeric(), varchar(), char(),
date and timestamp data types. See the database documentation for a description of the data
types available. Changing this field alters the table's definition.

Null Values Allowed

This check box when set allows nulls to exist in this column. If cleared then nulls are not
permitted in the column. Although this affects the physical table definition no action or
comparison is made on this field. If you wish to change this attribute for a column in an existing
table, then the only supported way is to re-create the table, which may not be desirable.

Default Value

The default value Teradata puts in the column, if the column is not included in the insert
statement populating the table.

Character Set

Select Latin or Unicode.

Format

This field is to allow the definition of a format mask for end user tools. It does not affect the
physical table definition. This field would not normally be populated.

Character Comparison/Sorting

Indicates the Teradata case of the column; one of: case specific, not case specific, uppercase case
specific or uppercase not case specific.

Compress/Compress Value

Indicates the column is compressed and enables the compress value text box. In the compress
value text box, you can enter the list of values to use when compressing the column.

Numeric

Indicates that the column in question is numeric when set. This is normally only relevant for fact
tables and would not normally be used for Retro tables.

Additive

Indicates that the column in question is additive when set. This is normally only relevant for fact
tables and would not normally be used for Retro tables.

968

Attribute

Indicates that the column in question is an attribute when set. This is normally only relevant for
fact tables and would not normally be used for Retro tables.

Business Key

Indicates that the column is part of the primary business key when set. Multiple columns can
form the primary business key. This indicator is set and cleared by WhereScape RED during the
Retro update procedure generation process. This should not normally be altered.

Key Type

The key type is used internally by WhereScape RED in the building of the update procedure and
the generation of indexes. It can be altered here, but this should only be done if the consequences
are fully understood and tested. The supported values are:

Key type Meaning

0 The artificial key. Set when the key is added during drag and drop table
generation.

1 Component of all business keys. Indicates that this column is used as part
of any business key. For example: By default the dss_source_system_key is
added to every dimension table. It is considered part of any lookup on that
table and has the key type set to 1. Set when the column is added during
drag and drop table generation.

2 Indicates that this column is a dimensional join. Used on fact tables to
indicate the dimension keys. Results in bitmap indexes being built for the
columns. Set during the update procedure generation for a fact table, based
on information from the staging table.

3 Slowly changing column indicator. Used on dimension tables to indicate
that the column is being managed as a slowly changing column within the
context of a slowly changing dimension. Set when a column is identified
during the dimension update procedure generation.

4 Previous value column indicator. Used on dimension tables to indicate that
the column is being managed as a previous value column. The source
column identifies the parent column. Set during the dimension creation.

A Indicates that the column is part of the primary business key. Set whenever
a business key is defined as part of an update procedure generation.

B-Z Indicates that the column is part of a secondary business key. Only used
during index generation and not normally set.

Source Table

Indicates the table from which the column was sourced. This source table is normally a load table,
or a dimension table within the data warehouse. If the column was sourced from multiple tables,
then the normal practice is to record one of the tables in this field and a comment listing all of
the other tables in the Source Strategy field. This field is used when generating a procedure to
update the Retro table. It is also used in the track back diagrams and in the documentation.

969

Source Column

Indicates the column in the Source table from which the column was sourced. Such a column is
normally a load table column, which in turn may have been a transformation or the combination
of multiple columns. This may also be a dimensional key where a dimension is being joined.

Join

This field is set by WhereScape RED during the building of the update procedure and should not
normally be altered. It indicates that the column in question provides a join to a dimension table.
The Source Table and Source Column fields will provide the dimension's side of the join. The
options for this field are: False, True, Manual and Pre Join.

Setting this field to Manual changes the way the dimension table is looked up, during the update
procedure build. It allows you to join the dimension manually in the Cursor mapping dialog
(where the 'Where' clause is built). The usual dialog for matching the dimension business key to a
column or columns in the retro table is not displayed if this option is enabled.

Setting this field to Pre Join activates the Join Source field and allows you to select a table from
the drop-down list.

Join Source

When the Join option is set to False, this field becomes inactive. When the Join option is set to
True or Manual, this field is set to the current table name. When the Join option is set to Pre Join,
then you can select the required table from the drop-down list.

970

Retro Column Properties Screen

971

Retro Column Transformations
It is possible to do transformations on Retro table columns. It is recommended that
transformations are not performed on columns that are dimension keys or the business keys for
the table. The Transformation screen is as follows:

Note: Transformations are only put into effect when the procedure is re-generated.

See Transformations (on page 593) for more details.

973

Two main options exist in terms of bringing WhereScape RED into an existing data warehouse
environment:

1 Rebuild tables and procedures with WhereScape RED.

2 Integrating existing tables and procedures into WhereScape RED.

Both options require manual coding changes to stored procedures. The main advantages and
disadvantages of these two options are discusses below, and in detail in the following sections.

Rebuilding

The rebuild option is essentially a redevelopment of the existing data warehouse utilizing the
knowledge acquired in the initial development and the rapid development capabilities of
WhereScape RED. A rebuild will take more time and effort than just integrating existing tables
and procedures but will provide a better platform on which to extend the data warehouse. See the
Rebuild (see "Rebuilding" on page 974) section for the approach to achieve this option.

Integrate

Existing data warehouse tables can be identified to WhereScape RED. The tables are seen and can
be managed to a degree. The main disadvantage is the increased difficulty in utilizing these
tables when trying to extend the data warehouse. This option is however significantly quicker and
easier than a rebuild. It is discussed in detail in the Integrate (see "Integrating" on page 975)
section of this chapter.

The decision as to which option to choose will depend on the size and complexity of the existing
data warehouse. Another important factor is the degree to which the existing data warehouse is
to be extended. If future enhancements revolve around new analysis areas that have little overlap
with the existing environment then a integrate may be the best answer. If the data warehouse is
small and relatively simple than a rebuild may be worth considering. In any event the best plan
may be to do a test integrate and then re-evaluate the situation.

In This Chapter

Rebuilding ... 974
Integrating .. 975

C h a p t e r 3 7

Integrating WhereScape RED into an Existing
Warehouse

974

Rebuilding
The rebuild process essentially is a total re-creation of the data warehouse. One of the major
impacts of such an approach is the 'end user layer', or rather the effect on the end user tools and
saved queries and reports that are currently in use. The redesign or redeployment of this interface
to the end users of the data warehouse may be too large a task to undertake. The problem can be
circumvented to some degree though the use of views to make the new data warehouse
environment look the same as the previous. But it is this impact and the subsequent re-testing
process that must be considered when deciding to undertake a rebuild.

The advantages of a rebuild is the seamless integration of future analysis areas into the data
warehouse and the single point of management that is provided. The major steps in the rebuild
process will depend very much on the environment being replaced. As a guideline the following
steps may be worth considering.

The rebuild process
1 Load a copy of the WhereScape metadata repository into an otherwise empty test

environment. See the Installation and Administration Guide for instructions on how to
load a metadata repository.

2 Ensure there are no public synonyms that point to existing table names, if the rebuild process
is to use the same names as some or all of the existing tables.

Working within the WhereScape RED tool proceed to:

3 Create connections to the new test data warehouse and to all the source systems.
4 Using the source system knowledge from the existing data warehouse, create the appropriate

load tables in the data warehouse based on the existing extract or load methodology.

5 Build up the stage and model tables using the same column and table names where possible.

6 Examine the existing procedures or update methodology and include this into the generated
stored procedures.

7 Test the new environment.
8 Work out a plan to convert the existing data into the new data warehouse. Where possible it

is best to keep existing key values and re-assign sequences to match these existing key values
where appropriate.

9 Convert and test the old data warehouse data in the new environment.

10 Redeploy the end user tool access.

975

Integrating
The integrate process

The steps in the integrate process are:

1 Create a test environment (database user) with the existing data warehouse tables loaded.
2 Load a copy of the WhereScape metadata repository into this test environment. See the

Installation and Administration Guide for instructions on how to load a metadata
repository.

Working within the WhereScape RED tool proceed to:

3 Create any connections to Windows servers where host scripts are currently executed. See
Windows connection (see "Windows" on page 163).

4 Create a Data Warehouse connection mapping back to the test environment. See connection
to the data warehouse (see "Database - Data Warehouse/Metadata Repository" on page
147).

5 Incorporate any Host system scripts currently used. See incorporating host scripts (see
"Integrating, Host Scripts" on page 976).

6 Browse the Data Warehouse connection (Browse>Source Tables).
7 Drag and drop each existing data warehouse table into an appropriate object type. See

Selecting an appropriate table type (see "Integrating, Selecting a Table Type" on page 977)

8 Answer the retrofit questions, and build any required procedures. See integrate questions (see
"Integrating, Questions" on page 978).

9 Edit and amend all generated procedures, or create new procedures to handle the existing
processing methodology. See procedure changes (see "Integrating, Procedures" on page 981).

10 Test the new environment.

Removing the metadata for a table

It is possible to delete the metadata for a table without deleting the table itself. For example, if
the integrate process is incorrectly undertaken, the metadata for the specific table can be
removed.

To delete the metadata only: First, select the table and using the right-click menu select Delete.
A dialog box asks if you wish to delete the object and drop the table. Answer No. A second dialog
box appears asking if you just want to delete the metadata. Answer Yes to this question and only
the metadata is removed.

976

Integrating, Host Scripts
Existing windows host scripts can be brought into the WhereScape RED meta data. To
incorporate an existing script the process is as follows:

1 Create a Host Script object using RED. In the left pane click on a project or the All Objects
project and using the right-click menu select New Object. The new object dialog box will
appear. From the Object Type drop-down select Host Script and enter a name for the new
script.

2 The following properties dialog will appear. Select the script type. Either UNIX or Windows
script. Select the appropriate connection from the Default Connect drop-down. Fill in the
Purpose field to define the role of the script and then click Update to store the changes.

3 Double-click on the new script or right-click the new script and select Edit the Script.

4 Within the script editor, either paste the script or if it is available on the PC, select the
File/Insert from file option and load the file.

5 The script will need to be modified to handle the standards required by the scheduler. See
Loading via a host script (see "Script based loads" on page 275) for more details.

977

Integrating, Selecting a Table Type
When integrating existing tables there may not be a clear decision as to which table type to use.
As a guideline, the following groupings can be considered.

Temporary tables:

• Load tables
• Stage tables

Permanent tables:

• Model tables

Although these table groups have very distinct names in terms of data warehousing, they do not
impose any restrictions on the types of tables they contain. The table groupings are most relevant
in the automatic generation of procedures, and in the sequencing for the scheduler.

Typically, a mapping table may be stored in the Staging table group.

978

Integrating, Questions
When a table within the data warehouse schema that is unknown to RED is dropped onto a table
target, the following dialog appears.

If this is a retro-fit then click Yes to proceed with the retro-fit process. The standard New Object
dialog will appear and it would be advisable to leave the name of the object unchanged so that it
matches the existing table.

A dialog asks if the bulk of the columns in this table are derived from another table. If they are
enter the table from which these columns derive at this stage. The purpose of this dialog is simply
to set the 'source table' field against each of the columns for the table.

Artificial Key definition

If the table target is a model table, then the following dialog appears to enable the definition of
any artificial or surrogate key. If no such key exists, then simply proceed to the next question.

979

Business Key definition

A dialog prompts for the selection of the business key from the table. Multiple columns may
constitute the business key, but they must uniquely identify each record in the table.

Foreign Key definition

A dialog will now prompt for the selection of the foreign keys from the table.

980

Update Procedure

If the target table is a stage, model or aggregate a dialog box will ask if an update procedure is
required. If selected a subsequent dialog will define the structure and content of this procedure. If
an existing procedure is to be modified to include the scheduler imposed procedure standards it
is best to select this option and use the existing procedure name to cut down on the amount of
work required. The existing procedure can then be loaded into the generated procedure using the
procedure editor.

Index definition

Any indexes associated with the table is automatically defined and loaded into the metadata.
Changes may need to be made in terms of when the indexes are dropped and to set the Drop
Before Update check box, if appropriate and the scheduler is to be used to manage these indexes.

Procedure creation

If defined, the get key and update procedures is generated. They need to be manually edited and
compiled. See the section on retro-fitting procedures (see "Integrating, Procedures" on page
981).

981

Integrating, Procedures
The procedures managed by the WhereScape scheduler require the following standards.

Parameters

The procedure must have the following parameters in the following order:

Parameter name Input or Output Data Type

p_sequence Input Integer

p_job_name Input Varchar(256)

p_task_name Input Varchar(256)

p_job_id Input Integer

p_task_id Input Integer

p_return_msg Output Varchar(256)

p_status Output Integer

The input parameters are passed to the procedure by the scheduler. If the procedure is called
outside the scheduler then the normal practice is to pass zero (0) in the sequence, job_id and
task_id. A description of the run can be passed in the job name and the task name is typically the
name of the procedure.

The output parameters must be populated by the procedure on completion. The return_msg can
be any string up to 256 characters long that describes the result of the procedures execution. The
status must be one of the following values:

Status Meaning Description

1 Success Normal completion

-1 Warning Completion with warnings

-2 Error Hold subsequent tasks dependent on this task

-3 Fatal Error Hold all subsequent tasks

The major task in retro-fitting a procedure is in adapting it to the WhereScape scheduler
standards and work flow.

982

Integrating, Views
When integrating views an additional step is required if you want WhereScape RED to be able to
recreate the view.

The view will be mapped correctly and the Get Key function can still be built. This step is only
required if the view is to be re-created.

Note: The Get Key function is not available for dimension objects that are stored in custom
database targets.

Change the source column on the artificial key to match the artificial key in the table from which
the view was created.

Integrating, WhereScape Tables
When retro-fitting WhereScape generated tables and views a number of additional considerations
need to be taken.

Change the properties of all such columns. The key type should be set to 1, and the primary
business key checkbox should be set.

983

Relationship Maintenance is available for the maintenance of joins between tables; providing a
way to record joins between tables when surrogate keys are not being used. This functionality
then enables the generation of Links Diagrams for these tables.

NOTE: It is necessary to explicitly specify relationships for tables on Tabular target databases
for the relationships to be created in the Tabular database.

Relationship Maintenance options are available in the Relationships sub-menu when right-
clicking on an object in the Object Pane.

C h a p t e r 3 8

Relationship Maintenance

984

Add Relationship
To add a relationship, right-click on the object in the Object Pane and select Relationships-
>Add Relationships. The following dialog appears.

For each object in the relationship, enter in the following details:

Join Type

For the Join Type, choose between the following:

• Undefined
• Many to One
• One to One
• One to Many
• Many to Many

Primary Join

If this is a primary join, select the Primary Join check-box. For MSAS Tabular tables this defines
an active relationship. At most, one relationship between two specific tables can have this
enabled.

985

Object Type

Enter the Object Type from the drop-down box (Data Store, Load table, Stage table, etc.).

Table/View

Enter the name of the object in the relationship.

Column

Enter the Column to join in each object.

Once you have entered the details for the join, the joined columns are displayed in the list of
Joins at the bottom of the dialog box. Erroneous joins can be removed by right-clicking on the
join and selecting Remove Join. All joins can be removed by clicking the Reset button.

To add all the relationships shown in the list of Joins, click the Add button.

List Relationships
To view relationship for an object, right-click on the object in the Object Pane and select
Relationships->List Relationships. The relationships for the selected object are displayed in
the Drop Target Pane (middle pane).

Multi-column joins are shaded when one join is selected.

Right-clicking on a column or join displays the following menu:

Modify Relationship

The Modify Relationship option shows the following dialog, allowing the editing of joins
(including multi-column joins) between the two objects in the selected relationship.

986

Relationships are edited in this dialog in the same way as the Add Relationship dialog above.
Object Types and Table names cannot be modified.

Delete Relationship

Deletes the selected relationship.

Generate Relationships
To generate relationships in metadata for an object, right-click on the object in the Object Pane
and select Relationships->Generate Relationships. Results are shown in the Results Pane.

987

The upgrading of RED is discussed at some length in the Installation and Administration
Guide.

C h a p t e r 3 9

Upgrading RED

989

The following checks are performed during login; and if necessary, warning messages are
displayed:

1 Warning if the login Data Source does not match the data warehouse connection's ODBC
DSN.

You can correct this issue by performing one of the following actions:

• Alter the Data Warehouse Connection ODBC Source to match the login Data Source.

C h a p t e r 4 0

Login Checks

990

• Log off and log back in using the Data Source with the same name as the Data Warehouse
Connection ODBC Source.

2 Warning if more than one connection has the data warehouse check-box on:

You can correct this issue by editing all the connections and making sure that only one is set
to Data Warehouse:

991

In This Chapter

Using Data Type Mapping Sets ... 992
Maintaining Data Type Mapping Sets .. 994
Loading Custom Data Type Mapping Sets .. 1008
Exporting Custom Data Type Mapping Sets ... 1010
Custom Data Type Mapping Examples ... 1012

C h a p t e r 4 1

Data Type Mappings

992

Using Data Type Mapping Sets
Data type mapping sets contain a list of mappings that are used when loading tables into the data
warehouse.

Custom data type mapping sets give you the ability to automatically change the data type of any
column or to add column transformations when dragging and dropping new load tables. These
mapping sets may be created, edited, deleted, imported and exported using the Data Type
Mappings options on the Tools menu.

Data Warehouse Connection Properties Dialog

993

Non-Data Warehouse Connection Properties Dialog

In the Connection Properties dialogs, a drop-down list Data Type Mapping Set is displayed.

This is the default set that will be used when loading tables into the data warehouse.

994

Maintaining Data Type Mapping Sets
To maintain the data type mapping sets, select Tools>Data Type Mappings>Maintain Data
Type Mappings.

The Maintain Data Type Mappings window is displayed.

995

Select a data type mapping set from the Data Type Mapping Set drop-down list.

Of the standard files, only the files relevant to the database that you are on will be displayed in
the list.

To create a data type mapping set, see Creating a New Data Type Mapping Set (on page 996)

To copy a data type mapping set, see Copying a Data Type Mapping Set (on page 1000)

To edit a data type mapping set, see Editing a Data Type Mapping Set (on page 1003)

To delete a data type mapping set, see Deleting a Data Type Mapping Set (on page 1006)

996

Creating a New Data Type Mapping Set
To create a new data type mapping set, select Tools>Data Type Mappings>Maintain Data
Type Mappings...

1 Click the New button from the Maintain Data Type Mapping Sets window to enter the
name and description of the new Mapping Set.

997

2 You can then enter the individual data type mapping conversion parameters by clicking the
New button on the right side of the window.

The following describe the conversion parameters:

• Active - Indicates if the conversion parameter can be used when searching for a match.

• From Data Type - The source Data Type to that is used for the conversion to the Target
Data Type. It can be any type that source RDBMS uses.

• From Length - The length parameter to match. (the number of characters or the number
of bytes used to store the number).

• From Precision - The precision parameter to match. (the number of digits in a number).

• From Scale - The scale parameter to match. (the number of digits to the right of the
decimal point in a number).

• To Data Type - The data type, including parameters, which is the output of this mapping.
Available tokens are %data_type, %length, %precision and %scale. See Custom Data Type
Mapping Examples (on page 1012).

• Order - The order of the parameter within the enclosing set of the conversion.

• Transformation - The transformation to apply when the conversion is applied. See
Custom Data Type Mapping Examples (see "Custom Data Type Mapping Examples" on
page 1012).

• Format - The format that values using the data type will use. Typically used for numeric
values.

• Default - The default value to use for values that use the data type.

998

3 Click OK to save the parameter. Repeat to define more conversion parameters.

Notes: Use the buttons on the right side of the Data Type Mapping Set window to edit, copy
or delete a selected parameter.
To move a parameter up or down in the list, select it and then click the Move Up or Move
Down button.
The order of the data type mapping conversion parameters is significant because when
loading a table, the procedure checks the data type mappings from top to bottom and stops
when a data type and its parameters are correctly matched. A blank parameter means that it
will match to anything.

999

4 Click OK when you're done. The new data type mapping set is listed in the Maintain Data
Mapping Sets window.

5 Click OK or Apply to save the new data type mapping set.

1000

Copying a Data Type Mapping Set
To copy an existing data type mapping set, select Tools>Data Type Mappings>Maintain Data
Type Mappings...

1001

1 Select the Mapping Set to be copied from the list in the Maintain Data Type Mapping Sets
window and then click the Copy button.

2 Change the name and description of the new Mapping Set as required.

3 Use the buttons on the on the right side of the Data Type Mapping Set window to add new

conversion parameters, edit, copy or delete a selected parameter.

Notes: To move a parameter up or down in the list, select it and then click the Move Up or
Move Down button.

1002

The order of the data type mapping conversion parameters is significant because when
loading a table, the procedure checks the data type mappings from top to bottom and stops
when a data type and its parameters are correctly matched. A blank parameter means that it
will match to anything.

4 Click OK when you're done. The new data type mapping set is listed in the Maintain Data
Mapping Sets window.

5 Click OK or Apply to save the new data type mapping set.

1003

Editing a Data Type Mapping Set
To edit a data type mapping set, select Tools>Data Type Mappings>Maintain Data Type
Mappings.

1004

1 Select the Mapping Set to be modified from the list in the Maintain Data Type Mapping
Sets window and then click the Edit button.

Note: Standard Data Type Mapping sets are not editable, they can only be viewed.

2 In the Data Type Mapping Set window, select the parameter you want to change from the
Conversions pane. Use the scroll bar to see all the defined parameters.

1005

3 Use the buttons on the right side of the Data Type Mapping Set window to add new
conversion parameters, edit, copy or delete a selected parameter. These buttons are not
available for standard mapping sets. Only user defined mapping sets are editable.

Note: To move a parameter up or down in the list, select it and then click the Move Up or
Move Down button.
The order of the data type mapping conversion parameters is significant because when
loading a table, the procedure checks the data type mappings from top to bottom and stops
when a data type and its parameters are correctly matched. A blank parameter means that it
will match to anything.

4 Click OK when you're done.

See previous sections for details on adding or copying a new data type mapping set.

1006

Deleting a Data Type Mapping Set
To delete a data type mapping set, select Tools>Data Type Mappings>Maintain Data Type
Mappings...

1007

Select the Mapping Set to be deleted and click the Delete button.

Note: The Delete button is disabled for standard data type mapping sets.

1008

Loading Custom Data Type Mapping Sets
The Load Custom Data Type Mapping Set menu option allows you to load a custom data type
mapping set from an XML file into the metadata repository.

To load a data type mapping set, select Tools>Data Type Mappings>Load Custom Data Type
Mapping Set.

1009

The following window is displayed. Select the xml file to load the data type mappings. By default
RED expects the xml files to be in ProgramData\WhereScape\Work

1010

Exporting Custom Data Type Mapping Sets
The Export Custom Data Type Mapping Set menu option allows you to export a custom data
type mapping set from the metadata repository to an XML file.

To export a data type mapping set, select Tools>Data Type Mappings>Export Custom Data
Type Mapping Set.

Select the data type mapping set to export from the drop-down list. Click OK.

1011

By default, RED exports the xml file to ProgramData\WhereScape\Work, but this can be
changed. Change the File name if necessary and click Save.

1012

Custom Data Type Mapping Examples
WhereScape RED allows you to create Custom Data Type Mapping Sets. These gives you the
ability to automatically change the data type of any column or to add column transformations,
when dragging and dropping new load tables.

The examples in this topic demonstrate how Custom Data Type Mapping Sets can be configured
using the following variables:

• %length
• %scale
• %precision
• %table_name
• %column_name
• %format
• %prompt

%length

In the example below, when converting a varchar in a file to Teradata format, we follow the
following steps in the given order:

• If the varchar is of a length less than or equal to 63, the data type will become varchar(64).
• If the first step was NOT applied, i.e. the varchar is of a length greater than 63, then the data

type will become varchar(%length); where we substitute the length for the variable '%length'.
Thus if the varchar is of length 64 then the resulting data type will be varchar(64), but if the
varchar is of length 123 then the resulting data type will be varchar(123).

1013

%scale

In the example below, when converting a decimal in DB2 to Teradata format, we follow the
following steps in the given order:

• If the decimal has a scale of zero, the data type will become decimal(%precision); where we
substitute the number of digits in the number for the variable '%precision'. Thus if the
decimal has 8 digits then the resulting data type will be decimal(8).

• If the first step was NOT applied, i.e. the decimal has a scale of 1 or greater, then the data
type will become decimal(%precision,%scale); where we not only substitute the number of
digits in the number for the variable '%precision', but we also substitute the scale for the
variable '%scale'. Thus if the decimal is made up of 8 digits and has 3 digits after the decimal
point (example 12345,678), the resulting data type will be decimal(8,3).

NOTE: The Scale is the number of digits to the right of the decimal point in a number.

1014

%precision

In the example below, when converting a varchar in SQL Server to Teradata format, we follow the
following steps in the given order:

• If the varchar has a length of 1 or greater, the data type will become varchar(%precision);
where we substitute the number of digits in the varchar for the variable '%precision'. Thus if
the varchar has a length of 14, the resulting data type will be varchar(14).

• If the varchar has a length of 0, the data type will be become varchar(9000) where the
transformation will ensure that the correct length of the source string.

NOTE: The Precision is the total number of digits in a number.

1015

%table_name and %column_name

In the example below, we use the following transformations to handle NULL for different lengths
of varchars:

• If the varchar is 1 or 2 digits/chars long, the data type will become varchar(%precision);
where we substitute the number of digits/chars in the varchar for the variable '%precision'.
Secondly, the value of the column will become the column value (if it is not null), else it will
become 'U'.

• If the varchar is 3-6 digits/chars long, the data type will become varchar(%precision); where
we substitute the number of digits/chars in the varchar for the variable '%precision'.
Secondly, the value of the column will become the column value (if it is not null), else it will
become 'UNK'.

• If the varchar is 7 or more digits/chars long, the data type will become varchar(%precision);
where we substitute the number of digits/chars in the varchar for the variable '%precision'.
Secondly, the value of the column will become the column value (if it is not null), else it will
become 'UNKNOWN'.

1016

%format

In the example below, we use the following transformations to convert a certain character field to
a date:

• If the varchar has a length of 1-10, the data type will become date and the value of the
column will become the date 20131212 (a chosen date in the future).

• If the varchar has a length of 11, the data type will become date and the value of the column
will use the transformation TO_DATE(%table_name.%column_name,%format); where we
substitute 'YYYYMMDD' for the variable '%format'. Thus the value of the column will be
converted to a date of format 'YYYYMMDD'.

• If the varchar has a length of 12 or greater, the data type will become date and the value of
the column will become the date 20131212 (a chosen date in the future).

1017

%prompt

In the example below we use %prompt to help the user to define a mapping for an unknown
datatype that is not already mapped in the previous mapping rules.
This placeholder must be used with a custom Data Type mapping set, as described in the
following steps:

• Create a new custom set or copy from an existing set.
• Create a new Data Type mapping with a From Data Type of star (*) and a To Data Type of

%prompt. Click OK to save the New Data Type Mapping to the Custom set.

1018

• When browsing a connection to Load a table, set the Data Type Mapping Set to the new
Custom SQL Server to Teradata mapping set. This can be set on the List Sources Tables
Connection window or on the connection Properties window.

• As the table is dragged and dropped to the middle pane, RED will prompt to have the new
data type mapping defined.

• In the example below, just before loading the table, users can map the unknown geography
SQL Server data type mapping to a varchar(30) in Teradata.

• Clicking OK or Apply in the Data Type Mapping Set window, saves the parameter to the

custom set that was used for loading the table.

1019

To view the column context menu, click on an object in the left pane to display the columns in
the middle pane. When positioned on a column in the middle pane, right-click on the column to
bring up the menu.

C h a p t e r 4 2

Column Context Menu

1020

In This Chapter

Properties .. 1020
Change Column(s) .. 1023
Add Column .. 1025
Duplicate Column ... 1026
Delete Column .. 1027
Re-space Order Number .. 1028
Impact ... 1029
Sync Column order with database .. 1030
Send Columns to Another Object ... 1031

Properties
To display the column Properties, right-click on a column in the middle pane and select
Properties.

1021

Edit any field as required and then click OK to close.

Warning: WhereScape RED does not support the following characters in Column Names:
- leading and trailing white spaces
- internal white spaces
- symbols other than #, $ and _

If users attempt to enter any of the above characters in Column Names, the following dialog will
be displayed, advising users to review changes made by RED to correct any unsupported column
name characters:

1022

Note: There is a variation in column Properties, depending on the object type.

For Dimension tables, see Dimension Column Properties (on page 316).
For Stage tables, see Stage Table Column Properties (on page 345).
For Model tables, see Model Column Properties (see "Model Table Column Properties" on page
481).
For Data Store tables, see Data Store Column Properties (on page 382).
For EDW 3NF tables, see EDW 3NF Column Properties (see "EDW 3NF Table Column
Properties" on page 406).

1023

Change Column(s)
To change the properties for multiple columns, right-click on a column in the middle pane and
select Change Column(s).

To change a column property, you first need to select the relevant check boxes on the left. Each
check box, when selected, allows you to change the value for that field in the column properties.

1024

In the Original Value column, select the value/s to be changed.

• Choosing (All) will change the selected property for all of the columns in the table.
• Choosing (Selected) will change the selected property for the selected column in the table.
• Choosing (Empty) will change the selected property for all of the columns where that

property field is empty. This option is only available if there is a column where this property
is empty.

• Choosing one of the other options will change the selected property for all the columns in
the table having that value.

Note: (Selected) is the default for the Original Value column.

In the New Value column, select the new value to be assigned; or key in the new value.

Note: When editing the property Column Source Table, selecting the Update matched
columns only check-box will validate that the selected column name exists in the new source
table. If it does not exist, then the update will not take place.

1025

Add Column
To add a column, right-click on one of the columns in the middle pane and select Add Column.

Enter the details to define a new column and click OK.

1026

Duplicate Column
To duplicate/copy a column, right-click on one of the columns in the middle pane and select
Duplicate Column.

Change the Column Name and the Column Title and any other properties to define a new
column and click OK.

1027

Delete Column
To delete a column, right-click on one of the columns in the middle pane and select Delete
Column.

Click Yes to continue with the delete.

1028

Re-space Order Number
To re-space the column order, right-click on any column in the middle pane and select Respace
Order Number.

The Column Order number for each column will be adjusted so that the column order numbers
are evenly spaced.

1029

Impact
To display a Track Back Report, right-click on a column in the middle pane and select Impact >
Track Back Report.

The report will be displayed in the bottom middle pane. This report lists the origins of the
selected column. See Track Back Report (see "Column Track-Back" on page 795).

1030

To display a Track Forward Report, right-click on a column in the middle pane and select Impact
> Track Forward Report.

The report will be displayed in the bottom middle pane. This report lists the columns derived
from the selected column. See Track Forward Report (see "Column Track-Forward" on page
797).

1031

Sync Column order with database
To synchronize the metadata's column order to match the same order in the physical table in the
database:

Right-click on one of the columns in the middle pane and select Sync the column order with
the database.

This will reorder the metadata columns to match the column order in the database table.

1032

Send Columns to Another Object
To send/copy columns to another object, right-click on a column in the middle pane and select
Send Columns To Another Object.

Click on the destination table in the left pane, then right-click in the middle pane and select Add
Columns From Another Object.

1033

The columns will be added to the destination table using the same functionality and settings as
drag and drop.

1035

In This Chapter

Using Database Function Sets .. 1036
Maintaining Database Function Sets .. 1039
Loading Database Function Sets ... 1058
Exporting Database Function Sets .. 1061

C h a p t e r 4 3

Database Functions

1036

Using Database Function Sets
Database function sets contain a list of functions and operators that can be used for building
transformations. These function sets may be created, edited, deleted, imported and exported
using the Database Functions options from the Tools menu.

Column Transformation Properties Dialog

A drop-down list enables you to select which set of functions are to be displayed in the tree view
when creating a transformation on a column of a table.

1037

Transformation Definition screen

A drop-down list allows the user to select which set of functions are to be displayed in the tree
view when creating a re-usable transformation in Tools>Define Re-Usable Transformations.

1038

Connection Properties screen

In the connection Properties dialog, when the Data Warehouse check box is selected, a drop-
down list Default Transform Function Set is displayed. This is the default set that is selected in
the transformation dialogs above.

1039

Maintaining Database Function Sets
To maintain the database function sets, select Tools>Database Functions>Maintain Database
Functions...

1040

The following screen is displayed.

Select a database function set from the Function Set drop-down list.

1041

To create a database function set, see Creating a New Database Function Set (on page 1041)

To copy a database function set, see Copying a Database Function Set (on page 1043)

To edit a database function set, see Editing a Database Function Set (on page 1045)

To delete a database function set, see Deleting a Database Function Set (on page 1056)

Creating a New Database Function Set
To create a new database function set, select Tools>Database Functions>Maintain Database
Functions...

1042

Click on the New button.

Enter a Function Set Name and select a Database from the drop-down list. Click OK.

Function Set Name

Enter a unique function set name.

Note: The function set name may not contain the phrase "Standard Functions" as this is reserved
for WhereScape supplied function sets.

1043

Database

Select the database from the drop-down list or type in the name of the database if not already in
the list. This field is mandatory.

Copying a Database Function Set
To copy an existing database function set, select Tools>Database Functions>Maintain
Database Functions...

1044

Select a Function Set from the drop-down list and click on the Copy button.

Enter the new Function Set Name and select a Database from the drop-down list. Click OK.

Function Set Name

Enter a unique function set name.

Note: The function set name may not contain the phrase "Standard Functions" as this is reserved
for WhereScape supplied function sets.

Database

Select the database from the drop-down list or type in the name of the database if not already in
the list. This field is mandatory.

1045

Editing a Database Function Set
To edit a database function set, select Tools>Database Functions>Maintain Database
Functions...

1046

Select a database function set from the Function Set drop-down list.

On the right is a group of buttons used to maintain the list of functions in a function set. These
buttons are not available for standard function sets.

1047

To add a new function to the database function set:

Click on the New button on the right.

1048

Enter the details for the new function and click OK.

Function Name

This field is mandatory and must be unique within the group.

Group

This field is mandatory. Select a group from the drop-down list or add a new group name.

Description

Enter a description for the function.

Syntax

Enter the syntax for the function.

Model

This field is mandatory. This is the text that will be pasted into the transformation/ model fields
when the function is selected.

Default Column

This is the text that will automatically be highlighted when the function is used in the
transformation/model dialogs. To set the default column, highlight it in the model field and click
the Default Column button. The default column will now show in red in the Model field.

1049

Clear Default Column

Click this button to clear the default column.

To copy an existing function in the database function set:

Select the function and then click on the Copy button on the right.

1050

Enter a new Function Name and change any other details; then click OK.

1051

To edit an existing function in the database function set:

Select the function and then click on the Edit button on the right.

1052

Change any fields as required and then click OK.

Note: A function can also be edited by double-clicking on the function.

1053

To delete an existing function in the database function set:

Select the function and then click on the Delete button.

Click Yes to confirm the delete.

1054

To move a function in the database function set up or down in the list:

Select a function and then click on the Move Up button on the right to move the function up in
the function list, within its group; else click on the Move Down button on the right to move the
function down in the function list, within its group.

1055

To move a group of functions in the database function set up or down in the list:

Using the Group column, select any function in a particular group and then click on the Move Up
button under the Groups heading on the right to move the function group up in the function list.
Similarly, use the Move Down button under the Groups heading to move a function group down
in the function list.

1056

Deleting a Database Function Set
To delete a database function set, select Tools>Database Functions>Maintain Database
Functions...

1057

Select a Function Set from the drop-down list and click on the Delete button.

Note: The Delete button is disabled for standard function sets.

Click Yes to confirm the delete.

When all functions are deleted, the function set ceases to exist.

1058

Loading Database Function Sets
To load a database function set, select Tools>Database Functions>Load Database Functions...

1059

The following dialog is displayed. Select the xml file to load the database functions. By default
RED expects the xml files to be in ProgramData\WhereScape\Work directory.

The xml file is validated using the schema definition file at <install
directory>\Administrator\Function Sets\Database Function Set.xsd

If a function set containing the phrase Standard Function is loaded, a warning is displayed:

1060

If an existing function set (not a standard set) is about to be overwritten, a warning is displayed:

A message is displayed in the results pane.

1061

Exporting Database Function Sets
To export Database Function Sets, select Tools>Database Functions>Export Database
Functions...

Select the Function Set to export from the drop-down list. Click OK.

1062

By default, RED exports the xml file to ProgramData\WhereScape\Work, but this can be
changed. Change the File name if necessary and click Save.

1063

Gathering Statistics on a table will enable the underlying database to optimize each query based
on the statistics collected about the data that is being accessed.
Users can either chose to Define Statistics or to Refresh Full Statistics.
Gathering statistics can be performed on any table by selecting this option from a table's right
click menu, or to automate this process, by adding a statistics task to a job being processed by the
scheduler (Stats, Quick Stats, Analyze or Quick Analyze). For more information about adding
statistics tasks to jobs see Editing Tasks (see "Editing Tasks in a Job" on page 715).

In This Chapter

Define Statistics .. 1063

Define Statistics
In a multiple database environment it is required not to have the database name hard-coded into
the COLLECT STATS command.
When tables are deployed to a new environment using RED, these hard coded database names are
not translated to the database names in the target environment in the COLLECT STATS
commands.

RED can automatically add the Database Name (storage location) prefix to the table_name in the
COLLECT STATS DDL.

C h a p t e r 4 4

Gather Statistics

1064

1 Right click on any table object on the left pane to Gather Statistics.
2 Find Gather Statics on the drop-down menu.

3 Options allow choosing either to Define Statistics or to Refresh Full Statistics.
4 Select Gather Statistics -> Define Statistics.

5 On the Define Statistics Collection dialog, enter the "COLLECT STATS dbname.tablename
COLUMN(column_name,);" command by using $OBJECT$ COLUMN (table_name).

6 Click Execute if adding the DDL statement for the first time.

When the DDL is executed, RED substitutes the Database name from the Storage Properties
of the object. This improves the portability of objects between environments.

7 Click OK on the Define Statistics Collection dialog to close it.

8 Right-click on the table and select Refresh Full Statistics to manually refresh the statistics
on that table.

9 To automate gathering statistics on a table, users can add a statistics task to a job to be
processed by the scheduler. For more information about adding statistics tasks to jobs see
Editing Tasks (see "Editing Tasks in a Job" on page 715).

1065

WhereScape RED provides a facility for defining and managing extended database properties
which can be used in a range of scenarios, one of the motives for their introduction was to aid
interaction with the variety of new database technologies that RED customers want to exploit for
their Business Intelligence infrastructure.

To support these emerging database technologies, WhereScape provides enablement packs for a
variety of target “custom” database types, which includes Snowflake, Amazon Redshift and
Microsoft Azure SQL data warehouse.

One component of these packs are a set of extended properties to facilitate connecting to a
specific database technology.

This feature also supports importing a set of extended property definitions into RED from an
external source, and exporting extended properties defined in RED to a file. This enables you to
migrate and reuse extended property definitions between different repositories.

Using the extended properties feature involves defining the extended properties to specify the
variables and their scope; and then assigning values to the defined extended properties.

Extended Property Definitions

Extended property definitions primarily consist of a unique name and a scope (database type and
object type), which specifies where the extended property will be available.

The extended property definitions are created and maintained in the Extended Property
Definition screen (see "Defining Extended Properties" on page 1066).

Extended Property Value Assignment

Once an extended property has been defined for a connection or table object, users can then
assign values to each of the variable attributes available in the extended property.

The extended property values are specified and maintained in the Extended Properties settings
(see "Extended Properties Value Assignment" on page 1072) in the Connection or Table object's
Properties screen.

Extended Property Lookup

The extended property variables and their assigned values are referenced in PowerShell scripts.
PowerShell script based processing is available for all objects in a custom database target.
However, in a non-custom database target; PowerShell scripts are only available to process load
and export objects.

WhereScape provides an application that enables access to extended property definitions and
values. For more information, please contact your WhereScape representative.

C h a p t e r 4 5

Extended Properties

1066

In This Chapter

Defining Extended Properties ... 1066
Extended Properties Value Assignment ... 1072
Extended Properties Lookup ... 1073
Extended Properties Data Migration Between Repositories 1074

Defining Extended Properties
An extended property definition mainly consists of the following attributes:

• Variable - the name of the extended property in the format it is accessed from the RED and
included into scripts.

• Scope - the scope is a sub-set definition of an extended property variable which specifies the
subset of database types and objects that will have access to the variable.

These user defined extended properties can be created and managed, using the Extended
Properties facility on the Tools menu.

1067

The following options are available:

• Maintain Extended Properties is used to add new or edit existing extended property
definition settings.

• Load Extended Properties is used to load a set of extended property definitions into RED
from an external source. This option is typically used with a WhereScape provided
enablement pack.

• Export Extended Properties is used to export the available extended properties to an
external properties file (.extprop).

Creating an Extended Property Definition
To create a new extended property definition, select Tools>Extended Properties>Maintain
Extended Properties.

On the Extended Properties Maintenance screen, click New.

1068

On the Extended Property Definition screen, enter the display and variable names and
configure the settings as described below.

Variable Settings

Display Name

Enter a display name for the variable. This is the extended property name displayed in the
Connection or Table properties.

Variable Name

Enter a unique variable name in the format it is accessed from the RED metadata service and
included into scripts.

Mask Value when shown

Select this check box if you want to mask the value of the extended property, when displayed in
the Connection or Table properties. The extended property value is also masked in the RED
generated technical documentation.

1069

Note: During an application creation process (via the Tools>Build Deployment Application
menu), any extended property variables/assignments applied to a connection or table object are
included in the generated application files.
However, a connection or table object extended property with a masked value will not be
included in the generated application files.

Description

Enter a description for the variable and its purpose/use.

Scope Settings

Connection Visibility

Enables you to control the scope of the extended property definition, by selecting a Connection
File System and/or a Database type that can access the extended property variable and their
assigned value.

For example, if only the SQL Server check box is selected under the Databases option, then the
variable will only appear in the Properties screen of connections with an SQL Server database
type and not in the Properties screen of any other connections that is not an SQL Server database.

Object Visibility

Enables you to control the scope of the extended property definition, by selecting an Object type
that can access the extended property variable and their assigned value.

For example, if only the Load Table check box is selected under the Objects option, then the
variable will only appear in the Properties screen of Load tables and not in the Properties screen
of any other table objects.

1070

Maintaining Extended Property Definitions
The Extended Properties Maintenance screen displays a list of existing extended property
definitions and enables you to add a New extended property definition. Clicking an extended
property definition in the list enables you to Copy, Edit or Delete the selected item.

In addition, you can change the position of a selected extended property definition by moving it
Up or Down within the list to specify a preferred order or grouping arrangement, when the
extended property definitions are displayed in the Connection or Table properties screens. The
display order has no impact in the operation.

The following describe the elements of the Extended Properties Maintenance screen.

Extended Property

This pane lists the extended property definitions that have been setup in RED. It details the
display and variable name and indicates if the value of the extended property is masked, when
displayed in the Connection or Table properties.

1071

Function Buttons

These buttons enable you to create and manage the extended property definitions.

Button Description

New Launches the Extended Property Definition screen which enables
you to create a new variable and specify the subset of database types
and objects that will have access to the variable. Refer to Creating
an Extended Property Definition (on page 1067) for details.

Copy Duplicates the selected extended property and adds a _Copy1 suffix
to the Display Name and Property Name.
All fields are populated with the values of the original extended
property. These can be edited as required.

Edit Launches the Extended Property Definition screen which enables
you to edit the selected extended property.

Delete Deletes the selected extended property, if it is not currently in use.
The user is warned if it is in use and asked to confirm or cancel the
delete action.

Move Up/Move
Down

Moves the selected extended property Up or Down the list. The
display order of the extended property has no impact on its use.

Notes:
1. If an extended property is deleted, both the definition and all corresponding value assignments
are deleted from the meta data repository. It is removed from the Extended Properties settings
of the Connection or Table object Properties screen.

2. If an extended property definition variable name is changed, the change is applied in the
Extended Properties settings in the Connection or Table object Properties screen and its
corresponding value assignment is retained.

3. If an extended property definition scope is changed, its variable and corresponding value
assignments are not deleted from the meta data repository. It is hidden from the Extended
Properties settings in the Connection or Table object Properties screen. For example, an
extended property variable has the Load object type set as in-scope and a corresponding value
assignment has also been set in the Extended Properties setting in the Table Properties screen.
If the extended property definition is edited to remove the Load object type from its scope, then
the value assignment is not removed but becomes inactive and RED displays a warning that the
scope change impacts a value assignment.

1072

Extended Properties Value Assignment
After defining the extended property, you can assign values to each of the variable available in
the Extended Properties tab of in-scope objects.

One extended property can have several connections and objects in its scope and therefore can
have several values and assignments—one per connection and object.

An extended property assignment establishes the relationship between a variable and its value,
which is specific for a particular connection or object.

Setting Up Extended Property Values for a Connection
The extended property values for a connection are assigned and maintained in the Extended
Properties tab of the Connection Properties screen.

Connection Extended Properties

1073

Setting Up Extended Property Values for an Object
The extended property values for an object are assigned and maintained in the Extended
Properties tab of the Table Properties screen.

WhereScape RED Object Extended Properties

Extended Properties Lookup
The extended property variables and their assigned values are referenced in PowerShell scripts.
PowerShell script based processing is available for all objects in a custom database target.
However, in a non-custom database target; PowerShell scripts are only available to process load
and export objects.

WhereScape provides an application that enables access to extended property definitions and
values. For more information, please contact your WhereScape representative.

1074

Extended Properties Data Migration Between Repositories
Once extended properties are defined and set, they can be propagated to the other RED
repositories as follows:

The definitions are exported from the source repository and imported to the target repository via
the Tools>Extended Properties menu.

The values assigned to extended properties are included in a RED application that includes the
parent Connection or Table object and are imported to the target repository, during the
application load process.

Notes:
1. Any new or changed extended property definition must first be exported and then imported
into the downstream repository, prior to loading an application that references them. Failing to
load the definition first, will result in the value assignment not being loaded for the object.

2. Extended properties are designed to be accessed from Windows PowerShell scripts, via the
WhereScape RED metadata service. To aid this access, WhereScape provides a metadata service
client library that customers are suggested to use to access the metadata service.

Exporting Extended Properties
To export extended properties from RED, select Tools>Extended Properties>Export Extended
Properties.

1075

The following dialog is displayed. By default, RED exports the extended property (EXTPROP) file
to Program Files\WhereScape\Work, but this can be changed. Enter the File name and click
Save.

A confirmation message is displayed in the results pane.

1076

Loading Extended Properties
To load an extended property file, select Tools>Extended Properties>Load Extended
Properties.

Note: The values assigned to extended properties are included in a RED application that includes
the parent connection or table object and are imported to the target repository during the
application load process.
An application including an object with an extended property value set, is dependent on the
extended property definition being present in the target repository.

1077

The following dialog is displayed. Select the extended property (EXTPROP) file to load the
extended properties. By default RED expects the extprop files to be in Program
Files\WhereScape\Work directory.

The selected extprop file is loaded and the attributes are listed in the Extended Properties
Maintenance window.

1078

A confirmation message is displayed in the results pane.

1079

WhereScape RED enables you to manage table and column comments outside your data
warehouse environment and then load the updated comments back into the metadata repository;
and subsequently copy them to the target database.

The comments can be exported from the metadata repository and imported back, via the
Tools>Table and Column Comments menu option.

The export function enables you to output existing table or column comments into a Microsoft
Excel format (.csv) file. You can open the file to view, modify or delete existing comments, as well
as create new comments.

The import function enables you to load back the updated file into RED and perform a bulk
update of the associated metadata.

The Update Comments context menu command enables you to copy comments from the
metadata repository to the target database, e.g. updates the description and business display
name fields (EUL table objects only) in the table and column Properties screen.

The following Object types are supported:

• Normal
• Hub
• Satellite
• Link
• Custom1
• Custom2
• Datastore
• Load
• Dimension
• Dimension View
• Stage
• Fact
• Fact KPI
• Aggregate
• Export
• Retro
• Retro Copy
• View
• Join

Notes:
- The table and column comments export/import feature only supports UTF-8 character encoded
files.

C h a p t e r 4 6

Table and Column Comments

1080

- The exported data includes the Business Display Name (EUL table objects only) which can also
be updated if required.

In This Chapter

Defining Table Comments .. 1080
Exporting Table Comments .. 1081
Loading Table Comments ... 1084
Defining Column Comments .. 1087
Exporting Column Comments .. 1088
Loading Column Comments ... 1092
Importing Comments from an External Source .. 1096
Viewing the Import/Export Logs... 1098

Defining Table Comments
Table Properties

The table comments are defined in the Description field of the table's Properties. The comments
in this field, along with the Table Name and Business Display Name (EUL) fields are used when
exporting/importing table comments.

1081

Exporting Table Comments
To export table comments from RED, select Tools>Table and Column Comments>Export
Table Comments.

The Table Comments Export pop-up window is displayed:

1082

1 Type in the directory and file name of the export file or click the folder icon to navigate to the
required directory.

2 Select or de-select the required export options.
• Only export comments from tables with a Business Display Name - This option

enables you to only process tables that have a Business Display Name (EUL) defined in
the table's Properties screen. Clear the check box if you want to process all tables in your
data warehouse.

• Only export comments that are not empty - This option enables you to only process
tables that have comments defined in Description field of the table's Properties screen.
Clear the check box if you want to process all tables in your data warehouse.

• Only export comments from End User Layer (EUL) tables - This option enables you to
only process tables that are visible to the end user. Clear the check box if you want to
process all tables in your data warehouse.
The visibility of table objects to end users in RED are set in Tools>Options>Object Types>
Object Type End User Setting (see "Object Type End User Setting" on page 86).

All the above options are selected by default.

3 Click OK to proceed with the export. The Table Comments Export pop-up window displays
the progress of your export. You can click Cancel to abort the process.

4 Once the export process is completed, the pop-window displays the processing time and the

number of comments copied to the export file.

1083

Note: After completing the export process, you can click Open Log File or Open Log File
Folder to view the log file generated. Refer to Viewing the Import/Export Logs (on page
1098) for more details.

5 Click Close to exit the pop-up window. The Results pane displays a summary about the
comments exported and confirms successful completion of the export.

6 Use Microsoft Excel 2013 or Notepad to view/edit the exported comments.

Each row of data includes the Table Name, Business Display Name (EUL table objects only)
and Table Comments (Description).

Notes:
The table and column comments import/export only supports UTF-8 character encoded files.
You also need to be aware of the following points, if you are going to use another tool other
than Microsoft Excel 2013 to edit the comments:
- The comment portion can be surrounded in double quotes.
- Double quotes can be escaped within the comment by prefixing the quote with another
quote.
- Comma characters can be used within the comment, but only if the comment is inside
double quotes.
- Comments can span multiple lines, but only if the comment is inside double quotes.

See Importing Comments from an External Source (on page 1096) for more details.

1084

Loading Table Comments
To load/import table comments to RED from an external (.csv) file, select Tools>Table and
Column Comments>Load Table Comments.

The Table Comments Import pop-up window is displayed:

1085

1 Type in the directory and file name of the source file or click the folder icon to navigate to the
required directory.

2 Select or de-select the check box of the required import options.
• Only import comments from tables with a Business Display Name - This option

enables you to only process tables in the import file that have a Business Display Name
defined. Clear the check box if you want to process all tables from your import file.

• Only import comments that are not empty - This option enables you to only process
tables that have comments defined in the import file. Clear the check box if you want to
process all tables from your import file.

• Only import comments from End User Layer (EUL) tables - This option enables you to
only process tables in the import file that are visible to the end user. Clear the check box
if you want to process all tables from your import file.
The visibility of table objects to end users in RED are set in Tools>Options>Object Types>
Object Type End User Setting (see "Object Type End User Setting" on page 86).

All the above options are selected by default.

3 Click OK to proceed with the import. The Table Comments Import pop-up window displays
the progress of your import. You can click Cancel to abort the process.

4 Once the import process is completed, the pop-window displays the processing time and the

number of comments copied to the metadata repository.

1086

Note: After completing the import process, you can click Open Log File or Open Log File
Folder to view the log file generated. Refer to Viewing the Import/Export Logs (on page
1098) for more details.

5 Click Close to exit the pop-up window. The Results pane displays a summary about the
comments imported and confirms successful completion of the import.

6 Use the Update Comments command from the context menu to copy the comments from the
metadata repository to the corresponding tables in the target database.

1087

The Results pane displays the table(s) and column(s) that have added comments.

Notes:
The table and column comments import/export only supports UTF-8 character encoded files.
You also need to be aware of the following points, if you are going to use another tool other
than Microsoft Excel 2013 to edit the comments:
- The comment portion can be surrounded in double quotes.
- Double quotes can be escaped within the comment by prefixing the quote with another
quote.
- Comma characters can be used within the comment, but only if the comment is inside
double quotes.
- Comments can span multiple lines, but only if the comment is inside double quotes.

See Importing Comments from an External Source (on page 1096) for more details.

1088

Defining Column Comments
Column Properties

The column comments are defined in the Column Description field of the column's Properties.
The comments in this field, along with the Table Name, Column Name, and Column
Title/Business Display Name fields are used when exporting/importing column comments.

1089

Exporting Column Comments
To export table comments from RED, select Tools>Table and Column Comments>Export
Column Comments.

The Column Comments Export pop-up window is displayed:

1090

1 Type in the directory and file name of the export file or click the folder icon to navigate to the
required directory.

2 Select or de-select the required export options.
• Only export comments from columns with a Business Display Name - This option

enables you to only process columns that have a Business Display Name (Column
Title) defined in the column's Properties screen. Clear the check box if you want to
process all columns in your data warehouse.

• Only export comments that are not empty - This option enables you to only process
columns that have comments defined in Column Description field of the column's
Properties screen. Clear the check box if you want to process all columns in your data
warehouse.

• Only export comments from End User Layer (EUL) tables - This option enables you to
only process columns from tables that are visible to the end user. Clear the check box if
you want to process all columns in your data warehouse.
The visibility of table objects to end users in RED are set in Tools>Options>Object Types>
Object Type End User Setting (see "Object Type End User Setting" on page 86).

All the above options are selected by default.

3 Click OK to proceed with the export. The Column Comments Export pop-up window
displays the progress of your export. You can click Cancel to abort the process.

1091

4 Once the export process is completed, the pop-window displays the processing time and the
number of comments copied to the export file.

Note: After completing the export process, you can click Open Log File or Open Log File
Folder to view the log file generated. Refer to Viewing the Import/Export Logs (on page
1098) for more details.

5 Click Close to exit the pop-up window. The Results pane displays a summary about the
comments exported and confirms successful completion of the export.

1092

6 Use Microsoft Excel 2013 or Notepad to view/edit the exported comments.

Each row of data includes the Table Name, Column Name, Column Title/Business Display
Name and Column Comments (Description).

Notes:
The table and column comments import/export only supports UTF-8 character encoded files.
You also need to be aware of the following points, if you are going to use another tool other
than Microsoft Excel 2013 to edit the comments:
- The comment portion can be surrounded in double quotes.
- Double quotes can be escaped within the comment by prefixing the quote with another
quote.
- Comma characters can be used within the comment, but only if the comment is inside
double quotes.
- Comments can span multiple lines, but only if the comment is inside double quotes.

See Importing Comments from an External Source (on page 1096) for more details.

1093

Loading Column Comments
To load/import column comments to RED from an external (.csv) file, select Tools>Table and
Column Comments>Load Column Comments.

The Column Comments Import pop-up window is displayed:

1094

1 Type in the directory and file name of the source file or click the folder icon to navigate to the
required directory.

2 Select or de-select the check box of the required import options.
• Only import comments from tables with a Business Display Name - This option

enables you to only process columns in the import file that have a Business Display
Name/Column Title defined. Clear the check box if you want to process all tables from
your import file.

• Only import comments that are not empty - This option enables you to only process
columns that have comments defined in the import file. Clear the check box if you want
to process all tables from your import file.

• Only import comments from End User Layer (EUL) tables - This option enables you to
only process columns from tables in the import file that are visible to the end user. Clear
the check box if you want to process all tables from your import file.
The visibility of table objects to end users in RED are set in Tools>Options>Object Types>
Object Type End User Setting (see "Object Type End User Setting" on page 86).

All the above options are selected by default.

3 Click OK to proceed with the import. The Column Comments Import pop-up window
displays the progress of your import. You can click Cancel to abort the process.

4 Once the import process is completed, the pop-window displays the processing time and the
number of comments copied to the metadata repository.

1095

Note: After completing the import process, you can click Open Log File or Open Log File
Folder to view the log file generated. Refer to Viewing the Import/Export Logs (on page
1098) for more details.

5 Click Close to exit the pop-up window. The Results pane displays a summary about the
comments imported and confirms successful completion of the import.

6 Use the Update Comments command from the context menu, to copy the comments from
the metadata repository to the corresponding columns in the target database.

1096

The Results pane displays the table(s) and column(s) that have added comments.

Notes:
The table and column comments import/export only supports UTF-8 character encoded files.
You also need to be aware of the following points, if you are going to use another tool other
than Microsoft Excel 2013 to edit the comments:
- The comment portion can be surrounded in double quotes.
- Double quotes can be escaped within the comment by prefixing the quote with another
quote.
- Comma characters can be used within the comment, but only if the comment is inside
double quotes.
- Comments can span multiple lines, but only if the comment is inside double quotes.
See Importing Comments from an External Source (on page 1096) for more details.

1097

Importing Comments from an External Source
The import function supports Microsoft Excel 2013 comma separated value (.csv) file format for
importing comments to RED.

Table Comments

Each row of data includes the Table Name, Business Display Name (EUL table objects only) and
Table Comments (Description).

view_order_header,view_order_header,View of order header.
view_order_line,view_order_line,View of order line table.
view_forecast,view_forecast,View of Forecast table.

Column Comments

Each row of data includes the Table Name, Column Name, Column Title/Business Display Name
and Column Comments (Description).

view_order_header,order_number,order_number,A code which identifies the order.
view_order_line,order_line_no,order_line_no,A number which identifies a line on
the order.
view_forecast,forecast_quantity,forecast_quantity,Quantity of product
forecasted (i.e. number of product units forecasted to be sold).

Notes:

• The comment portion can be surrounded in double quotes. For example:

view_order_header,view_order_header,"View of order header."
view_order_line,view_order_line,"View of order line table."
view_forecast,view_forecast,"View of Forecast table."

• Double quotes can be escaped within the comment by prefixing the quote with another
quote. For example:

view_order_header,view_order_header,"View ""of"" order header."
view_order_line,view_order_line,View of order line table.
view_forecast,view_forecast,View of Forecast table.

1098

• Comma characters can be used within the comment, but only if the comment is inside double
quotes. For example:

view_order_header,view_order_header,"View of order header,comment."
view_order_line,view_order_line,"View of order line table,comment."
view_forecast,view_forecast,"View of Forecast table,comment."

• Comments can span multiple lines, but only if the comment is inside double quotes. For
example:

view_order_header,view_order_header,"View of order header comment."
view_order_line,view_order_line,"View of order line
table comment."
view_forecast,view_forecast,"View of Forecast
table comment."

1099

Viewing the Import/Export Logs
RED creates a log to aid in troubleshooting, in case issues are encountered during the
import/export process.

After completing the import/export process, you can click Open Log File or Open Log File
Folder from the Table Comments Import/Export pop-up window to view the log file generated.

The import/export logs are stored in your Windows Temp directory
(c:\Users\Username\AppData\Local\Temp).

1101

WhereScape RED enables you to process data from more than one source query into a single
consolidated table. The multi-source processing capability is designed to provide users with
flexibility in the definition of component source statements and the ability to independently
process multi source tables that are associated with the target table.

In This Chapter

Multi Source Functions and Features ... 1101
Adding Source Mapping to Objects .. 1106
Maintaining Source Column Mappings .. 1112
Generating Update Procedures for Source Mapping Objects.................................... 1115
Executing Update Procedures via Scheduler .. 1119
Reverting to Non Source Mapping Object .. 1121

C h a p t e r 4 7

Multi Source Processing

1102

Multi Source Functions and Features
The following describes the WhereScape RED functions and features that are used to support
multi source processing of data warehouse objects created in RED.

Note: The source mapping feature can be used with all RED table objects, except for Tabular
objects, partitioned tables and Load tables.

Source Mapping Object
Source Mapping objects are child objects that are used in WhereScape RED to map columns from
one or more source tables to an existing target table in RED.

A Source Mapping object is built from the Data Warehouse connection and can be created from
one or more source tables.

Refer to the section Adding Source Mapping to Objects (see "47.2 Adding Source Mapping to
Objects" on page 1106) for details.

1103

Source Mapping Tool
A Source Mapping tool is available in WhereScape RED which enables you to graphically map
columns from one or more source tables to an existing target table in RED.

This tool provides a graphical representation of the mapped columns between the source tables
and the target table. The columns from the source table that exists in the target table are
automatically mapped. You can edit the mappings by clicking a source column connection point
and dragging the line that appears to the target column’s connection point.

Refer to the section Maintaining Source Column Mappings (on page 1112) for details.

1104

Global Naming of Source Mappings
The Global Naming Conventions option includes the Global Naming of Source Mappings
setting that enables you to define naming standards for the source mapping objects in RED.

Refer to the section Global Naming Conventions > Global Naming of Source Mappings (see
"5.1.4.3 Global Naming of Source Mappings" on page 94) for details.

1105

Independent Execution of Update Procedures
The update procedures associated with the target table and the source mapping objects can be
executed individually, separate from each other. Similar to other table objects in RED, the update
procedures can be executed on demand or via the Scheduler (on page 685). This provides the
flexibility of scheduling the update procedures for each individual source mapping object as
required, e.g. based on the update frequency of the tables where the source columns are obtained.

The update procedures for source mapping objects can only be generated using a template.

Refer to the section Generating Update Procedures for Source Mapping Objects (on page 1115)
for details.

1106

Table Column Properties
The Source Details table column properties is used to specify where to obtain the source data
and provides options for processing the source data (transformation and join settings). You can
also define and manage column source mappings from this screen.

Refer to the relevant Table Column Properties sections in this user guide for details.

1107

Adding Source Mapping to Objects
When adding source columns to a table object in RED, the target table’s current source columns
are used to create the first source mapping object and then proceeds to create the second source
mapping object which contains the additional source columns that need to be mapped to the
target table. The columns from the source table that exists in the target table are automatically
mapped.

The process of adding Source Mappings is initiated when a source table is dragged and dropped to
an existing table object in RED.

The user is prompted with the followings options:

• New Table - Opens a new dialog that enables you to create the dropped table as a new object
in the metadata repository.

• Add Columns - Inserts the columns of the dropped table into the target table.
• Add Source Mapping - Inserts a new source mapping into the target table.

Note: If you are creating the first source mapping, the target table is first converted to a source
mappable object, and then a new source mapping is inserted. If it is not the first source mapping,
a new source mapping is just inserted into the target table.

1108

The alternative method is to right click the target table (Parent) in the Objects list pane and then
select the Add Source Mapping option from the context menu:

1109

Drag and Drop
The common approach to create source mappings is to select the source table that contains the
columns that you want to add and then drag this table into the target table.

This process creates two source mapping objects, the first one contains the original source
mapping of the target table and second one is for the additional columns from the source table
selected in the Browser pane.

You can drag additional source tables to create additional source mappings objects until you have
all the source data required for your target table.

1 Click the target table from the Objects list in the left pane.
The middle pane displays the properties of the selected target table, the pane is identified as
a target for new Source Mapping objects.

2 Browse to the Data Warehouse via the Browse > Source Table menu option.

3 Click the source table that contains the columns you want to include as sources from the
Browser pane, and drag it to the middle pane.

4 Click the Add Source Mapping button in the Resolve Table Drag/Drop prompt.

5 The new Source Mapping objects are created and displayed under the target table in the
Objects list pane.

1110

The middle pane displays the Source Mapping tool which provides a graphical representation
of the mapped columns between the second source table and the target table. The columns
from the source table that exists in the target table are automatically mapped.

6 To map the additional source columns that does not exist in the target table, click the
connection point of the source column you want to map and drag the line that appears to the
connection point of the Add New Column row in the target table.

1111

7 Repeat the same steps to map all the other source columns to the target table.

8 Click Save Changes to save the defined source mappings.

9 Right-click the target table from the Objects list in the left pane and select Create(ReCreate)
from the context menu to recreate the table. The Results pane displays confirmation that the
target table was successfully recreated.

1112

Once the target table is defined and created, you need to generate the update procedure for
each source mapping object to populate the target table. The update procedure is created
using a template—refer to Generating Update Procedures for Source Mapping Objects (on
page 1115) for details.

Maintaining Source Column Mappings
The following describe the process for managing source mappings between the source table(s)
and the target table.

1 Right click the Source Mapping object from the right-pane and select Maintain Source
Mappings from the context menu.

1113

2 Click the connection point of the source column you want to map and drag the line that
appears to the connection point of the target column.

TIPS:
- The target table can be clicked and dragged vertically (up/down) within the diagram view.
This is useful when there are more columns in the target table that can fit in the visible area
of the diagram view. You can also use the mouse wheel for scrolling up/down the diagram
view.

- You can undock any of the panes (Object, Browser and Results pane) in the Builder
window (on page 61), to gain a bigger work area for the Source Mapping tool.

1114

3 To map a source column that does not exist in target table, click the connection point of the
source column you want to map and drag the line that appears to the connection point of the
Add New Column row in the target table.

4 To remove an existing source mapping, click the connection point on the target table and
drag away the line that appears to disconnect.

1115

Notes:
- Clicking Remove All removes all the current mappings between the source table and the
target table.

- Clicking Hide Mapped Columns hides all the current mappings and only the unmapped
columns are displayed. This is useful when there are more columns in the target table that
can fit in the visible area of the diagram view and you only want to work on the columns that
are not mapped.

1116

Generating Update Procedures for Source Mapping Objects
After successfully defining and creating the Source Mapping objects, you can generate the update
procedure for each object via a template to populate the target table.

Generating update and custom procedures for Source Mapping objects is completed using the
same workflow as all objects in RED that support template based procedure/script generation.

Executing a procedure associated with the Source Mapping object can be performed both
interactively from the object's right-click context menu or via the Scheduler.

Notes:
- Please ensure that you have created your own Source Mapping object templates, before
performing the steps below.
- You can also have an update or custom procedure defined on the target table, if a single
consolidated procedure to process the table is required.

1 Click the Rebuild button beside the Update Procedure drop-down in the Properties screen
of the Source Mapping object, to launch the procedure generation Wizard.

Note: RED displays the name of the previously used update procedure template below the
Update Procedure drop-down field by default.

1117

2 On the Processing tab of the Update Build Options screen, select the template to use from
the Template drop-down or use the previous update procedure template. Configure the other
options available as required.

3 Click OK to proceed with the procedure generation. The Results pane displays confirmation

that the procedure was generated.

1118

4 Right-click the source table in the left pane, and select Code>View update from the context
menu to view the contents of the update procedure generated.

5 Right-click the table in the left pane and select Execute Update Procedure from the context

menu to run the procedure. The Results pane displays the number of records created.

Repeat the same steps described above to create update procedures for the other source mapping
objects, defined for the target table.

1119

Executing Update Procedures via Scheduler
The update procedures associated with the target table and the source mapping objects can be
executed individually, separate from each other. Similar to other table objects in RED, the
update procedures can be executed via the Scheduler.

1 Click the Scheduler tab to open the Scheduler window.

2 Click the New Job button from the Scheduler window toolbar to create a new job
3 Complete the fields on the Job Definition window. Refer to Creating a Job (on page 701)

for the descriptions of the fields.

1120

4 On the Define tasks window, select the target object and the its associated source mapping
objects from the Available Objects pane and add them to Job Tasks pane to define the tasks
to be run for the job.

Note: The update procedures associated with the target table and the source mapping objects
can be executed individually, separate from each other.

1121

5 Click OK to save and exit to the Scheduler window.

1122

Reverting to Non Source Mapping Object
You can revert the target table to a non-source mapping object if you delete its associated source
mapping objects. If only a single source mapping object is left, right clicking the remaining
source mapping object provides the option Revert to Non-Source Mapping Object.

Note: Deleting the target table table, deletes all its source mapping objects, including its
associated meta data.

	Overview
	Overview of WhereScape RED
	How to use this Guide

	Design
	Objects and Windows
	Object Types
	Working with Objects
	Connections
	Load Tables
	Dimension Tables
	Data Store Tables
	EDW 3NF Tables
	Stage and Aggregate Tables
	OLAP Cubes
	OLAP Dimensions
	Procedures
	Scripts
	Indexes
	Views
	Join Indexes
	Exports
	Source Mapping
	Object Check-Outs and Check-Ins
	Re-Create Dialog

	Organizing Objects
	Adding Objects to Projects
	Removing Objects from Projects
	Using Project/Object Maintenance
	Adding Projects to Groups
	Removing Projects from Groups
	Moving Projects within Groups
	List Projects Memberships for an Object(s)

	Windows and Panes
	Builder Window
	Scheduler Window
	Procedure Editor Window

	Export Middle Pane Output
	Find Function

	Tutorials
	Default Settings
	Settings - Options
	Settings - Repository Identification
	Settings - Repository Privacy Settings
	Settings - Object Types
	Object Type Availability
	Object Type Names
	Object Type Ordering
	Object Type End User Setting
	Object Type Icon
	Object Type Color
	Object Sub Types

	Settings - Global Naming Conventions
	Case Conversion
	Global Naming of Tables
	Global Naming of Source Mappings
	Global Naming of Indexes
	Global Naming of Key Columns
	Global Naming of Procedures

	Settings - DSS Tables and Columns
	DSS Tables
	DSS Columns
	DSS Columns for Custom Targets

	Settings - Check-Out and Check-In
	Code Generation
	General
	Default Update Procedure Options

	Settings - Storage
	Target Usage
	Target Location
	Table Storage
	Default Optional CREATE Clause
	Index Type

	Settings - Metadata Versioning
	Settings - Documentation
	Settings - Available Load Types
	Settings - Other

	Settings - User Preferences
	Settings - Common
	Look and Feel
	General
	Code Editor
	Confirmation Prompts
	Diagrams
	Property Grids

	Local Naming Conventions
	General
	Local Naming of Tables
	Local Naming of Source Mappings
	Local Naming of Key Columns
	Local Naming of Indexes

	Local Paths
	Outputs
	Other

	Settings - Current Repository
	Look and Feel

	Settings - Language Options

	Parameters
	Connections
	Connection Types
	Database - Data Warehouse/Metadata Repository
	Database
	ODBC
	Windows
	Other

	UNIX
	Hadoop
	Microsoft Analysis Server 2005+
	Microsoft Analysis Server 2005+ - OLAP Cubes
	Microsoft Analysis Server 2005+ - Tabular Mode

	Browsing a Connection
	Connection Browse Properties

	Changing a Connection's Properties
	Reset Meta Database Connections
	Connection Settings for BDA
	Configuring the BDA Server
	Big Data Adapter Settings

	Configuring your database for use by BDA
	Big Data Adapter Settings

	Connection Extended Properties

	Table Properties
	Properties
	Rebuilding Update Procedures

	Storage
	Table Storage Screen - Teradata
	Location
	Storage
	Other

	Table Storage Screen - Tabular
	Location
	Other
	Processing

	Bulk Table Storage Change

	Override Create DDL
	Source
	Documentation Fields
	Documentation Fields Screen

	Table Extended Properties
	Notes

	Loading Data
	Choosing the Best Load Method
	Load Drag and Drop
	Data Type Mappings

	Database Link Load
	Database Link Load - Properties
	Database Link Load - Source Screen

	ODBC Based Load
	Native ODBC Based Load
	Native ODBC Based Load - Source Screen
	File Actions
	Native Loads using UNIX and LINUX

	TPT Load
	TPT Load - Source Screen
	Cleanup after TPT Load Failure

	TPT UNIX/Linux Script Load
	TPT UNIX Script Load - Properties

	SSIS Loader
	Loading Data into RED Load Tables using SSIS

	Flat File Loads
	Loading Data from Flat Files using SSIS
	Flat File Load - Source Screen
	Script based loads

	XML File Load
	External Load
	Apache Sqoop Load
	Handling Missing Source Columns
	Load Table Transformations
	Post-Load Procedures

	Changing Load Connection and Schema

	Dimensions
	Dimensions Overview
	Building a Dimension
	Generating the Dimension Update Procedure
	Source tab

	Dimension Artificial Keys
	Dimension Column Properties
	Dimension Column Transformations
	Dimension Hierarchies
	Adding a Dimension Hierarchy
	Using a Maintained Hierarchy

	Snowflake
	Creating a Snowflake

	Dimension Language Mapping

	Staging
	Building the Stage Table
	Generating the Staging Update Procedure
	Generating a Procedure
	Procedure type
	Locking Request Modifier
	Source Table Mapping
	Parameter selection
	Dimension Joins
	Dimension history information
	Building and Compiling the Procedure

	Stage Table Custom Procedure
	Stage Table Column Properties
	Stage Table Column Transformations
	Permanent Stage Tables
	Generating the Permanent Staging Update Procedure
	Set Merge Procedure

	Data Store Objects
	Data Store Objects Overview
	Building a Data Store Object
	Generating the Data Store Update Procedure
	Processing tab
	Source tab

	Data Store Artificial Keys
	Data Store Column Properties
	Data Store Column Transformations

	EDW 3NF Tables
	EDW 3NF Tables Overview
	Building EDW 3NF Table
	Generating the EDW 3NF Update Procedure
	Processing tab
	Source tab
	Indexes

	EDW 3NF Table Artificial Keys
	EDW 3NF Table Column Properties
	EDW 3NF Table Column Transformations

	Data Vaults
	Data Vault Functions and Features
	Load Table Meta Data Columns
	Data Vault Stage Table
	Hash Key Generation Wizard
	Hub, Link and Satellite Creation Wizard
	Data Vault Templates
	Data Vault Settings
	Object Types settings:
	Global Naming Conventions settings:
	DSS Tables and Columns settings:

	Table Column Properties
	Maintain Hash Key Columns

	Building Data Vault Objects
	Creating Load Tables
	Creating Data Vault Stage Tables
	Generating Update Procedures for the Data Vault Stage Table
	Creating the Hub, Link and Satellite Tables
	Creating the Hub table
	Creating the Link table
	Creating the Satellite table

	Generating Update Procedures for Hub, Link and Satellite Tables
	Hub table
	Link and Satellite Tables

	Changing the Data Vault Hash Key Function in WhereScape RED 6.9.1.0 and above

	Custom Objects
	Model Tables
	Model Table Overview
	Building a Model Table
	Drag and Drop
	Model Table Properties
	Create and Load
	Deleting and Changing columns
	Adding additional columns
	Create the table

	Generating the Model Table Update Procedure
	Generating a Procedure
	Business Key definition
	Locking Request Modifier
	Source Table Mapping
	Building and Compiling the Procedure

	Model Table Artificial Keys
	Model Table Custom Procedure
	Model History Tables
	Generating History Table Update Procedures
	Model Table Column Properties
	Model Table Column Transformations

	Fact Tables
	Detail Fact Tables
	Creating Detail Fact Tables
	Generating the Detail Fact Update Procedure
	Source Tab

	Fact Table Column Properties
	Fact Table Column Transformations
	Fact Table Language Mapping

	Aggregation
	Creating an Aggregate Table
	Creating an Aggregate Summary Table
	Aggregate Table Column Properties
	Aggregate Table Column Transformations

	Join Indexes
	Creating a Join Index

	Views
	One to One Views
	Dimension Views for Aliasing
	Compound Views, Facts and Dimensions
	Dimension View Hierarchies
	Adding a Dimension View Hierarchy

	Creating a Custom View
	View Aliases

	Analysis Services OLAP Cubes
	OLAP Overview
	OLAP Defining the Data Source for the OLAP Cube
	OLAP Defining an OLAP Cube
	OLAP Inspecting and Modifying Advanced Cube Properties
	OLAP Creating an OLAP Cube on the Analysis Services Server
	OLAP Cube Objects
	OLAP Cube Properties
	OLAP Cube Measure Groups
	OLAP Cube Measure Group Processing/Partitions
	OLAP Cube Measure Group Partitions
	OLAP Cube Measures
	OLAP Cube Calculations
	OLAP Cube Key Performance Indicators
	OLAP Cube Actions
	OLAP Cube Dimensions
	OLAP Cube Measure Group Dimensions

	OLAP Dimension Objects
	OLAP Dimension Overview
	OLAP Dimension Attributes
	OLAP Dimension Attribute Relationships
	OLAP Dimension Hierarchies
	OLAP Dimension User Defined Hierarchy Levels

	OLAP Changing OLAP Cubes
	OLAP Retrofitting an OLAP Object

	Transformations
	Column Transformations
	Column Transformation Properties
	Load Table Column Transformations
	Database Link During Load Transformations
	File During Load Transformations
	After Load Transformations

	Teradata User Defined Functions
	Teradata UDF Example

	Re-usable Transformations
	Creating a New Re-usable Transformation
	Specify the Name of the Transformation
	Enter Re-usable Transformation Metadata
	Define the Transformation Model
	Completed Re-usable Transformation

	Changing a Re-usable Transformation
	Applying Changes to Dependant Transformations

	Using Re-usable Transformations

	Exporting Data
	Building an Export Object
	File Attributes
	File Attributes - SSIS Exports

	Export Column Properties
	Script based Exports

	Procedures and Scripts
	Procedure Generation
	Procedure Editing
	Procedure Loading and Saving
	Procedure Comparisons
	Procedure Compilation
	Procedure Running
	Procedure Syntax
	Procedure Properties
	Macros
	BTEQ Scripts
	Script Generation
	Script Generation (Windows/Teradata)
	Windows PowerShell Scripts
	Via the WhereScape RED Script Editor
	Via the Stub Template

	Script Editing
	Script Testing
	Script Syntax
	Script Environment Variables
	Calling a Batch File from a Script
	Scheduling Scripts
	Manually created scripts

	Templates
	Template Properties
	Template Editor
	Evaluating an API Outline Template

	Template Usage
	Windows PowerShell Templates
	PowerShell Template (wsl_common_powershellscript_stub):

	Scheduler
	Scheduler Options
	Auto
	Tools
	Select Job Report Fields

	Scheduler States
	Scheduling a Job
	Working with Jobs
	Creating a Job
	Editing a Job
	Editing Tasks in a Job
	Editing Task Dependencies
	Show Dependencies Diagram
	Inserting a Copy of a Job
	Deleting a Job
	Deleting Job Logs
	Starting a Job
	Halting a Job
	Aborting a Job
	Restarting a Job
	Creating an Application from a Job

	Stand Alone Scheduler Maintenance
	SQL to return Scheduler Status
	Reset Columns in Job and Task View
	Stopping a Linux/UNIX Scheduler from within RED

	Indexes
	Index Definition

	Documentation and Diagrams
	Creating Documentation
	Batch Documentation Creation
	Reading the Documentation
	Diagrams
	Types of Diagrams
	Schema Diagram
	Source Diagram
	Joins Diagram
	Links Diagram
	Impact Diagram
	Dependency Diagram

	Working with Diagrams
	Creating a Job from a Diagram
	Creating an Application from a Diagram
	Creating a Project from a Diagram

	Reports
	Dimension-Fact Matrix
	OLAP Dimension-Cube Matrix
	Dimension Views for a Specified Dimension
	Column Reports
	Columns without Comments
	All Column Transformations
	Re-Usable Column Transformations
	Column Track-Back
	Column Track-Forward

	Table Reports
	Tables without Comments
	Load Tables by Connection
	Export Objects by Connection
	Records that failed a Dimension Join
	External Source Tables/files

	Procedure Reports
	Modified Procedures
	Custom Procedures

	Object Reports
	Objects-Projects Matrix
	Modified Objects (excluding indexes)
	Objects Checked-out
	Loaded or Imported Objects
	Objects with Extended Properties

	Job Reports
	Object-Job Matrix
	Jobs with an Object
	Tasks of a Job

	Operational Reports
	Object Performance History
	Job Performance History
	Task Performance History

	Validate
	Validate Meta-data
	Validate Workflow Data
	Validate Table Create Status
	Validate Load Table Status
	Validate Procedure Status
	List Meta-data Tables not in the Database
	List Database Tables not in the Meta-data
	List Tables with no related Procedures or Scripts
	List Procedures not related to a Table
	Teradata: View of Model Validate
	Query Data Warehouse Objects

	Promoting Between Environments
	Applications
	Application Creation
	Application Loading
	Creating and Loading Applications from the Command Line

	Importing Object Metadata
	Importing Language Files
	Data Warehouse Testing

	Backing Up and Restoring Metadata
	Backup using DB Routines
	Unloading Metadata
	Loading an Unload

	Altering Metadata
	Validating Tables
	Validating Source (Load) Tables
	Validating Procedures
	Altering Tables
	Validating Indexes
	Recompiling Procedures

	Callable Routines
	Introduction to Callable Routines
	Callable Routines API
	Callable Routines per RDBMS
	Callable Routines Names Qualifier
	Callable Routines Common Input
	Callable Routines Invocation
	Alternative Invocation Methods
	Invocation via ODBC
	Invocation via the Command-Line

	Ws_Api_Glossary
	Ws_Connect_Replace
	Ws_Job_Abort
	Ws_Job_Clear_Archive
	Ws_Job_Clear_Logs
	Ws_Job_Clear_Logs_By_Date
	Ws_Job_Create
	Ws_Job_CreateWait
	Ws_Job_Dependency
	Ws_Job_Release
	Ws_Job_Restart
	Ws_Job_Schedule
	Ws_Job_Status
	Ws_Load_Change
	Ws_Maintain_Indexes
	Ws_Version_Clear
	WsParameterRead
	WsParameterReadF
	WsParameterReadG
	WsParameterWrite
	WsWrkAudit
	WsWrkAuditBulk
	WsWrkError
	WsWrkErrorBulk
	WsWrkTask

	Ws_admin_v Views
	Ws_admin_v_audit
	Ws_admin_v_error
	Ws_admin_v_sched
	Ws_admin_v_task

	Retrofitting
	Migrating the Data Warehouse Database Platform
	Importing a Data Model
	Re-Targeting Source Tables
	Retro Column Properties
	Retro Column Properties Screen
	Retro Column Transformations

	Integrating WhereScape RED into an Existing Warehouse
	Rebuilding
	Integrating
	Integrating, Host Scripts
	Integrating, Selecting a Table Type
	Integrating, Questions
	Integrating, Procedures
	Integrating, Views
	Integrating, WhereScape Tables

	Relationship Maintenance
	Add Relationship
	List Relationships
	Generate Relationships

	Upgrading RED
	Login Checks
	Data Type Mappings
	Using Data Type Mapping Sets
	Data Warehouse Connection Properties Dialog
	Non-Data Warehouse Connection Properties Dialog

	Maintaining Data Type Mapping Sets
	Creating a New Data Type Mapping Set
	Copying a Data Type Mapping Set
	Editing a Data Type Mapping Set
	Deleting a Data Type Mapping Set

	Loading Custom Data Type Mapping Sets
	Exporting Custom Data Type Mapping Sets
	Custom Data Type Mapping Examples

	Column Context Menu
	Properties
	Change Column(s)
	Add Column
	Duplicate Column
	Delete Column
	Re-space Order Number
	Impact
	Sync Column order with database
	Send Columns to Another Object

	Database Functions
	Using Database Function Sets
	Column Transformation Properties Dialog
	/

	Transformation Definition screen
	/

	Connection Properties screen
	/

	Maintaining Database Function Sets
	Creating a New Database Function Set
	Copying a Database Function Set
	Editing a Database Function Set
	To add a new function to the database function set:
	To copy an existing function in the database function set:
	To edit an existing function in the database function set:
	To delete an existing function in the database function set:
	To move a function in the database function set up or down in the list:
	To move a group of functions in the database function set up or down in the list:

	Deleting a Database Function Set

	Loading Database Function Sets
	Exporting Database Function Sets

	Gather Statistics
	Define Statistics

	Extended Properties
	Defining Extended Properties
	Creating an Extended Property Definition
	Variable Settings
	Scope Settings

	Maintaining Extended Property Definitions

	Extended Properties Value Assignment
	Setting Up Extended Property Values for a Connection
	Setting Up Extended Property Values for an Object

	Extended Properties Lookup
	Extended Properties Data Migration Between Repositories
	Exporting Extended Properties
	Loading Extended Properties

	Table and Column Comments
	Defining Table Comments
	Exporting Table Comments
	Loading Table Comments
	Defining Column Comments
	Exporting Column Comments
	Loading Column Comments
	Importing Comments from an External Source
	Viewing the Import/Export Logs

	Multi Source Processing
	Multi Source Functions and Features
	Source Mapping Object
	Source Mapping Tool
	Global Naming of Source Mappings
	Independent Execution of Update Procedures
	Table Column Properties

	Adding Source Mapping to Objects
	Drag and Drop

	Maintaining Source Column Mappings
	Generating Update Procedures for Source Mapping Objects
	Executing Update Procedures via Scheduler
	Reverting to Non Source Mapping Object

